Scalable Algorithms for Distributed Memory Adaptive Mesh Refinement

Akhil Langer, Jonathan Lifflander, Phil Miller, Harshitha Menon, Laxmikant V. Kale
Parallel Programming Laboratory, Department of Computer Science

Introduction

—

Motivation

A Eulerian methods widely used in numerical cosmology, global
atmospheric modeling, mantle cenvection modeling, etc.

A Requires simulation of large meshes (e.g. size 10%5)

A Intractable even on modern supercomputers

Solution T Adaptive Mesh Refinement (AMR)

Every few iterations of the Euler method

A Refine zones that need finer precision

A Keep others at coarse granularity level or coarsen them

A Neighboring blocks remain within +1 refinement level of their
neighbors

AMR mesh evolving over time. An example simulation of a circular fluid
advected by a constant velocity field

Need for Scalable Algorithms

—

Traditional Algorithms
A Each process manages a set of neighboring blocks assigned
to it through a space filling curve (e.g. Hilbert curve)

Tree partitioning for assignment to processes

Limitations of Traditional Algorithms

A 1:S>H K Pree®ory per process to store the tree information

A 1(Z* % time to locate neighboring blocks

A 1:@ rounds of collective communication during mesh
restructuring

A Centralized load balancing i takes O(#blocks) time and memory

A Does not allow coarsening of sibling blocks residing on different
processors

At extreme scale

A As available memory per process decreases, traditional
algorithms pose memory bottleneck

University of lllinois at Urbana-Champaign

Scalable Algorithms

s
Design
Each block acts as a first class entity I Charm++ object:
A Acts as a virtual processor i allowing overlap of computation with
communication of other blocks on the same physical process
A Uniquely identified by its location in the refinement tree
A Dynamically placed on any physical process i facilitating dynamic
load balancing
A Unit of algorithm expression i reduces implementation complexity
A End-point of communication i run-time system handles

communication between arbitrary blocks

sORaOba
A 1: = ‘memory per process to store the tree information

The Mesh Restructuring Algorithm
Executes In two phases separated by a system quiescence state:
A Phase 1
A Based on local error estimate, make one of the following
decision: refine, stay or coarsen
A Communicate refine and stay decision to neighboring blocks
A Update decision based on the DFA below and communicate
change In decision
A Wait for system quiescence state i takes 1(Z ‘ % time
A Phase 2
A Create new blocks or destroy existing ones based on the
refinement decision
A Wait for system quiescence state

Propagation of refinement decision messages based on local-error
criteria and near-neighbor communication

Thef i nite state machine describing

during the mesh restructuring algorithm

Dynamic Distributed Load Balancing

A Load balance blocks across processors every few iterations

A Charm++ provided distributed load balancer i Grapevine

A Competitive with the centralized load balancers while incurring
negligible overhead

*Kuo-Chuan Pan, *Paul Ricker

*Department of Astronomy

Experimental Results

—

Depth Range 4-9 1
Depth Range 4-10
Depth Range 4-11 —2

=
™
o
E
|_
=
[&]
c
[1}]
4+
]
=
{=)]
£
=
W
o
=
L }]
4

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k
Number of Ranks

Mesh restructuring latency on IBMBG/Q

Time steps per second strong scaling (max mesh depth: 15) on IBM BG/Q

Conclusion

s
A Elevate blocks to first-class entities- Charm++ objects
identified with bit-vector ids
A No 1:2:data structures, constant time neighbor lookup
A Enables asynchronous progress in computation
A Adapt mesh using near-neighbor point-to-point messages
and quiescence detection . ,
A Only 2 quiescence states vs 1:@reductions . 4
A Eliminate memory hungry collectives taking 1(@Z ‘ 29
time
A Distributed dynamic load balancing of blocks
Enables high performance for muchgmore deeply refined
computations than are currently practiced

References
D ——]

1. AMR al gorithm and benchmar k sou!
and scripts available at
git://charm.cs.illinois.edu/benchmarks/amr.git.

2. Langer, A., Lifflander, J., Miller, P., Pan, K. C., Kale, L. V., &
Ricker, P. (2012, October). Scalable Algorithms for Distributed-
Memory Adaptive Mesh Refinement. In Computer Architecture
and High Performance Computing (SBAC-PAD), 2012 |IEEE 24th
International Symposium on (pp. 100-107). IEEE.

€ a C3N Kak! LO Arfa0aS, Jath ONC, LaRderPA, LifldhdeiC £, R1énon, H., Ni,
X., Sun, Y. Totoni, E., Venkataraman, R.,, Wesolowski, L.
Migratable Objects + Active Messages + Adaptive Runtime =
Productivity + Performance: A Submission to the 2012 HPC Class
Il Challenge [SC 2012]. PPL Technical Report: 12-47

Acknowledgements

The authorsweresupportedoy grantsMITRE ResearchiAgreementNo. 81990 NSF ITR-HECURA-0833188 NSF
OCI-0725070 This researchusedresourcesf the Oak Ridge LeadershipComputingFacility locatedin the Oak
Ridge National Laboratoryandthe ArgonnelLeadershipComputingFacility at Argonne National Laboratorywhich
are supportedoy the Office of Scienceof the Departmenbf EnergyunderContractDEAC05-000R22725and DE-
AC02-06CH11357 respectively

y

