
Youth, Family, and Contextual Characteristics Predicting Violence Exposure: Disruptive

Behavior Disorder Symptoms as a Moderator
Penny S. Loosier, Michael Windle, & Eun Young Mun

The University of Alabama at Birmingham

Akhil Langer, Jonathan Lifflander, Phil Miller, Harshitha Menon, Laxmikant V. Kale *Kuo-Chuan Pan, *Paul Ricker

 Parallel Programming Laboratory, Department of Computer Science *Department of Astronomy

University of Illinois at Urbana-Champaign

Introduction

Need for Scalable Algorithms

Acknowledgements

The authors were supported by grants MITRE Research Agreement No. 81990, NSF ITR-HECURA-0833188, NSF

OCI-0725070. This research used resources of the Oak Ridge Leadership Computing Facility located in the Oak

Ridge National Laboratory and the Argonne Leadership Computing Facility at Argonne National Laboratory which

are supported by the Office of Science of the Department of Energy under Contract DEAC05-00OR22725 and DE-

AC02-06CH11357, respectively.

Conclusion

References
1. AMR algorithm and benchmark source code,” 2012. Source code

and scripts available at

git://charm.cs.illinois.edu/benchmarks/amr.git.

2. Langer, A., Lifflander, J., Miller, P., Pan, K. C., Kale, L. V., &

Ricker, P. (2012, October). Scalable Algorithms for Distributed-

Memory Adaptive Mesh Refinement. In Computer Architecture

and High Performance Computing (SBAC-PAD), 2012 IEEE 24th

International Symposium on (pp. 100-107). IEEE.

3. Kale, L., Arya, A., Jain, N., Langer, A., Lifflander, J., Menon, H., Ni,

X., Sun, Y., Totoni, E., Venkataraman, R.,, Wesolowski, L.

Migratable Objects + Active Messages + Adaptive Runtime =

Productivity + Performance: A Submission to the 2012 HPC Class

II Challenge [SC 2012]. PPL Technical Report: 12-47

Scalable Algorithms Experimental Results

Motivation
• Eulerian methods widely used in numerical cosmology, global

atmospheric modeling, mantle convection modeling, etc.

• Requires simulation of large meshes (e.g. size 1015)

• Intractable even on modern supercomputers

Solution – Adaptive Mesh Refinement (AMR)
Every few iterations of the Euler method

• Refine zones that need finer precision

• Keep others at coarse granularity level or coarsen them

• Neighboring blocks remain within ±1 refinement level of their

neighbors

Dynamic Distributed Load Balancing
• Load balance blocks across processors every few iterations

• Charm++ provided distributed load balancer – Grapevine

• Competitive with the centralized load balancers while incurring

negligible overhead

AMR mesh evolving over time. An example simulation of a circular fluid

advected by a constant velocity field

Mesh restructuring latency on IBM BG/Q

Traditional Algorithms
• Each process manages a set of neighboring blocks assigned

to it through a space filling curve (e.g. Hilbert curve)

Limitations of Traditional Algorithms
• 𝑂(#𝑏𝑙𝑜𝑐𝑘𝑠) memory per process to store the tree information

• 𝑂 log 𝑃 time to locate neighboring blocks

• 𝑂(𝑑) rounds of collective communication during mesh

restructuring

• Centralized load balancing – takes O(#blocks) time and memory

• Does not allow coarsening of sibling blocks residing on different

processors

At extreme scale
• As available memory per process decreases, traditional

algorithms pose memory bottleneck

Time steps per second strong scaling (max mesh depth: 15) on IBM BG/Q

Tree partitioning for assignment to processes

Propagation of refinement decision messages based on local-error

criteria and near-neighbor communication

• Elevate blocks to first-class entities- Charm++ objects

identified with bit-vector ids

• No 𝑂(𝑃) data structures, constant time neighbor lookup

• Enables asynchronous progress in computation

• Adapt mesh using near-neighbor point-to-point messages

and quiescence detection

• Only 2 quiescence states vs 𝑂(𝑑) reductions

• Eliminate memory hungry collectives taking 𝑂 𝑑 log 𝑃

time

• Distributed dynamic load balancing of blocks

Enables high performance for much more deeply refined

computations than are currently practiced

The finite state machine describing each block’s decision process

during the mesh restructuring algorithm

Design
Each block acts as a first class entity – Charm++ object:

• Acts as a virtual processor – allowing overlap of computation with

communication of other blocks on the same physical process

• Uniquely identified by its location in the refinement tree

• Dynamically placed on any physical process – facilitating dynamic

load balancing

• Unit of algorithm expression – reduces implementation complexity

• End-point of communication – run-time system handles

communication between arbitrary blocks

• 𝑂(
#𝑏𝑙𝑜𝑐𝑘𝑠

𝑃
) memory per process to store the tree information

The Mesh Restructuring Algorithm
Executes in two phases separated by a system quiescence state:

• Phase 1

• Based on local error estimate, make one of the following

decision: refine, stay or coarsen

• Communicate refine and stay decision to neighboring blocks

• Update decision based on the DFA below and communicate

change in decision

• Wait for system quiescence state – takes 𝑂 log 𝑃 time

• Phase 2

• Create new blocks or destroy existing ones based on the

refinement decision

• Wait for system quiescence state

