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Modern parallel applications on large systems

Difficult to program and extract best performance
Performance is limited by most overloaded processor
The chance that one processor is severely overloaded gets
higher as no of processors increases

Load imbalance in parallel applications

Leads to drop in system utilization
Hampers scalability of the application
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Load balancing has to be profitable!

Determining factors

Incurred overheads - collection of statistics, execution of
strategy to find the new mapping of tasks/work units, moving
the tasks
When to perform load balance?
Load balancing strategy selection

Adaptive load balancing is needed in a dynamic applications
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Automating load balancing related decision making

Monitors the application continuously and predicts load
behavior

Identifies when to invoke load balancing for optimal
performance based on

Predicted load behavior and guiding principles
Performance in recent past
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Gathers the statistics based on the strategy (centralized or
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Design Overview

Module to control load balancing related decision making

Implemented on top of Charm++ load balancing framework

Key responsibilities

Monitor the application: collect minimal statistics
Identify the iteration to invoke load balancing to optimize
performance
Form a consensus among participating processors on when to
invoke load balancing
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Consider the load imbalance given by

ζ =
Lmax − Lavg

Lavg

ζ > 0 means load imbalance; leads to performance loss

Should load balancing be invoked when ζ > 0?

Goal - minimize total execution time (application + load
balancing overheads)
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Application execution time is sum of

Time spent on running application

Load Balancing overhead

Γ =
η

τ
× (

∫ τ

0
(mt + lm)dt + ∆) +

∫ η

0
(at + la)dt

τ be the ideal LB period,
η be the total iterations an application executes,
Γ be the total application execution time, and
∆ be the cost associated with load balancing
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LeanMD: molecular dynamics simulation program
Fractography: used to study fracture surfaces of materials

Machines used

Ranger: SUN constellation cluster at TACC
Jaguar: Cray system at ORNL

Three sets of Experiments

No Load Balancing
Periodic Load Balancing
Using Meta-Balancer
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LeanMD with No Load Balancing

Overall processor
utilization is 65%

No significant variation in
processor loads during the
run
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LeanMD with Periodic Load Balancing

 10

 100

 1000

 10000

 8  16  32  64  128  256  512  1024

El
ap

se
d 

tim
e (

s)

LB Period

Elapsed time vs LB Period (Jaguar)

128 cores
256 cores
512 cores

1024 cores
2048 cores
4096 cores

Frequent load balancing
increases execution time

Periodic load balancing
may not give performance
benefit
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LeanMD with Meta-Balancer

Invoked load balancer at
the beginning

Thereafter frequency of
load balancing is low

Improved performance by
31% and the overall
utilization to 95%
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LeanMD - Comparison of Execution Time

Core No LB (s) Periodic LB (Period) (s) Meta-Balancer (s)

128 1945.16 1451.30 (200) 1388.29

256 1005.22 750.11 (200) 695.55

512 516.47 393.30 (400) 355.85

1024 264.15 209.64 (400) 190.52

2048 135.92 116.69 (400) 94.33

4096 70.68 69.6 (700) 57.83

Meta-Balancer outperforms periodic load balancing
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Fractography with No Load Balancing

Large variation in
processor utilization

Low utilization leading to
resource wastage
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Fractography with Periodic Load Balancing

Frequent load balancing
leads to high overhead
and no benefit

Infrequent load balancing
leads to load imbalance
and results in no gains
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Fractography with Meta-Balancer

Identifies the need for
frequent load balancing in
the beginning

Frequency of load
balancing decreases as
load becomes balanced

Increases overall processor
utilization and gives gain
of 31%
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Conclusion

Difficult to find the optimum load balancing period

Depends on the application characteristics
Depends on the machine the application is run on

Meta-Balancer automates the decision of when to invoke load
balancing based on application characteristics

Meta-Balancer adaptively identifies load balancing period

Meta-Balancer obtains substantial gains and avoids repetitive
experimentation
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Future Work

Extend Meta-Balancer to select load balancing strategy

Computation vs Communication strategy
Refinement vs Comprehensive strategy
Centralized vs Distributed strategy

Better models for predicting load
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Thank you!
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