
Meta-Balancer

Automated Load Balancing Invocation based on
Application Characteristics

Harshitha Menon, Nikhil Jain, Gengbin Zheng, Laxmikant Kalé

25th September

Cluster 2012, Beijing, China

1 / 30

Meta-Balancer

Outline

1 Introduction
Motivation
Load Balancing Challenges

2 Background

3 Meta-Balancer
Statistics Collection
Decision Making

4 Evaluation

5 Conclusion and Future Work

2 / 30

Meta-Balancer

Introduction

Outline

1 Introduction
Motivation
Load Balancing Challenges

2 Background

3 Meta-Balancer
Statistics Collection
Decision Making

4 Evaluation

5 Conclusion and Future Work

3 / 30

Meta-Balancer

Introduction

Motivation

Motivation

Modern parallel applications on large systems

Difficult to program and extract best performance
Performance is limited by most overloaded processor
The chance that one processor is severely overloaded gets
higher as no of processors increases

Load imbalance in parallel applications

Leads to drop in system utilization
Hampers scalability of the application

4 / 30

Meta-Balancer

Introduction

Motivation

Motivation

Modern parallel applications on large systems

Difficult to program and extract best performance
Performance is limited by most overloaded processor
The chance that one processor is severely overloaded gets
higher as no of processors increases

Load imbalance in parallel applications

Leads to drop in system utilization
Hampers scalability of the application

4 / 30

Meta-Balancer

Introduction

Load Balancing Challenges

Load Balancing Challenges

Load balancing has to be profitable!

Determining factors

Incurred overheads - collection of statistics, execution of
strategy to find the new mapping of tasks/work units, moving
the tasks
When to perform load balance?
Load balancing strategy selection

Adaptive load balancing is needed in a dynamic applications

5 / 30

Meta-Balancer

Introduction

Load Balancing Challenges

Load Balancing Challenges

Load balancing has to be profitable!

Determining factors

Incurred overheads - collection of statistics, execution of
strategy to find the new mapping of tasks/work units, moving
the tasks
When to perform load balance?
Load balancing strategy selection

Adaptive load balancing is needed in a dynamic applications

5 / 30

Meta-Balancer

Introduction

Load Balancing Challenges

Load Balancing Challenges

Load balancing has to be profitable!

Determining factors

Incurred overheads - collection of statistics, execution of
strategy to find the new mapping of tasks/work units, moving
the tasks
When to perform load balance?
Load balancing strategy selection

Adaptive load balancing is needed in a dynamic applications

5 / 30

Meta-Balancer

Introduction

Load Balancing Challenges

Meta-Balancer

Automating load balancing related decision making

Monitors the application continuously and predicts load
behavior

Identifies when to invoke load balancing for optimal
performance based on

Predicted load behavior and guiding principles
Performance in recent past

6 / 30

Meta-Balancer

Introduction

Load Balancing Challenges

Meta-Balancer

Automating load balancing related decision making

Monitors the application continuously and predicts load
behavior

Identifies when to invoke load balancing for optimal
performance based on

Predicted load behavior and guiding principles
Performance in recent past

6 / 30

Meta-Balancer

Introduction

Load Balancing Challenges

Meta-Balancer

Automating load balancing related decision making

Monitors the application continuously and predicts load
behavior

Identifies when to invoke load balancing for optimal
performance based on

Predicted load behavior and guiding principles
Performance in recent past

6 / 30

Meta-Balancer

Background

Outline

1 Introduction
Motivation
Load Balancing Challenges

2 Background

3 Meta-Balancer
Statistics Collection
Decision Making

4 Evaluation

5 Conclusion and Future Work

7 / 30

Meta-Balancer

Background

Charm++

Message-driven parallel programming paradigm based on
overdecomposition and migratable objects

Programmer decomposes the problem into tasks

Charm++ RTS manages the scheduling of tasks on the
processors

User View

System implementation

8 / 30

Meta-Balancer

Background

Charm++

Message-driven parallel programming paradigm based on
overdecomposition and migratable objects

Programmer decomposes the problem into tasks

Charm++ RTS manages the scheduling of tasks on the
processors

User View

System implementation

8 / 30

Meta-Balancer

Background

Charm++

Message-driven parallel programming paradigm based on
overdecomposition and migratable objects

Programmer decomposes the problem into tasks

Charm++ RTS manages the scheduling of tasks on the
processors

User View

System implementation

8 / 30

Meta-Balancer

Background

Dynamic Load Balancing Framework in Charm++

Based on principle of persistence

Instruments the application tasks at fine-grained level

Relies on application user to invoke load balancer and select
load balancing strategy

When the load balancing is invoked

Gathers the statistics based on the strategy (centralized or
hierarchical)
Executes load balancing strategy
Migrates objects based on new mapping

9 / 30

Meta-Balancer

Background

Dynamic Load Balancing Framework in Charm++

Based on principle of persistence

Instruments the application tasks at fine-grained level

Relies on application user to invoke load balancer and select
load balancing strategy

When the load balancing is invoked

Gathers the statistics based on the strategy (centralized or
hierarchical)
Executes load balancing strategy
Migrates objects based on new mapping

9 / 30

Meta-Balancer

Background

Dynamic Load Balancing Framework in Charm++

Based on principle of persistence

Instruments the application tasks at fine-grained level

Relies on application user to invoke load balancer and select
load balancing strategy

When the load balancing is invoked

Gathers the statistics based on the strategy (centralized or
hierarchical)
Executes load balancing strategy
Migrates objects based on new mapping

9 / 30

Meta-Balancer

Background

Dynamic Load Balancing Framework in Charm++

Based on principle of persistence

Instruments the application tasks at fine-grained level

Relies on application user to invoke load balancer and select
load balancing strategy

When the load balancing is invoked

Gathers the statistics based on the strategy (centralized or
hierarchical)
Executes load balancing strategy
Migrates objects based on new mapping

9 / 30

Meta-Balancer

Meta-Balancer

Outline

1 Introduction
Motivation
Load Balancing Challenges

2 Background

3 Meta-Balancer
Statistics Collection
Decision Making

4 Evaluation

5 Conclusion and Future Work

10 / 30

Meta-Balancer

Meta-Balancer

Design Overview

Module to control load balancing related decision making

Implemented on top of Charm++ load balancing framework

Key responsibilities

Monitor the application: collect minimal statistics
Identify the iteration to invoke load balancing to optimize
performance
Form a consensus among participating processors on when to
invoke load balancing

11 / 30

Meta-Balancer

Meta-Balancer

Design Overview

Module to control load balancing related decision making

Implemented on top of Charm++ load balancing framework

Key responsibilities

Monitor the application: collect minimal statistics
Identify the iteration to invoke load balancing to optimize
performance
Form a consensus among participating processors on when to
invoke load balancing

11 / 30

Meta-Balancer

Meta-Balancer

Design Overview

Module to control load balancing related decision making

Implemented on top of Charm++ load balancing framework

Key responsibilities

Monitor the application: collect minimal statistics
Identify the iteration to invoke load balancing to optimize
performance
Form a consensus among participating processors on when to
invoke load balancing

11 / 30

Meta-Balancer

Meta-Balancer

Statistics Collection

Statistics Collection

a1 b1 a2 b2

c1 d2c2 d1

e1 e2 e3 e4

Stats Red 1

c3

e11 e12 e13

a9 b10

c8 d7

ROOT

PE0

PE1

PE2

Stats Red 2

Asynchronous collection

Overlaps with application execution
Supported using Charm++’s tree
based reduction
No barrier for statistics collection

Minimal statistics

Max load
Average load
Utilization of processors

12 / 30

Meta-Balancer

Meta-Balancer

Statistics Collection

Statistics Collection

a1 b1 a2 b2

c1 d2c2 d1

e1 e2 e3 e4

Stats Red 1

c3

e11 e12 e13

a9 b10

c8 d7

ROOT

PE0

PE1

PE2

Stats Red 2

Asynchronous collection

Overlaps with application execution
Supported using Charm++’s tree
based reduction
No barrier for statistics collection

Minimal statistics

Max load
Average load
Utilization of processors

12 / 30

Meta-Balancer

Meta-Balancer

Decision Making

Decision Making

Consider the load imbalance given by

ζ =
Lmax − Lavg

Lavg

ζ > 0 means load imbalance; leads to performance loss

Should load balancing be invoked when ζ > 0?

Goal - minimize total execution time (application + load
balancing overheads)

13 / 30

Meta-Balancer

Meta-Balancer

Decision Making

Decision Making

Consider the load imbalance given by

ζ =
Lmax − Lavg

Lavg

ζ > 0 means load imbalance; leads to performance loss

Should load balancing be invoked when ζ > 0?

Goal - minimize total execution time (application + load
balancing overheads)

13 / 30

Meta-Balancer

Meta-Balancer

Decision Making

Decision Making

Consider the load imbalance given by

ζ =
Lmax − Lavg

Lavg

ζ > 0 means load imbalance; leads to performance loss

Should load balancing be invoked when ζ > 0?

Goal - minimize total execution time (application + load
balancing overheads)

13 / 30

Meta-Balancer

Meta-Balancer

Decision Making

Model to Predict Ideal LB Period

Consider a linear model for load prediction based on collected
statistics

Average load is represented by

Lavg = a ∗ t + la

Max load is represented by

Lmax = m ∗ t + lm

14 / 30

Meta-Balancer

Meta-Balancer

Decision Making

Model to Predict Ideal LB Period

Consider a linear model for load prediction based on collected
statistics

Average load is represented by

Lavg = a ∗ t + la

Max load is represented by

Lmax = m ∗ t + lm

14 / 30

Meta-Balancer

Meta-Balancer

Decision Making

Model to Predict Ideal LB Period

Consider a linear model for load prediction based on collected
statistics

Average load is represented by

Lavg = a ∗ t + la

Max load is represented by

Lmax = m ∗ t + lm

14 / 30

Meta-Balancer

Meta-Balancer

Decision Making

Model to Predict Ideal LB Period

Application execution time is sum of

Time spent on running application

Load Balancing overhead

Γ =
η

τ
× (

∫ τ

0
(mt + lm)dt + ∆) +

∫ η

0
(at + la)dt

τ be the ideal LB period,
η be the total iterations an application executes,
Γ be the total application execution time, and
∆ be the cost associated with load balancing

15 / 30

Meta-Balancer

Meta-Balancer

Decision Making

Model to Predict Ideal LB Period

Application execution time is sum of

Time spent on running application

Load Balancing overhead

Γ =
η

τ
× (

∫ τ

0
(mt + lm)dt + ∆) +

∫ η

0
(at + la)dt

τ be the ideal LB period,
η be the total iterations an application executes,
Γ be the total application execution time, and
∆ be the cost associated with load balancing

15 / 30

Meta-Balancer

Meta-Balancer

Decision Making

Model to Predict Ideal LB Period

Equating the differential of
total time to zero to minimize
it, we obtain

d

dτ
(Γ) = η × (

m

2
− ∆

τ2
) = 0

τ =

√
2∆

m

PD[LP
XP�OR

DG�SU
HGLFWL

RQ�FX
UYH

DYHUDJH�ORDG�SUHGLFWLRQ�FXUYH $UHD�EHWZHHQ�WKH�
PD[LPXP�DQG�DYHUDJH�
ORDG�SUHGLFWLRQ�FXUYHV�LV�
WKH�WLPH�VDYHG�GXH�WR�ORDG�
EDODQFLQJ��/RDG�EDODQFLQJ�
LV�SURILWDEOH�LI�WKLV�DUHD�LV�
JUHDWHU�WKDQ�/%�FRVW

WLPH�VWHSV�LWHUDWLRQV

/R
DG

16 / 30

Meta-Balancer

Meta-Balancer

Decision Making

Model to Predict Ideal LB Period

Equating the differential of
total time to zero to minimize
it, we obtain

d

dτ
(Γ) = η × (

m

2
− ∆

τ2
) = 0

τ =

√
2∆

m

PD[LP
XP�OR

DG�SU
HGLFWL

RQ�FX
UYH

DYHUDJH�ORDG�SUHGLFWLRQ�FXUYH $UHD�EHWZHHQ�WKH�
PD[LPXP�DQG�DYHUDJH�
ORDG�SUHGLFWLRQ�FXUYHV�LV�
WKH�WLPH�VDYHG�GXH�WR�ORDG�
EDODQFLQJ��/RDG�EDODQFLQJ�
LV�SURILWDEOH�LI�WKLV�DUHD�LV�
JUHDWHU�WKDQ�/%�FRVW

WLPH�VWHSV�LWHUDWLRQV

/R
DG

16 / 30

Meta-Balancer

Meta-Balancer

Decision Making

Consensus Mechanism

d7

e11 e12 e13

LB Period
BCast 10

c8

Max
Iteration

a10 b10

c9d8

ROOT

PE0

PE1

PE2

PAUSE b11 b13

Final LB Period
BCast 13

d10 c13d9

LOAD BALANCE

1 2 3 4

PAUSE

17 / 30

Meta-Balancer

Evaluation

Outline

1 Introduction
Motivation
Load Balancing Challenges

2 Background

3 Meta-Balancer
Statistics Collection
Decision Making

4 Evaluation

5 Conclusion and Future Work

18 / 30

Meta-Balancer

Evaluation

Evaluation

Applications

LeanMD: molecular dynamics simulation program
Fractography: used to study fracture surfaces of materials

Machines used

Ranger: SUN constellation cluster at TACC
Jaguar: Cray system at ORNL

Three sets of Experiments

No Load Balancing
Periodic Load Balancing
Using Meta-Balancer

19 / 30

Meta-Balancer

Evaluation

Evaluation

Applications

LeanMD: molecular dynamics simulation program
Fractography: used to study fracture surfaces of materials

Machines used

Ranger: SUN constellation cluster at TACC
Jaguar: Cray system at ORNL

Three sets of Experiments

No Load Balancing
Periodic Load Balancing
Using Meta-Balancer

19 / 30

Meta-Balancer

Evaluation

Evaluation

Applications

LeanMD: molecular dynamics simulation program
Fractography: used to study fracture surfaces of materials

Machines used

Ranger: SUN constellation cluster at TACC
Jaguar: Cray system at ORNL

Three sets of Experiments

No Load Balancing
Periodic Load Balancing
Using Meta-Balancer

19 / 30

Meta-Balancer

Evaluation

LeanMD with No Load Balancing

Overall processor
utilization is 65%

No significant variation in
processor loads during the
run

20 / 30

Meta-Balancer

Evaluation

LeanMD with Periodic Load Balancing

 10

 100

 1000

 10000

 8 16 32 64 128 256 512 1024

El
ap

se
d

tim
e (

s)

LB Period

Elapsed time vs LB Period (Jaguar)

128 cores
256 cores
512 cores

1024 cores
2048 cores
4096 cores

Frequent load balancing
increases execution time

Periodic load balancing
may not give performance
benefit

21 / 30

Meta-Balancer

Evaluation

LeanMD with Meta-Balancer

Invoked load balancer at
the beginning

Thereafter frequency of
load balancing is low

Improved performance by
31% and the overall
utilization to 95%

22 / 30

Meta-Balancer

Evaluation

LeanMD - Comparison of Execution Time

Core No LB (s) Periodic LB (Period) (s) Meta-Balancer (s)

128 1945.16 1451.30 (200) 1388.29

256 1005.22 750.11 (200) 695.55

512 516.47 393.30 (400) 355.85

1024 264.15 209.64 (400) 190.52

2048 135.92 116.69 (400) 94.33

4096 70.68 69.6 (700) 57.83

Meta-Balancer outperforms periodic load balancing

23 / 30

Meta-Balancer

Evaluation

Fractography with No Load Balancing

Large variation in
processor utilization

Low utilization leading to
resource wastage

24 / 30

Meta-Balancer

Evaluation

Fractography with Periodic Load Balancing

Frequent load balancing
leads to high overhead
and no benefit

Infrequent load balancing
leads to load imbalance
and results in no gains

25 / 30

Meta-Balancer

Evaluation

Fractography with Meta-Balancer

Identifies the need for
frequent load balancing in
the beginning

Frequency of load
balancing decreases as
load becomes balanced

Increases overall processor
utilization and gives gain
of 31%

26 / 30

Meta-Balancer

Conclusion and Future Work

Outline

1 Introduction
Motivation
Load Balancing Challenges

2 Background

3 Meta-Balancer
Statistics Collection
Decision Making

4 Evaluation

5 Conclusion and Future Work

27 / 30

Meta-Balancer

Conclusion and Future Work

Conclusion

Difficult to find the optimum load balancing period

Depends on the application characteristics
Depends on the machine the application is run on

Meta-Balancer automates the decision of when to invoke load
balancing based on application characteristics

Meta-Balancer adaptively identifies load balancing period

Meta-Balancer obtains substantial gains and avoids repetitive
experimentation

28 / 30

Meta-Balancer

Conclusion and Future Work

Conclusion

Difficult to find the optimum load balancing period

Depends on the application characteristics
Depends on the machine the application is run on

Meta-Balancer automates the decision of when to invoke load
balancing based on application characteristics

Meta-Balancer adaptively identifies load balancing period

Meta-Balancer obtains substantial gains and avoids repetitive
experimentation

28 / 30

Meta-Balancer

Conclusion and Future Work

Conclusion

Difficult to find the optimum load balancing period

Depends on the application characteristics
Depends on the machine the application is run on

Meta-Balancer automates the decision of when to invoke load
balancing based on application characteristics

Meta-Balancer adaptively identifies load balancing period

Meta-Balancer obtains substantial gains and avoids repetitive
experimentation

28 / 30

Meta-Balancer

Conclusion and Future Work

Conclusion

Difficult to find the optimum load balancing period

Depends on the application characteristics
Depends on the machine the application is run on

Meta-Balancer automates the decision of when to invoke load
balancing based on application characteristics

Meta-Balancer adaptively identifies load balancing period

Meta-Balancer obtains substantial gains and avoids repetitive
experimentation

28 / 30

Meta-Balancer

Conclusion and Future Work

Future Work

Extend Meta-Balancer to select load balancing strategy

Computation vs Communication strategy
Refinement vs Comprehensive strategy
Centralized vs Distributed strategy

Better models for predicting load

29 / 30

Meta-Balancer

Conclusion and Future Work

Future Work

Extend Meta-Balancer to select load balancing strategy

Computation vs Communication strategy
Refinement vs Comprehensive strategy
Centralized vs Distributed strategy

Better models for predicting load

29 / 30

Meta-Balancer

Conclusion and Future Work

Thank you!

30 / 30

	Introduction
	Motivation
	Load Balancing Challenges

	Background
	Meta-Balancer
	Statistics Collection
	Decision Making

	Evaluation
	Conclusion and Future Work

