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Applications iteratively executing identical or slowly evolving 
calculations require incremental rebalancing to improve load 
balance across iterations. The work to be performed is 
overdecomposed into tasks, enabling automatic rebalancing by 
the middleware. 
 
We consider the design and evaluation of two traditionally 
disjoint approaches to rebalancing: work stealing and 
persistence-based load balancing. We apply the principle of 
persistence to work stealing to design an optimized retentive 
work stealing algorithm. We demonstrate high efficiencies on 
the full NERSC Hopper (146,400 cores) and ALCF Intrepid 
(163,840 cores) systems, and on up to 128,000 cores on 
OLCF Titan.  
 

Retentive Work Stealing 

itail ctailstailsplitheadhead’

Introduction Persistence-based Load Balancing 
Applications that retain the computation balance over iterations, with gradual change, are said to adhere to the principle of persistence. 
This behavior can be exploited by measuring the performance profile in a previous iteration and using these measurements to rebalance 
the tasks. We present a scalable hierarchical persistence-based load balancing algorithm that greedily redistributes “excess” load to 
localize the rebalance operations and migration of tasks. In this algorithm, the cores are organized in a tree where every core is a leaf. 

 
 

In work stealing, every core executes tasks from a local queue 
until it is empty. It then becomes a thief that randomly searches 
for work until it finds additional work or termination is detected. 
 
In our distributed-memory implementation, we use a bounded-
buffer circular deque with a fixed-sized array to reduce data 
transfer costs and limit synchronization overhead. 
 
The following figures illustrate the operations on the queue. A 
red dotted arrow indicates that a lock or atomic operation is 
involved. 

Adding a task 

Releasing tasks to the shared section 
itail ctailstailsplithead split’

Acquiring tasks from the shared section 
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Getting a task 

Steps in a steal operation 
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Leaves send their excess load (any load above a 
constant times the average load) to their parent, 
selecting the work units from shortest duration to 
longest.  

Each core receives excess load from its children 
and saves work for underloaded children until their 
load is above a constant times the average load. 
Remaining tasks are sent to the parent.  

Starting at the root, the excess load is distributed to 
each child applying the centralized greedy algorithm: 
maximum duration task is assigned to minimum- 
loaded child.  

Experimental Results 
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Execution times for first and last iteration. x-axis –  
number of cores; y-axis – execution time in seconds 

Efficiency of persistence-based load-balancing 
across iterations for the three system sizes, relative 
to the ideal anticipated speedup. x-axis – number of 

cores; y-axis – efficiency 

Efficiency of retentive work stealing across 
iterations relative to ideal anticipated speedup 
and tasks per core. x-axis – core count; left y-
axis – efficiency; right y-axis – tasks per core 
(error bar: std. dev.) 

Challenges 

Primary Contributions 

-  On distributed-memory, the cost of work stealing is 
significant due to communication latency and task 
migration costs. 

-  Previous rebalancing is ignored with traditional work 
stealing, incurring repeated costs across iterations. 

-  Work stealing algorithms that randomly redistribute work 
may disrupt locality or topology-optimized distributions. 

-  Persistence-based load balancers cannot adapt 
immediately to load imbalance: they require initial profiling 
and rebalancing only occurs at the end of a phase. 

-  Persistence-based load balancers incur periodic 
rebalancing overheads. 

-  An active-message-based retentive work stealing algorithm that is highly optimized for distributed-memory 
-  A hierarchical persistence-based load balancing algorithm that performs greedy localized rebalancing 
-  Most scalable demonstration of work stealing — on up to 163,840 cores of BG/P, 146,400 cores of XE6, and 128,000 cores of XK6 
-  First comparative evaluation of two traditionally disjoint approaches, work stealing and persistence-based, for load balancing iterative 

scientific applications 
-  Demonstration of the benefits of retentive stealing in incrementally rebalancing iterative applications 
-  Experimental data demonstrating that the number of steals (successful or otherwise) does not grow substantially with scale 
-  A comparison of the execution time and quality of load balance between a centralized versus hierarchical persistence-based load 

balancer using a micro-benchmark 
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