Optimizing Fine-grained Communication in a Biomolecular Simulation Application on Cray XK6

Yanhua Sun1 Gengbin Zheng1 Chao Mei1 Eric J. Bohm1
James C. Phillips1 Terry Jones2 Laxmikant(Sanjay) V. Kále1

1University of Illinois at Urbana-Champaign
2Oak Ridge National Lab

sun51@illinois.edu

November 27, 2012
Motivation - Molecular Dynamics Simulation

- Critical in understanding the functioning of biological machinery
Motivation - Molecular Dynamics Simulation

- Critical in understanding the functioning of biological machinery
- Challenging - femto-second timestep to maintain accuracy
- Hundreds of nanoseconds (even microseconds) are needed to observe interesting phenomena
Motivation - Molecular Dynamics Simulation

- Critical in understanding the functioning of biological machinery
- Challenging - femto-second timestep to maintain accuracy
- Hundreds of nanoseconds (even microseconds) are needed to observe interesting phenomena
- 10^8 steps
- *millisecond* timestep simulation
Motivation - Molecular Dynamics Simulation

- Critical in understanding the functioning of biological machinery
- Challenging - femto-second timestep to maintain accuracy
- Hundreds of nanoseconds (even microseconds) are needed to observe interesting phenomena
- 10^8 steps
- millisecond timestep simulation
- a single time step of 1 million atom simulation : 20 seconds
- scale to hundreds of thousands cores
- fine-grained decomposition
Analyze and optimize the fine-grained molecular dynamics simulation on Cray XK6 supercomputer
Outline

Analyze and optimize the fine-grained molecular dynamics simulation on Cray XK6 supercomputer

Outline

- Background of Cray XK6, CHARM++ and NAMD
Analyze and optimize the fine-grained molecular dynamics simulation on Cray XK6 supercomputer

Outline

- Background of Cray XK6, Charm++ and NAMD
- Detect the performance bottleneck
Analyze and optimize the fine-grained molecular dynamics simulation on Cray XK6 supercomputer

Outline

- Background of Cray XK6, Charm++ and NAMD
- Detect the performance bottleneck
- Optimization techniques
Analyze and optimize the fine-grained molecular dynamics simulation on Cray XK6 supercomputer

Outline

- Background of Cray XK6, Charm++ and NAMD
- Detect the performance bottleneck
- Optimization techniques
- Performance results
Cray XK6 - Jaguar at ORNL

Processors

- 16-core Interlagos processor, GPGPU
- Kepler GPGPU (results are on Fermi)
- CPU set - Jaguar XK6; GPU set - TitanDev
Cray XK6 - Jaguar at ORNL

Processors
- 16-core Interlagos processor, GPGPU
- Kepler GPGPU (results are on Fermi)
- CPU set - Jaguar XK6; GPU set - TitanDev

Network
- 3D torus Gemini Interconnect
- Hardware support for RDMA
- user Generic Network Interface (uGNI)
Charm++ is a parallel programming model that implements message-driven objects.
CHARM++ is a parallel programming model that implements message-driven objects.

- Improve both the performance and productivity
- Adaptive runtime system - mapping, balancing, etc.
- Multithreading mode (SMP) for multi-core computers
Worker threads put messages into Comm thread queues
- Medium/Large messages (> 1KB) - RDMA
- Small messages - SMSG
- Polling network messages
A highly scalable molecular dynamics application developed in the mid-1990s, based on CHARM++.
A highly scalable molecular dynamics application developed in the mid-1990s, based on Charm++.

- Simulation box is spatially divided into "patches"
- Force calculation between two patches is assigned to compute objects
A highly scalable molecular dynamics application developed in the mid-1990s, based on CHARM++.

- Simulation box is spatially divided into "patches"
- Force calculation between two patches is assigned to compute objects
- Complexity is $O(N \log N)$ by using short-range and long-range calculation
- GPU case: short-range work on GPUs, long-range work on CPU
Long-range calculation is implemented via particle-mesh Ewald method (PME)
Long-range calculation is implemented via particle-mesh Ewald method (PME)

Pencil PME communication pattern
Table: Parameters for four molecular systems

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Atoms</th>
<th>Cutoff(Å)</th>
<th>Simulation Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHFR</td>
<td>23558</td>
<td>9</td>
<td>62x62x62</td>
</tr>
<tr>
<td>Apoa1</td>
<td>92224</td>
<td>12</td>
<td>108x108x77</td>
</tr>
<tr>
<td>1M STMV</td>
<td>1066628</td>
<td>12</td>
<td>216x216x216</td>
</tr>
<tr>
<td>100M STMV</td>
<td>106662800</td>
<td>12</td>
<td>1084x1084x867</td>
</tr>
</tbody>
</table>
NAMD scaled up to 224K cores on Cray XT5 for a 100-million atom simulation.

Speedup starts to falter beyond 64K cores.
Trace-based Performance Analysis Tool – Projections

- Automatic runtime instrumentation module
- Java-based GUI program to visualize and analyze the performance data
Timelines for CPU and GPU runs

Purple: short-range work; Green: long-range work; Red: integration; White: idle

4 nodes with CPU only

4 nodes with GPU
512 nodes with CPU only

512 nodes with GPUs
Trace back Multiple Messages for Critical Path

time range : 7 ms
Speedup Communication on Critical Path - Priority Messages

Short-range calculation, PME work driven by different messages
Speedup Communication on Critical Path - Priority Messages

Short-range calculation, PME work driven by different messages

- Sender: Out-of-Band sending
- Receiver: Priority execution
- Increase responsiveness
The message tracing of patch-to-PME in Projections timeline for DHFR running on 1024 cores

Without optimization

With optimization
Persistent Messages

- Persistent channels for FFT are setup at the beginning
- No need to allocate memory
- Direct one-sided put
- 10% overall performance improvement
PME Decomposition

Theorem

\[T = T_{\text{comm}} + T_{\text{comp}} = \frac{D}{4 \times B \times \alpha} + \frac{N \log N}{P} \] (1)
PME Decomposition

Theorem

\[T = T_{\text{comm}} + T_{\text{comp}} = \frac{D}{4 \times B \times \alpha} + \frac{N \log N}{P} \]

- Reduce the number of messages to utilize network more efficiently (1 pencil per physical node)
- More parallelism to utilize CPU resources (1 pencil per core)
- Tradeoff (1 pencil per Charm++ process)
PME Decomposition

Theorem

\[T = T_{\text{comm}} + T_{\text{comp}} = \frac{D}{4 \times B \times \alpha} + \frac{N \log N}{P} \]

- Reduce the number of messages to utilize network more efficiently (1 pencil per physical node)
- More parallelism to utilize CPU resources (1 pencil per core)
- Tradeoff (1 pencil per Charm++ process)
- CkLoop library to utilize all cores
Performance Results - DHFR

NAMD DHFR CPU performance on TitanDev

- Optimized uGNI
- baseline uGNI
- MPI Charm++
Performance Results - XK6 V.S. XT5 (100 million atoms)

Yanhua Sun et al. U of Illinois at Urbana-Champaign 20/22
Conclusion and Future Work

Conclusion

- Techniques to analyze and optimize NAMD on both application and runtime system
- Timestep of 100M STMV is improved from 26\(ms/step\) on Jaguar XT5 to 13\(ms/step\) XK6

Future Work

- Topology-aware PME distribution and communication
- Multi-level summation to replace PME
Conclusion and Future Work

Conclusion

- Techniques to analyze and optimize NAMD on both application and runtime system
- Timestep of 100M STMV is improved from 26\textit{ms/step} on Jaguar XT5 to 13\textit{ms/step} XK6

Future Work

- Topology-aware PME distribution and communication
- Multi-level summation to replace PME
- Tutorial Charm++, 8:30AM-12:00PM on Sunday November 11
- HPC Challenge BoF, 12:15PM-1:15PM on Tuesday November 13, in 255-A
- Sidney Fernbach Award Talk, 11:30AM-12:00PM on Wednesday November 14th, in 155-E
- Dissertation showcase ”Saving Energy and Power”, 11:15AM - 11:30AM on Wednesday November 14, in 155-F
- Paper talk ”Optimizing fine-grained communication in a biomolecular dynamics simulation application on Cray XK6” on Wednesday Nov 14, in 355-EF
- Charm++ BoF, 12:15PM-1:15PM on Thursday November 15, in 255-A
- http://charm.cs.illinois.edu/