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Abstract—
IBM Blue Gene/Q is the next generation Blue Gene machine

that can scale to tens of Peta Flops with 16 cores and 64 hard-
ware threads per node. However, significant efforts are required
to fully exploit its capacity on various applications, spanning
multiple programming models. In this paper, we focus on the
asynchronous message driven parallel programming model –
Charm++. Since its behavior (asynchronous) is substantially
different from MPI, that presents a challenge in porting it
efficiently to BG/Q. On the other hand, the significant synergy
between BG/Q software and Charm++ creates opportunities
for effective utilization of BG/Q resources. We describe various
novel fine-grained threading techniques in Charm++ to exploit
the hardware features of the BG/Q compute chip. These include
the use of L2 atomics to implement lockless producer-consumer
queues to accelerate communication between threads, fast
memory allocators, hardware communication threads that
are awakened via low overhead interrupts from the BG/Q
wakeup unit. Burst of short messages is processed by using the
ManytoMany interface to reduce runtime overhead. We also
present techniques to optimize NAMD computation via Quad
Processing Unit (QPX) vector instructions and the acceleration
of message rate via communication threads to optimize the
Particle Mesh Ewald (PME) computation. We demonstrate the
benefits of our techniques via two benchmarks, 3D Fast Fourier
Transform, and the molecular dynamics application NAMD.
For the 92,000-atom ApoA1 molecule, we achieved 683µs/step
with PME every 4 steps and 782µs/step with PME every step.

I. INTRODUCTION

The IBM Blue Gene/Q machine is a multi Peta Flop super-
computer that can scale to 100PF. The Sequoia machine at
Lawrence Livermore is a 20PF BG/Q with over 1.6 million
cores and 6.4 million threads. The BG/Q machine has a
5D torus network that increases the bisection throughput
over the previous generation BG/P and BG/L machines.
The BG/Q systems software provides a hybrid programming
model with MPI across the nodes and OpenMP within the
SMP node, as running a large number of processes on a
BG/Q node partitions resources such as memory and net-
work FIFOs. Hybrid programming models give applications
access to more memory and network resources, enabling
them to achieve the best performance. BG/Q also provides
a low level messaging library PAMI [1] (Parallel Active

Messaging Interface) and POSIX threads within the nodes.
Although MPI is a popular and widely accepted program-

ming model, it forces the programmer to be fully aware
of the underlying parallel architecture and map application
computation directly to processors. In this paper we present
challenges in optimizing and scaling the asynchronous
message driven programming model – CHARM++ [2]. In
CHARM++, application computation is mapped to C++
objects called chares and the load-balancer maps these
objects to processors relieving the programmer of this bur-
den. These objects communicate by asynchronous method
invocations(aka messages). Due to its own features and
requirements, porting CHARM++ to a new platform re-
quires careful consideration. For example, we use the active
message based PAMI libraries to enable CHARM++ to
send and receive messages on the BG/Q network. As both
PAMI and CHARM++ are active message paradigms, PAMI
dispatch callbacks can directly call CHARM++ handlers
resulting in significantly lower overheads than the MPI port
of CHARM++.

The CHARM++ runtime can enable an SMP mode where
a single process runs on multiple cores, allowing easy
sharing of memory. As objects within a process exchange
messages via pointer exchanges instead of sending messages
over the network, communication overheads within the SMP
node are minimal. This SMP mode is a good match for
the BG/Q architecture, where each compute node has 64
cache coherent SMP threads. However, there were several
challenges we had to overcome to enable this SMP mode
to scale to all the 64 threads. Our design must permit
several threads to concurrently send and receive messages at
high rates, thus minimizing the use of mutexes and shared
data-structures in the CHARM++ runtime. We use novel
fine-grained threading techniques in the CHARM++ runtime
that exploit the hardware features of the BG/Q compute
chip. These include lockless producer-consumer queues to
communicate between SMP threads, fast memory allocators
and the use of multiple background communication threads
to accelerate message processing.

We demonstrate the benefits of our techniques via two
benchmarks, a 3D Fast Fourier Transform, as well as the



full-fledged molecular dynamics application NAMD [3].
Molecular Dynamics simulations require Particle Mesh
Ewald (PME) computation to calculate the long range forces.
PME has a pair of forward and backward 3D FFT op-
erations. We have designed an optimized implementation
of the CmiDirectManytomany interface in the CHARM++
software stack to optimize PME and 3D FFT. This interface
enables applications to send several messages in a burst,
and our implementation on BG/Q optimizes such patterns
by parallelizing them across several communication threads.
We make the following contributions in this paper.

• We designed and implemented a CHARM++ runtime on
BG/Q. We studied three modes of CHARM++ – non
SMP, SMP without communication thread, and SMP
with communication threads.

• We proposed and implemented novel ideas to fully
exploit 64 hardware threads on BG/Q. These techniques
include lockless queues based on L2 atomic operations,
scalable memory allocator for multiple threads and
optimization of the Charm++ idle poll loop.

• We optimized CHARM++ message processing by en-
abling multiple hardware communication threads and
an optimized implementation of the CmiDirectMany-
tomany interface that optimizes a burst of short mes-
sages.

• We optimized NAMD compute loops by the use of
BG/Q Quad Processing Unit (QPX) SIMD instructions
and explored a new optimized PME that calls the
CmiDirectManytomany interface.

• The above optimizations provided scalable perfor-
mance results for the molecular dynamics application
– NAMD with the STMV 20 million and 100 million
atom benchmarks up to 16384 nodes. We also achieved
682µs/step for the 92,000-atom molecular system with
PME every 4 steps and 782µs/step with PME every
step.

We begin with an overview of the Blue Gene/Q architecture.

II. BLUE GENE/Q ARCHITECTURE

The Blue Gene/Q machine shown in Figure 1 uses low
power embedded Power PC cores to scale to the 100 PF
configuration. Each BG/Q node has 18 Power ISA A2 64-
bit embedded PowerPC cores running at 1.6 GHz. One core
is dedicated for operating system processing and one core
is a spare core, leaving 16 cores for application processing.
Each core has four hardware threads that have their own
register files but share other resources such as the L1 and
L2 caches, compute units and load/store resources. The A2
core can execute two concurrent instructions per cycle, one
fixed and one floating point, but each thread can issue only
one instruction per cycle. So, to fully saturate the core’s
resources, at least two threads per core must be used. The
L1 total cache size is 32KB with the instruction and data
caches of 16KB each. The L2 cache size is 32MB that is

Figure 1. Blue Gene/Q architecture

divided into sixteen slices and interconnected to the A2 cores
by a crossbar switch.

Scalable Atomic support in L2: On BG/Q the L2 cache
has integer adders to implement L2 atomic operations such
as load-increment, store-add, store-or and store-xor for 64
bit words in memory. L2 atomics have significantly lower
overheads than traditional mutexes. L2 atomics can be used
to design lockless queues and messaging counters that are
used to track communication progress.

Wakeup unit: On PowerPC architectures, threads can go
into a wait state by calling the wait instruction, where the
threads do not consume any core resources such as pipeline
slots. The wakeup unit on the BG/Q node can send a low
overhead interrupt to awaken a hardware thread that is in
a wait state. The wakeup unit can be programmed to track
a range of memory addresses and network activity such as
packet arrivals. Systems software can use the wakeup unit
to enable communication threads that sleep in the absence
of messaging work and are quickly awakened when there
are incoming packets on the network.

A. Blue Gene/Q Network Architecture

Blue Gene/Q has a data network [4] with a 5D torus topol-
ogy, where each link is capable of simultaneously sending
and receiving at 2GB/s. Due to packet header overheads the
maximum achievable throughput is 1.8GB/s. The 5D torus
results in lower latency to furthest nodes and higher bisection
throughput as compared with a 3D torus on BG/L and
BG/P. On BG/Q the point-to-point network, the collective
and barrier networks all share the same torus network. The
BG/Q messaging unit (MU) is responsible for moving data
between the memory and the 5D torus network. It supports
three different point-to-point packet types: memory FIFO,
RDMA read, and RDMA write. FIFO packets are delivered
into a MU reception FIFO and RDMA packets are directly
written into the memory address included in the packet.
BG/Q architecture provides an extensive array of 544 MU
injection FIFOs 272 MU reception FIFOs enabling several



threads to simultaneously inject and receive messages on
different FIFOs.

B. Blue Gene/Q Systems Software

The BG/Q systems software stack provides optimized
MPI and Parallel Active Messaging Interface (PAMI) [1]
messaging libraries. BG/Q provides optimized MPICH li-
braries that internally call PAMI library calls. The PAMI
messaging library API has calls for active message send,
one-sided RDMA get and put and non-blocking collective
operations. Runtime systems can create multiple PAMI
context objects to enable fine-grained parallelism in ap-
plications. Multiple threads can concurrently call different
contexts without acquiring and releasing mutexes.

API calls PAMI Send immediate and PAMI Send can
send short and long active messages. PAMI Send immediate
copies the payload and metadata to an internal buffer and
posts a single MU descriptor resulting in minimal overheads
for short messages. PAMI Send posts two MU descriptors,
one each for the metadata and the payload. Active messages
result in dispatch callbacks called on the destination nodes
that must allocate buffers where the message payload is
received. To advance the network and process newly arrived
packets applications must call the PAMI Context advance.
PAMI Rget and PAMI Rput enable one-sided RDMA read
and write operations respectively. PAMI libraries on BG/Q
also enable asynchronous progress via dedicated communi-
cation threads. Multiple communication threads can be en-
abled to asynchronously advance multiple contexts. Commu-
nication threads arm the wakeup unit and then call the wait
instruction. While in the wait state communication threads
do not consume any core resources. When a work object
is queued or a network packet arrives, the communication
threads are awakened by the wakeup unit to advance the
context.

III. DESIGN AND OPTIMIZATION OF CHARM++ ON BLUE
GENE/Q

The CHARM++ software stack includes a translator, mes-
sage scheduler, priority queues, load balancers, the Converse
adaptive runtime system, and the low level machine layer
communication library. The performance of the machine
layer has a direct impact on the CHARM++ application per-
formance. Therefore, it requires significant effort to optimize
the machine layer interface. Co-authors have implemented
and optimized CHARM++ on several parallel platforms, in-
cluding Cray XT/XE/XK [5], [6], [7], commodity InfiniBand
clusters and IBM BG/L and BG/P machines. In this paper
we focus on optimizing CHARM++ on IBM BG/Q.

CHARM++ supports two execution modes, non SMP and
SMP. In non SMP, only one processing element (PE) exe-
cutes within a process, which is typically assigned to a single
core or a hardware thread. It carries out both computation
and communication. This mode is easy to implement and

has traditionally achieved reasonably good performance.
However, in SMP mode, multiple threads run in the same
process. Local communication within the process is via
pointer exchange as compared with serializing and moving
the message payload bytes on the network. The CHARM++
load balancer can place objects that communicate with each
other on the same SMP node to minimize communication
overheads in applications. In addition, SMP mode also
allows processing elements to access memory up to 16GB
available on the BG/Q compute node. For example during
the startup of some applications, PE zero may require more
memory to read input files and broadcast input data struc-
tures to other processing elements. We explore SMP mode
both with and without dedicated communication threads.
Applications that are compute intensive can use all threads
for computation and the worker threads can do message
processing. Communication intensive applications can ded-
icate threads to accelerate communication processing. In
Section V, we compare these two modes and analyze when
to choose different modes to achieve the best performance.

The PAMI port of CHARM++ calls PAMI active message
sending call for short and medium sized messages that are
processed via dispatch callbacks implemented in the Con-
verse machine layer. These callbacks allocate buffers for the
message payload and when the message is fully received it is
enqueued into the CHARM++ runtime’s scheduler queue. For
large messages, we explored a rendezvous protocol where a
short header packet with the address of the source buffer
and a memory region that stores the translation is first sent
from the source to the destination. At the destination the
dispatch callback calls PAMI Rget to do an RDMA read
from the source node. When the RDMA read completes,
the destination node sends an acknowledgment packet to the
sender to free the source buffer.

To optimize the CHARM++ programming model, we ex-
plored the following schemes in the machine layer software.

A. lockless Queues

To send a message to an intra-node peer, the Converse
machine layer enqueues the message to the peer’s message
queue. Typically this queue is implemented via a producer
consumer queue that is guarded by a mutex. However, this
mutex can be a bottleneck when several peers simultaneously
send messages to the same rank. To optimize this scenario,
we explored lockless queues using L2 atomic operations
on BG/Q, that allow several threads on an SMP node to
simultaneously send messages to a peer thread on the same
node. The lockless queues take advantage of the bounded
load increment operation implemented in L2 cache on BG/Q.
Here, a load on a counter with a special address results in an
atomic increment on the counter. The L2 cache can handle
several load increment requests concurrently. The adjacent
memory location to the counter specifies the bound, which
is the maximum value the counter can be incremented to.



When the counter reaches the bound the future increcement
operations will fail.

Each L2 atomic queue allocates a pair of L2 counters
in consecutive memory locations. The first counter is the
producer counter while the second is the bound. The L2
atomic queue itself is a vector of slots for message point-
ers. The producer thread calls an L2 bounded increment
instruction that atomically increments the producer counter
and returns the old value of the producer counter. The
identifier of the allocated slot in the queue is computed
as producer counter%queue size. When the consumer
dequeues the message, it increments the bound to enable
producers to enqueue more messages. The L2 atomic queue
is full when the producer counter is the same as the bound.
This will cause the bounded atomic increment operation to
fail and return an error code. We use a mutex-protected
overflow queue to enable producers to insert messages even
when the L2 atomic queue is full. When the overflow queue
has messages, the consumer worker thread will first pull
messages out of the L2 atomic queue and then the overflow
queue. Figure 2(a) illustrates two L2 atomic queues on
threads PE0 and PE1. The L2 queue for PE0 has three slots
available, while the L2 queue for PE1 is full and there is
one message in the overflow queue. Figure 2(b) shows the
state of the producer and bound counters after one message
is enqueued on PE0. When the PE0 dequeues the message
the resulting state is illustrated in Figure 2(c).

A similar approach is used in the PAMI messaging
libraries to implement lockless work queues where message
and summing work requests can be submitted. These work
queues are typically executed by communication threads.
As MPI has a match ordering requirement, lockless queues
in PAMI must lock the overflow queue and check if the
overflow queue has messages before incrementing the bound
resulting in higher overheads. However, the CHARM++
programming model has no message ordering requirements
enabling us to design lockless queues more efficiently.
The overflow queue in Charm++ is only accessed by the
consumer thread when the lockless queue is empty.

B. Scalable Memory Allocation

To send a message the CHARM++ application calls the
GNU memory allocator to allocate a buffer, where the
application data is copied. This buffer is then passed to
the CHARM++ runtime to be sent to the destination chare.
On BG/Q, the memory allocator in system software uses
the GNU arena allocator where allocate calls try to find an
arena that is not being used by another thread. However,
the free call must acquire a mutex for the arena from which
the buffer was allocated to complete the free operation. We
observed mutex contention overheads when several threads
tried to free buffers to the same arena. This case typically
happened when multiple threads received messages from the
same source. To eliminate this lock contention on the free
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Figure 2. Lockless queue implementation

call, we enabled an L2 atomic queue for each thread to store
a pool of temporary buffers. Free calls can do a lockless
enqueue to the L2 atomic queue belonging to the thread
that created the buffer. There is a threshold for the memory
pools after which buffers are freed to the memory heap.
Future malloc calls directly dequeue from the thread’s L2
atomic pool via a lockless dequeue.

C. Communication Threads

To accelerate the message rate and communication pro-
cessing we enabled communication threads in the PAMI
library. These threads take advantage of the wakeup unit
and to eliminate overheads when the communication thread
is idle. Typically, a communication thread is enabled for
four worker threads. Multiple communication threads can
accelerate messages from several worker threads, enabling
applications to be run efficiently with only one process per
BG/Q node. The communication load from each worker
thread is evenly distributed across all the communication
threads. This benefits applications where some PEs send
more messages than the others on the same node. For
example, in NAMD application, PEs with atom coordinates
send more messages than other PEs on the same node.
Multiple communication threads can be used to accelerate
these messages. Section V presents performance results with
the NAMD application to show the benefit of communication



threads.

D. Optimize Idle Poll

The BG/Q compute chip has 16 cores for application com-
putation and each core can run four threads to fully utilize
its resources. However, in an iterative scientific application
typically some threads finish before others. When worker
threads are idle, they call into the CHARM++ runtime’s
idle poll loop. For best performance idle threads should
not consume the core’s pipeline slots, arithmetic units and
load/store resources. In our optimized implementation on
BG/Q, the idle poll loop spins on L2 atomic counters in the
worker thread’s message queue. So, when the thread is idle
it stalls on L2 atomic counter load instructions take about 60
cycles to complete. Thus, minimizing the load on the core
from the idle thread and enabling active threads maximal
access to the core’s resources.

E. Optimize Short Messages

Several Charm++ applications send short messages in the
computation iteration. Computations such as Particle Mesh
Ewald (PME) perform 3D Fast Fourier Transform operations
that have all-to-all operations on subsets of nodes. We call
such neighborhood collective communication operations as
Manytomany operations [8]. The CmiDirectManytomany in-
terface optimizes Manytomany communication in Charm++,
enabling chares in Charm++ to send a burst of short mes-
sages to neighboring chares in a single optimized call. It is a
persistent interface where messages with base addresses and
offsets are setup ahead of time and registered with a handle.
When the data is ready to be sent the application just calls
start on the handle. Our implementation of CmiDirectMany-
tomany on BG/Q generates a list of sends and receives and
completes them by posting work on multiple communication
threads. The work functions on the communication threads
make calls to PAMI point-to-point send and send-immediate
APIs that move data to neighboring nodes. When several
communication threads inject and receive messages, the
message rate is significantly accelerated resulting in higher
application throughput as shown in Section V.

IV. BENCHMARK AND APPLICATION OVERVIEW

A. 3D Fast Fourier Transform

Fast Fourier Transform (FFT) is an efficient algorithm
to compute the discrete Fourier transform and its inverse.
In a three dimensional (3D) Fast Fourier Transform (3D-
FFT) operation, FFT operations must be performed along
the X,Y and Z dimensions. The 3D-FFT operation is used in
many scientific applications, such as in molecular dynamics
Particle Mesh Ewald computation, quantum chemistry [9],
[10] and DNS3D turbulence codes. We parallelize 3D-FFT
computation via a 2D pencil decomposition where each
processor has a subset of the data along two dimensions
and all input points in the 3rd dimension called a pencil. At

scaling limits of an N × N × N 3D FFT, each processor
will have only one pencil in any of the three dimensions and
send N messages that contain only one complex number. We
explore 3D FFT via an internal FFT library in CHARM++,
that communicates both via point to point messages and the
CmiDirectManytomany interface.

B. NAMD

In a biomolecular simulation, the problem size is fixed
and a large number of iterations need to be executed
in order to understand interesting biological phenomenon.
Molecular Dynamics (MD) simulation timestep is typically
one femtosecond while biological phenomenon happen over
hundreds of nanoseconds to a few microseconds of sim-
ulation time, which means hundreds of million to several
billion timesteps. As problem sizes are fixed, scaling MD
applications to tens and hundreds of thousands of processors
can be challenging. Molecular dynamics simulators such
as NAMD compute bonded (bond, angle and torsion) and
non-bonded Coulomb/Leonard Jones interactions within a
cutoff radius and long range electrostatics via the Particle
Mesh Ewald (PME) technique. This reduces the compu-
tation to O(N + C*N*log(N)) from O(N2), where the
constant C is relatively small. NAMD is developed using
the CHARM++ programming language. We present opti-
mizations for NAMD and show the benefits of the SMP
optimizations presented in Section III via NAMD simulation
performance improvements.

1) Optimizing NAMD compute loops: We use XL com-
piler intrinsic calls for the BG/Q four way QPX SIMD unit
to optimize the inner loops of the NAMD application. The
BG/Q processor core has a small L1 cache of 16KB that
is shared by four threads, resulting in increased pressure on
the L1 cache for the NAMD compute loop that has a large
interpolation table. We worked with the XL compiler team
to unroll loops and increase the load to use distance. This
enabled other instructions to be executed while the inter-
polation table entries were loaded from the L1P cache. As
the latency to the L1P cache is about 27 cycles, increasing
the load to use distance to 27 instructions in NAMD had
the best performance. The above optimizations improved
the serial performance of NAMD by about 15.8% in the
ApoA1 benchmark on a single node of BG/Q. We observed
a speedup of 2.3x when using all four threads vs only one
thread on a single core of BG/Q with the ApoA1 benchmark.
The most effective way of using BG/Q core is to use all
threads on the core for computation. At the scaling limits we
use one or two threads for computation and communication
thread on the BG/Q core.

2) PME Optimization: To compute long-range interac-
tions via the PME technique, first the charge grid is com-
puted and then sent to the PME processors that do a parallel
3D FFT operation via a 2D decomposition. The transformed
grid is multiplied by the Ewald electrostatic kernel, and then



(a) Standard PME implementation

(b) Optimized PME with many-to-many

PME workIntegration OverheadIdle timeNon-bonded Communication

Figure 3. Timeline of ApoA1 simulation on 1024 nodes with regular PME and optimized PME using many-to-many

a backward 3D FFT is performed. The PME processors then
send atom forces back to be integrated with cutoff forces.
Both the communication of the charge grid from/to the PME
processors and the FFT phases are so intensive that they can
be challenging to scale.

The standard PME implementation in NAMD is feature
rich, which adds to the complexity of its implementation. We
developed a new optimized PME implementation in NAMD
that has a static persistent communication pattern. Our new
optimized implementation does not support all features of
standard PME resulting in a simpler faster implementation.
For example we only implement a single charge grid and
there is limited support for stray charges etc. The new
optimized PME creates CmiDirectManytomany handles and
sets them up with all the communication operations in the
different phases of PME. During the NAMD simulation it
only calls CmiDirectManytomany start() to trigger the
message sends, resulting in significantly better performance
over standard PME implementation in NAMD.

Figure 3 shows the timelines of four representative threads
with PME work. In the figure, each line represents the
execution activities of a thread on a core. Red stands
for integrations to calculate atom velocities and positions.
Purple color represents non-bonded compute work while
green shows PME work and white color represents idle
time. The numbers between the parenthesis represents the

total CPU utilization and useful work utilization. Observe
that with the traditional PME implementation over point-
to-point messages(Figure 3(a)), each thread sends and re-
ceives 36 small messages in one FFT phase resulting in
significant overheads. Figure 3(b) shows PME over many-
to-many, where all messages are sent and received in a
single call reducing Charm++ stack and multi-threading
overheads. Therefore, with fine-grained decomposition and
small messages (32 bytes in Figure 3(b)) many-to-many
significantly improves performance.

V. PERFORMANCE RESULTS

We ran micro-benchmarks, 3D FFT, and the NAMD
application on up to 16384 nodes of Blue Gene/Q.

The performance of Converse level ping-pong is presented
in Figure 4. For messages smaller than 32 bytes, the non
SMP version has the lowest latency of about 2.9µs, while
the latency of SMP version is about 3.7µs and 3.3µs with
and without communication threads respectively. SMP with
communication threads enabled provides best performance
for messages between 32 bytes and 16K bytes. For messages
larger than 16K bytes, the performance of the three modes
is similar since the performance is dominated by network.

Figure 5 shows the Converse level latency within a
BG/Q node in two modes, I) when messages are exchanged
between threads that are on the same BG/Q node but in
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different processes and II) when messages are exchanged
between threads in the same CHARM++ SMP node. Observe
in case II the ping-pong latency is about 1.1µs without com-
munication threads and 1.3µs with communication threads.
This intra node latency does not change with message size
as only pointers are exchanged, showing the true benefits of
hybrid programming.

We ran a memory performance benchmark where all
64 threads on a BG/Q node simultaneously make calls to
allocate and free memory. In this benchmark, each thread
allocates 100 buffers and then frees each of the 100 buffers.
Figure 6 compares the overheads with the lockless pool
allocator and the direct calls to the GNU memory allocator.
Observe that the lockless pool allocator has significantly
lower overheads when compared with direct calls to GNU
allocators. This is mainly because it avoids mutex contention
overheads when multiple threads simultaneously call allo-
cate and free as explained in Section III.
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A. 3D FFT Performance

nodes 128*128*128 64*64*64 32*32*32
p2p m2m p2p m2m p2p m2m

64 3030 1826 787 507 457 142
128 2019 1426 731 459 398 127
256 1930 944 625 268 379 110
512 1785 677 625 229 376 93
1024 1560 583 621 208 377 74

Table I
COMPLEX-TO-COMPLEX FORWARD+BACKWARD 3D FFT TIME STEP

(MICROSECONDS)

Table I shows the time in microseconds to execute forward
and backward complex-to-complex 3D FFT computations
with pencil decomposition for different problem sizes us-
ing CHARM++ point-to-point messages and the CmiDirect-
Manytomany interface. We have two interesting points about
this table. For each of the FFT problem sizes, significant
performance improvements are seen with calls to CmiDirect-
Manytomany interface in CHARM++ software stack. In addi-
tion, on the same number of nodes, CmiDirectManytomany
helps performance even more with smaller sized problems.
For example, on 64 nodes the speedup of m2m timestep over
p2p is 3030

1826 = 1.66 for the 128× 128× 128 problem while
it is 457

142 = 3.33 for the 32 × 32 × 32 problem. Moreover,
with strong scaling of the same problem on different number
of nodes, m2m helps even more on large node counts. It
pushes the scalability limit even further, as overheads of
using CmiDirectManytomany are much lower than sending
and receiving fine-grained small messages.

B. NAMD results

In this section, we present the results of running NAMD
on Blue Gene/Q. We use the 92,000 atom ApoA1 benchmark



with 1 femto second time step, 12 Ångstrom cutoff, constant
volume and PME executed every four steps and the 20
million and 100 million atom STMV benchmarks with 1
femto second time steps, non-bonded computation every
other step and PME every fourth step.
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Figure 7 shows the performance of the ApoA1 benchmark
with three process and thread configurations. When the
application is compute bound, the case with 64 threads
per node performs best. However, when the application is
communication bound dedicated communication threads that
optimize messaging overheads have the lowest timesteps.
Figure 8 shows the benefit of using L2 atomics to optimize
peer to peer communication and optimized memory alloca-
tion. Observe that at 512 nodes, L2 atomics speed up one
process per node by 67%.

Figure 9 presents a time profile chart that shows the CPU
utilization of running ApoA1 on 512 nodes with and without

(a) without communication thread

(b) with communication thread

PME workIntegration OverheadIdle timeNon-bonded Communication

Figure 9. ApoA1 simulation on 512 nodes w/ and w/o communication
thread

(a) Standard PME implementation

(b) Optimized PME with many-to-many

PME workIntegration OverheadIdle timeNon-bonded Communication

Figure 10. Timeprofile of ApoA1 simulation on 1024 nodes with regular
PME and optimized PME using many-to-many

communication threads. Simulation time is shown on the
X axis while CPU utilization is shown on the Y axis. The
colored regions show computation and communication while
white represents idle time. Each peak represents a timestep.
Note that every four time steps there is more idle time due
to the PME computation. Also observe that utilization is
greatly improved by the use of communication threads as
there are more peaks in Figure 9(b). Figure 10 shows further



improvement in NAMD performance on 1024 nodes by the
use of the CmiDirectManytomany to optimize PME com-
munication in the ApoA1 benchmark. Here communication
threads are enabled in both runs. The time ranges of all
four runs are 15ms. Observe significantly smaller PME step
when many-to-many is enabled, resulting in nine timesteps
(Figure 10(b)) vs seven with standard PME (Figure 10(a))
in the 15ms window.
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Figure 11. Comparison of ApoA1 performance with PME every 4 steps
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Figure 11 shows a performance comparison of the ApoA1
benchmark on BG/P and BG/Q. The best performance on
BG/Q is with all 64 threads/node for computation uptill 128
nodes, 32 worker threads and 8 communication threads per
node from 256 to 1024 nodes and 16 worker threads and 8
communication threads on 2048 and 4096 nodes. Optimized
PME via CmiDirectManytomany is enabled at 128 nodes
and larger node counts. As shown in Figure 11, we get
the best timestep of 683µs on 4096 nodes of BG/Q with
PME every four steps. We achieve a speedup of 2495 on
1024 nodes (16,384 cores) and 3981 on 4096 nodes (65,536
cores) respectively over a single core. These speedups are
significant given that the ApoA1 is a relatively small system
with only 92,000 atoms, less than 2 atoms per core at
4096 nodes. We also ran the ApoA1 benchmark with PME
executed every step on BG/Q resulting in a timestep of
782µs. These are the best known performance results for
the ApoA1 benchmark.

Figure 12 shows the performance of NAMD with the
STMV 20 million atom system. This benchmark has a large
PME computation with a grid size of 216 × 1080 × 864
that limits scaling of the standard NAMD PME compu-
tation. However, the CmiDirectManytomany enhancement
to PME with eight communication threads to accelerate
communication does scale to 16,384 nodes of BG/Q with
a performance of 5.8ms/step, which is the best published
result for the STMV 20 million atom system. Table II
shows performance results of the 100 million atom STMV
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Figure 12. 20M STMV performance with PME every 4 steps

benchmark. In this table, the speedup is calculated based on
the assumption that the parallel efficiency on 2048 nodes
(32768 cores)is 1. This benchmark has an even larger PME
computation of 1080 × 1080 × 864. Optimized PME via
CmiDirectManytomany results in a timestep of 17.9ms/step
and a speedup of 180,864 on 16,384 nodes and 262,144
cores of BG/Q. Note, the best performance for both these
systems was achieved with a single process on a BG/Q node
and between 32 and 64 threads per node showing the benefits
of the hybrid programming approach in the CHARM++
runtime.

VI. RELATED WORK

MPI is the most popular programming paradigm on to-
day’s Peta scale machines. MPI and OpenMP together are
gaining in popularity as a hybrid programming paradigm
on BG/Q and other architectures. OpenMP relies on the
compiler for optimized loop level parallelism support. The
PGAS languages UPC [11] and Co-Array Fortran [12]
also rely on compiler driven extensions and optimizations.
Unlike compiler driven approaches the CHARM++ approach
is based on dynamic runtime system optimizations. We
present various optimizations to optimize hybrid CHARM++
applications on BG/Q. We take advantage of the features
of CHARM++ such as no ordering requirements to further
optimize performance. The techniques we present in this
paper can be used to port and optimize other programming
paradigms on BG/Q and on other architectures that support
lock queues and communication threads in their messaging
libraries.

Blue Matter [13] is a molecular dynamics application
from IBM that was developed and optimized on Blue
Gene/L. Desmond [14] is an MD software application from
D. E. Shaw Research, while Anton [15], [16] is a specialized
parallel machine for molecular dynamics. Our contribution
is the exploration the hybrid programming in CHARM++
on BG/Q. The NAMD results we present are comparable to



nodes cores process per node threads per process timestep(ms) speedup

2048 32768 1 48 98.8 32,768
4096 65536 1 48 55.4 58,438
8192 131072 1 48 30.3 106,847

16384 262144 1 32 17.9 180,864

Table II
100M STMV TIME STEP (MS) WITH PME EVERY 4 STEPS

Desmond. For ApoA1 we report the best known performance
of 683µs/step with PME every four steps and 782µs/step
with PME every step. Moreover, hybrid programming with
one process per node enables simulation of very large
molecular systems such as the 20 Million and 100 Million
atom STMV benchmarks with scalable performance.

VII. SUMMARY AND FUTURE WORK

We presented our exploration of the CHARM++ pro-
gramming paradigm on IBM Blue Gene/Q. We presented
several new techniques to enable fine-grained threading in
the CHARM++ runtime, such as lockless queues and scalable
memory allocators by taking advantage of scalable atomics
in the level-2 cache on BG/Q. We also enabled communi-
cation threads in the PAMI library to accelerate message
processing. Performance results showed record performance
for NAMD to simulate the ApoA1 benchmark on 4096
nodes, that is 782µs/step with PME every step. NAMD
also scales up to 16,384 nodes for the STMV 20 million
and 100 million atom benchmarks.

We have observed that at scaling limits we get the best
performance with one or two worker threads per core and
a communication thread. This is because running with a
larger thread count increases communication and CHARM++
scheduling overheads that cancel the benefits from using
additional threads on the BG/Q core. We plan to explore
fine-grained schedulers to take advantage of all four threads
on the BG/Q core even when step times are very small.
As BG/Q has a 5D torus network, we get good scaling
for most of our NAMD benchmark runs even with topo-
logically oblivious placement. However on larger BG/Q
configurations we expect topological placement will improve
performance and we plan to explore that as well.
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