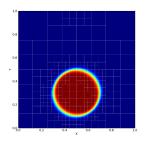
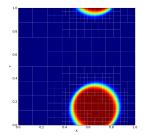
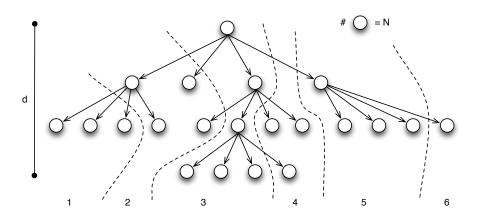

Scalable Algorithms for Distributed-Memory Adaptive Mesh Refinement


Akhil Langer*, Jonathan Lifflander*, **Phil Miller***, Kuo-Chuan Pan‡, Laxmikant V. Kale*, Paul Ricker‡


*Parallel Programming Laboratory, ‡ Astronomy University of Illinois Urbana-Champaign

Thursday, 25 October 2012


Background on AMR

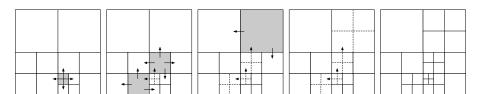
Background on AMR

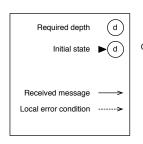
Approach

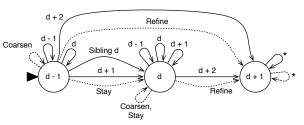
Promote individual blocks to first-class entities, instead of processes

- Unit of algorithm expression
- Endpoint of communication

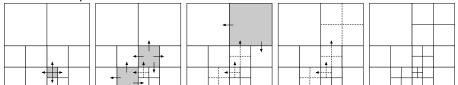
Naming

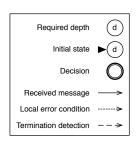

Give blocks invariant, structure-determined names

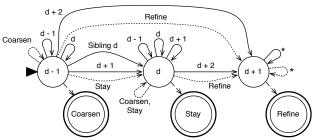

- Bitvector describing path from root to block's node
- One bit per dimension at each level
- Easy to compute parent, children, siblings


Finding Blocks

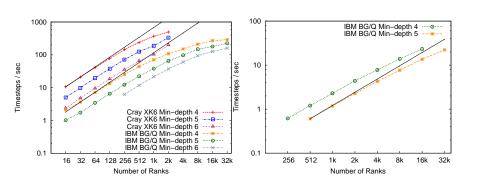
Each block has a unique home PE responsible for its location

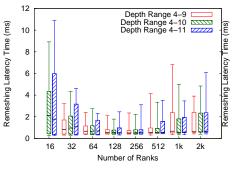

- Locally computable, deterministic function of name (e.g. hash)
- Others ask home PE for current location
- Cache answers locally
- Responsibility roughly load-balanced
- Persistent $\mathcal{O}(P)$ distribution records obviated

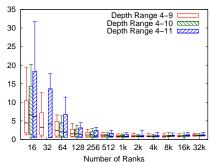




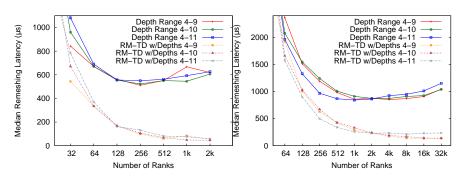
When to stop?



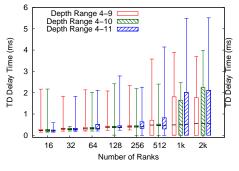

Termination Detection

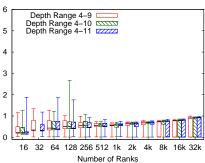

- Various classes of algorithms (wave, parental, credit)
- Theoretical bounds on each
- Practical cost is low
- Cost is independent of dynamic range in refinement depth

Overall Performance



Remeshing Performance





Remeshing Performance

Remeshing Performance

Conclusion

- Elevate blocks to first-class entities
- ullet ightarrow No more $\mathcal{O}(P)$ data structures
- Adapt mesh using near-neighbor point-to-point messages & termination detection
- ullet \to No more memory-hungry collectives taking $\mathcal{O}(d\log P)$ time per cycle