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Stochastic Programming

Linear Program (LP)

Cost minimization under constraints
min cx

s.t. Ax ≤ b, x ∈ Rn

In many real-world applications - A, b, c are unknown

e.g. agricultural planning, investment decisions, transportation, etc.

but known probabilistic distributions

Stochastic Program

divide into certain and uncertain parameters

Scenario: a particular realization of the uncertain parameters

min cx+ Es[qsys]

s.t. Ax = b,

Tsx+Wsys = hs, s = 1, ..., S

x ≥ 0, ys ≥ 0, s = 1...., S
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Military Aircraft Allocation

US Air Mobility Command (AMC)
handles fleet of 1300 aircrafts:

Worldwide Airlift

Worldwide Air-Refueling

Aeromedical Evacuation

Presidential and DV
Support

Civil Reserve AirFleet
(CRAF)
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Military Aircraft Allocation

Myriad possible outcomes confound decision support, e.g. aircraft breakdowns,
weather, natural disasters, conflicts, etc.

The Tanker Airlift Control Center (TACC) must reconcile diverse uncertainy when

predicting monthly aircraft allocation
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Military Aircraft Allocation

Sample Model Sets (120 scenarios)

Model Name Num variables Num constraints

3t 1076655 668640
5t 1663785 1064280
10t 3069330 1988640
15t 4157835 2805000
30t 7957950 5573400

Available in Stochastic MPS Format (SMPS) at http://charm.cs.uiuc.edu/jetAlloc

Documentation: http://www.mitre.org/work/tech papers/2012/11 5412/
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Solving as a Linear Program (Extensive Formulation)
Optimization time using Simplex and Interior Point Methods (IPM) of Gurobi optimizer (1 processor)

5 10 15 30 60 120
number of scenarios

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

ti
m

e
 (

in
 s

e
co

n
d
s)

Simplex

10t
5t
3t

5 10 15 30 60 120
number of scenarios

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

ti
m

e
 (

in
 s

e
co

n
d
s)

IPM

10t
5t
3t

Superlinear increase in time with # scenarios

Langer, Venkataraman, Palekar, Kale, Baker Parallel Two Stage Stochastic Linear Program 6/34



Introduction Parallel Design Stage 1 Optimization Stage 2 Optimization Results Future Work

Solving as a Linear Program (Extensive Formulation)
Optimization time using Simplex and Interior Point Methods (IPM) of Gurobi optimizer (1 processor)

5 10 15 30 60 120
number of scenarios

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

ti
m

e
 (

in
 s

e
co

n
d
s)

Simplex

10t
5t
3t

5 10 15 30 60 120
number of scenarios

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

ti
m

e
 (

in
 s

e
co

n
d
s)

IPM

10t
5t
3t

Superlinear increase in time with # scenarios

Langer, Venkataraman, Palekar, Kale, Baker Parallel Two Stage Stochastic Linear Program 6/34



Introduction Parallel Design Stage 1 Optimization Stage 2 Optimization Results Future Work

Problem Statement

Efficient parallelization of the two-stage stochastic programs
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Two-stage Stochastic Programs

Stage 1 - strategic decisions

Aircraft allocation - mission, location, day

Stage 2 - operational decisions

Aircraft scheduling - meeting mission demands

min cx+

S∑
s=1

psQs(x)

s.t. Ax ≤ b

where, Qs(x) = min{qsy|Wsy ≤ hs − Tsx}, s = 1...S
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Benders Decomposition

Stage 1

Stage 2

stg1 variable values feedback

min cx+
S∑
s=1

psθs

s.t. Ax ≤ b
Eslx+ θs ≤ esl

Linear Program

min qsy
s.t.Wy ≤ hs − Tx∗

Linear Program

x∗
cuts

θs ≥ π∗
s (hs − Tx)
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Parallel Design

Implementation

Charm++1 as the parallel programming framework

express computation as interacting collection of objects
one-sided communication and asynchronous computation

Delegate individual LP solves to highly optimized LP library
e.g. Gurobi2

1
charm.cs.uiuc.edu

Kale et.al. Migratable Objects + Active Messages + Adaptive Runtime = Productivity + Performance. A

Submission to 2012 HPC Class II Challenge.
2

www.gurobi.com
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Parallel Design

Design

Stage 1 Solver

Allocation Generator

Stage 2 Solver

Scenario Evaluator

Communicator

Work Allocator
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Parallel Design

Stg1Solver

Comm

Stg2Solver Stg2Solver Stg2Solver

allocation

scenarios, allocations

cuts
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Advanced Starts

1

Start from a prespecified basis
and solution

saves computation of initial
feasible basis

number of simplex iterations
depends on distance from
optimal solution

1
picture borrowed from ”Mysteries in Linear Programming”, K. Fukuda
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Optimizing Stage 1
Advanced Starts

Start from basis of the optimal solution of the previous iteration
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Faster Stage 1 LP solves with advanced start
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Optimizing stage 1
Memory Footprint
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Optimizing Stage 1
Curbing Solver Memory Footprint

Active cuts - cuts that influence the final result of the optimization

Cut Usage Rate =
num rounds in which cut is active

num rounds since its generation
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Optimizing Stage 1
Cut Retirement

Discard Cuts with low usage rate whenever total number of cuts exceed a configurable

threshold
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Time to solution: 19ks − > 8ks, 57% improvement
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Optimizing Stage 1
Effect of cut-window

max number of cuts = (cut-window)*(number of scenarios)
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Optimizing Stage 1
Evaluating Cut-Retirement Strategies

Least Frequently Used (LFU)

Cut Usage Rate =
num rounds in which cut is active

num rounds since its generation

Least Recently Used (LRU)

LRU Score = Last active round for the cut

Least Recently/Frequently Used (LRFU)2

LRFU Score =
k∑
i=1

F(tbase − ti)

Memory and time consuming!!

Approximation, F(x) = ( 1
p
)λx(p ≥ 2),

Stk = F(0) + F(δ)Stk−1 , δ = tk − tk−1

2
C.S. Kim. LRFU: A Spectrum of Policies that Subsumes the Least Recently Used and Least Frequently Used

Policies. IEEE Transactions on Computers, 50(12), 2001
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Optimizing Stage 1
Evaluating Cut-Retirement Strategies
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Optimizing Stage 2

Stage 2 constitutes significant fraction of total computation

Dual polytope remains the same

Use advanced start

Evaluate similar scenarios in succession

Cluster scenarios into equal sized clusters
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Optimizing Stage 2
The Scenario Clustering Algorithm
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Optimizing Stage 2
Scenario Clustering Performance
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Results
A Note: Variation Across Identical Runs

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4

run number

60

80

100

120

140

160

180

n
u
m

b
e
r 

o
f 

ro
u
n
d
s

0

200

400

600

800

1000

1200

1400

1600

ti
m

e
(i

n
 s

e
co

n
d
s)

# of rounds

time to solution

Variability across identical runs

scenario assignment upon work
requests
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identical scenario evaluations yields
different cuts
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Results
Scalability
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Future Work

Clustering

based on critical missions

Scenario Based Decomposition

Solve with subset of scenarios in parallel
combine cuts and solve with full set of scenarios

Lagrangean Decomposition

stage 1 bottleneck
decompose using lagrangean relaxation
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Thank You!
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