
Work Stealing and Persistence-based Load
Balancers for Iterative Overdecomposed
Applications
Jonathan Lifflander, Sriram Krishnamoorthy, Laxmikant V. Kale

FILE NAME | FILE CREATION DATE | ERICA CLEARANCE NUMBER

Applications iteratively executing identical or slowly evolving
calculations require incremental rebalancing to improve load
balance across iterations. The work to be performed is
overdecomposed into tasks, enabling automatic rebalancing by
the middleware.

We consider the design and evaluation of two traditionally
disjoint approaches to rebalancing: work stealing and
persistence-based load balancing. We apply the principle of
persistence to work stealing to design an optimized retentive
work stealing algorithm. We demonstrate high efficiencies on
the full NERSC Hopper (146,400 cores) and ALCF Intrepid
(163,840 cores) systems, and on up to 128,000 cores on
OLCF Titan.

Retentive Work Stealing

itail ctailstailsplitheadhead’

Introduction Persistence-based Load Balancing
Applications that retain the computation balance over iterations, with gradual change, are said to adhere to the principle of persistence.
This behavior can be exploited by measuring the performance profile in a previous iteration and using these measurements to rebalance
the tasks. We present a scalable hierarchical persistence-based load balancing algorithm that greedily redistributes “excess” load to
localize the rebalance operations and migration of tasks. In this algorithm, the cores are organized in a tree where every core is a leaf.

In work stealing, every core executes tasks from a local queue
until it is empty. It then becomes a thief that randomly searches
for work until it finds additional work or termination is detected.

In our distributed-memory implementation, we use a bounded-
buffer circular deque with a fixed-sized array to reduce data
transfer costs and limit synchronization overhead.

The following figures illustrate the operations on the queue. A
red dotted arrow indicates that a lock or atomic operation is
involved.

Adding a task

Releasing tasks to the shared section
itail ctailstailsplithead split’

Acquiring tasks from the shared section
itail ctailstailhead,split split’

itail ctailstailsplithead’head
Getting a task

Steps in a steal operation
itail ctailstailsplithead stail’

itail ctailstailsplithead

ctailstail,itailsplithead

0 1

3

4 5

5
1 2

2 3

4

0

1 4 5

5
2

2 3

4

0

3
1

0

0 1

3

4 5

5
1 2

2 3

4

0

Leaves send their excess load (any load above a
constant times the average load) to their parent,
selecting the work units from shortest duration to
longest.

Each core receives excess load from its children
and saves work for underloaded children until their
load is above a constant times the average load.
Remaining tasks are sent to the parent.

Starting at the root, the excess load is distributed to
each child applying the centralized greedy algorithm:
maximum duration task is assigned to minimum-
loaded child.

Experimental Results

 1

 10

 100

 1000

 4800 9600 19200 38400 76800 146400

Steal
StealRet

PLB
Ideal

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 4800 9600 19200 38400 76800 146400

Steal-1
NoLB-2

PLB-3
PLB-4
PLB-5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 4800 9600 19200 38400 76800 146400

-50

 0

 50

 100

 150

StealRet-1
StealRet-2
StealRet-3
StealRet-4
StealRet-5
Avg. tasks

 1

 10

 100

 1000

 2400 4800 9600 19200 38400

StealAll
Steal

StealRet
PLB

Ideal

 1

 10

 100

 1000

 16384 32768 65536 163840

StealAll
Steal

StealRet
PLB
Ideal

 1

 10

 100

 1000

 10000

 8000 16000 32000 64000 128000

StealAll
Steal

StealRet
PLB
Ideal

TC
E-

H
op

pe
r

H
F-

H
op

pe
r

H
F-

In
tr

ep
id

H

F-
Ti

ta
n

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 9600 19200 38400 76800

Steal-1
NoLB-2

PLB-3
PLB-4
PLB-5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 9600 19200 38400 76800

-50

 0

 50

 100

 150

StealRet-1
StealRet-2
StealRet-3
StealRet-4
StealRet-5
Avg. tasks

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 16384 32768 65536 163840

Steal-1
NoLB-2

PLB-5
PLB-10
PLB-14

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 8000 16000 32000 64000 128000

Steal-1
NoLB-2

PLB-5
PLB-10
PLB-14

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 16384 32768 65536 163840

-500

 0

 500

 1000

StealRet-1
StealRet-2
StealRet-5

StealRet-10
StealRet-14

Avg. tasks

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 8000 16000 32000 64000 128000

-500

 0

 500

 1000

 1500

 2000

StealRet-1
StealRet-2
StealRet-5

StealRet-10
StealRet-14

Avg. tasks

Execution times for first and last iteration. x-axis –
number of cores; y-axis – execution time in seconds

Efficiency of persistence-based load-balancing
across iterations for the three system sizes, relative
to the ideal anticipated speedup. x-axis – number of

cores; y-axis – efficiency

Efficiency of retentive work stealing across
iterations relative to ideal anticipated speedup
and tasks per core. x-axis – core count; left y-
axis – efficiency; right y-axis – tasks per core
(error bar: std. dev.)

Challenges

Primary Contributions

-  On distributed-memory, the cost of work stealing is
significant due to communication latency and task
migration costs.

-  Previous rebalancing is ignored with traditional work
stealing, incurring repeated costs across iterations.

-  Work stealing algorithms that randomly redistribute work
may disrupt locality or topology-optimized distributions.

-  Persistence-based load balancers cannot adapt
immediately to load imbalance: they require initial profiling
and rebalancing only occurs at the end of a phase.

-  Persistence-based load balancers incur periodic
rebalancing overheads.

-  An active-message-based retentive work stealing algorithm that is highly optimized for distributed-memory
-  A hierarchical persistence-based load balancing algorithm that performs greedy localized rebalancing
-  Most scalable demonstration of work stealing — on up to 163,840 cores of BG/P, 146,400 cores of XE6, and 128,000 cores of XK6
-  First comparative evaluation of two traditionally disjoint approaches, work stealing and persistence-based, for load balancing iterative

scientific applications
-  Demonstration of the benefits of retentive stealing in incrementally rebalancing iterative applications
-  Experimental data demonstrating that the number of steals (successful or otherwise) does not grow substantially with scale
-  A comparison of the execution time and quality of load balance between a centralized versus hierarchical persistence-based load

balancer using a micro-benchmark

Presentation: Session 9: Thursday, June 21 @ 10:20am

