
Charm++

Migratable Objects + Active Messages + Adaptive Runtime
=

Productivity + Performance

Laxmikant V. Kale‡
Anshu Arya, Nikhil Jain, Akhil Langer, Jonathan Lifflander, Harshitha Menon

Xiang Ni, Yanhua Sun, Ehsan Totoni, Ramprasad Venkataraman‡, Lukasz Wesolowski
Parallel Programming Laboratory

Department of Computer Science, University of Illinois at Urbana-Champaign
‡{kale, ramv}@illinois.edu

1. SUMMARY
Charm++ is an elegant, general-purpose parallel program-

ming model backed by an adaptive runtime system [1]. This
combination yields portable performance and a spectrum
of real-world productivity benefits that have been demon-
strated in production applications. Our submission to this
year’s HPC Challenge (Class II) comprises six benchmarks
that demonstrate these practical benefits available to appli-
cation developers today. These include: (1) interoperabil-
ity with MPI (2) automatic, dynamic load balancing (3) ef-
fortless checkpointing and restart on a different number of
processors, and (4) application progress in the presence of
failing processes. The submission also explains how over-
decomposed, message-driven, migratable objects enhance the
clarity of expression of parallel programs and also enable the
runtime system to deliver portable performance. Our code-
size (line counts) and a summary of the performance results
can be seen in Table 1.

1.1 Submitted Benchmarks
• Required

– Global FFT

– Random Access

– Dense LU Factorization

• Optional

– Molecular Dynamics

– Sparse Triangular Solver

– Adaptive Mesh Refinement

1.2 Demonstrated Capabilities
• Automatic communication-computation overlap

• Asynchronous, nonblocking collectives

• Interoperability with MPI

• Automated, dynamic load balancing

• Checkpointing to save application state

• Resilience to failing processes

• Modular, yet composable parallel libraries

2. PROGRAMMING MODEL
We describe relevant aspects of the Charm++ program-

ming model in order to set the context for explaining the
benchmark implementations.

2.1 Salient Features
The Charm++ programming model has several funda-

mental characteristics that enable high performance while
providing high productivity.

2.1.1 Object-based
Parallel programs in Charm++ are implemented in an

object-based paradigm. Computations are expressed in terms
of work and data units that are natural to the algorithm be-
ing implemented and not in terms of physical cores or pro-
cesses executing in a parallel context. This immediately has
productivity benefits as application programmers can now
think in terms that are native to their domains.

The work and data units in a program are C++ objects,
and hence, the program design can exploit all the benefits of
object-oriented software architecture. Classes that partici-
pate in the expression of parallel control flow (chares) inherit
from base classes supplied by the programming framework.
They also identify the subset of their public methods that
are remotely invocable (entry methods). This is done in a
separate interface definition file described in subsection 2.2.
Charm++ messages can also be C++ classes defined by the
program. Any work or data unit that is transmitted across
processes has to define a serialization operator, called pup()
for Pack/UnPack. This allows the transmission of complex
objects across processes during execution.

Chares are typically organized into indexed collections,
known as chare arrays. Chares in an array share a type, and
hence present a common interface of entry methods. A single
name identifies the entire collection, and individual elements
are invoked by subscripting that name. Code can broadcast
a message to a common entry method on all elements of an
array by invoking that method on the array’s name, without
specifying a subscript. Conversely, the elements of an array
can perform asynchronous reductions whose results can be
delivered to an entry method of the array itself or of any
other object in the system.

In essence, Charm++ programs are C++ programs where

Productivity Performance

Code C++ CI Benchmark Driver Total Machine Max Performance Highlight
Subtotal Cores

Required Benchmarks

1D FFT 54 29 83 102 185 BG/P 64K 2.71 TFlop/s
BG/Q 16K 2.31 TFlop/s

Random Access 76 15 91 47 138 BG/P 128K 43.10 GUPS
BG/Q 16K 15.00 GUPS

Dense LU 1001 316 1317 453 1770 XT5 8K 55.1 TFlop/s
(65.7% peak)

Additional Benchmarks

Molecular Dynamics 571 122 693 n/a 693 BG/P 128K 24 ms/step (2.8M atoms)
BG/Q 16K 44 ms/step (2.8M atoms)

AMR 1126 118 1244 n/a 1244 BG/Q 32k 22 steps/sec, 2d mesh,
max 15 levels refinement

Triangular Solver 642 50 692 56 748 BG/P 512 48x speedup on 64 cores
with helm2d03 matrix

Table 1: Performance and line count summaries for each benchmark. ‘C++’ and ‘CI’ refer to Charm++ code necessary to
solve the specified problem. ‘Driver’ refers to additional code used for setup and verification. All numbers were generated
using David Wheeler’s SLOCCount. Performance data is simply a summary highlight. Detailed performance results can be
found in the following sections

interactions with remote objects are realized through an
inheritance and serialization API exposed by the runtime
framework.

2.1.2 Message-Driven
Messaging in Charm++ is sender-driven and asynchro-

nous. Parallel control flow in Charm++ is expressed in the
form of method invocations on remote objects. These in-
vocations are generally asynchronous, i.e., the control re-
turns to the caller before commencement or completion of
the callee, and thus no return value is available. If data needs
to be returned, it can flow via subsequent remote invocation
by the callee on the original caller, be indirected through a
callback, or the call can explicitly be made synchronous.

These semantics immediately fit well into the object-based
paradigm. Each logical component (chare) simply uses its
entry methods to describe its reactions when dependencies
(remote events or receipt of remote data) are fulfilled. It
is notified when these dependencies are met via remote in-
vocations of its entry methods. Upon such invocation, it
can perform appropriate computations and also trigger other
events (entry methods) whose dependencies are now fulfilled.
The parallel program then becomes a collection of objects
that trigger each other via remote (or local) invocations by
sending messages. Note that these chares do not have to
explicitly expect a message arrival by posting receives. In-
stead, the arrival of messages triggers further computation.
The model is hence message-driven.

Its worthwhile to note that the notion of processes / cores
has not entered this description of the parallel control flow
at all. This effectively separates the algorithm from any
processor-level considerations that the program may have
to deal with; making it easier for domain experts to express
parallel logic.

2.1.3 Over-decomposed
Divorcing the expression of parallelism (work and data

units) from the notion of processes / cores allows Charm++
programs to express much more parallelism than the avail-
able number of processors in a parallel context. The funda-
mental thesis of the Charm++ model is that the applica-
tion programmer should over-decompose the computations
in units natural to the algorithm, thereby creating an abun-
dance of parallelism that can be exploited.

2.1.4 Runtime-Assisted
Once an application has been expressed as a set of over-

decomposed chares that drive each other via messages, these
can be mapped onto the available compute resources and
their executions managed by a runtime system. The pro-
gramming model permits an execution model where the run-
time system can:

• maintain a queue of incoming messages, and deliver
them to entry methods on local chares.

• overlap data movement required by a chare with entry
method executions for other chares.

• observe computation / communication patterns, and
move chares to balance load and optimize communi-
cation.

• allow run-time composition (interleaving) of work from
different parallel modules.

A list of advantages of the Charm++ programming and
execution model can be found at http://charm.cs.illinois.
edu/why/.

http://charm.cs.illinois.edu/why/
http://charm.cs.illinois.edu/why/

2.2 Interface Definitions
The Charm++ environment strives to provide a conve-

nient, high-level interface for parallel programmers to use
in developing their applications. Rather than requiring pro-
grammers to do the cumbersome and error-prone bookkeep-
ing necessary to identify the object and message types and
associated entry methods that make up their program, Charm++
provides code generation mechanisms to serve this purpose.
When building a Charm++ program, the developer writes
one or more interface description files (named with a .ci ex-
tension), listing the following:

1. System-wide global variables set at startup, known as
read-only variables,

2. Types of messages that the code will explicitly con-
struct and fill, specifying variable-length arrays within
those messages, and

3. Types of chare classes, including the prototypes of
their entry methods.

Interface descriptions can be decomposed into several mod-
ules that make up the overall system, generated declarations
and definitions for each of which will be placed in a separate
file (named with .decl.h and .def.h extensions, respectively).
A Charm++ program’s starting point, equivalent to main()
in a C program, is marked as a mainchare in its interface
description. The runtime starts the program by passing the
command-line arguments to the mainchare’s constructor.

2.3 Describing Parallel Control Flow
One effect of describing a parallel algorithm in terms of in-

dividual asynchronous entry methods is that the overall con-
trol flow is split into several pieces, whose relationship can
become complicated in any but the simplest program. For
instance, one pattern that we have observed is that objects
will receive a series of similar messages that require some
individual processing, but overall execution cannot proceed
until all of them have been received. Another pattern is
some entry methods must execute in a particular sequence,
even if their triggering messages may arrive in any order.
To facilitate expressing these and other types of higher-level
control flow within each object, Charm++ provides a no-
tation known as Structured Dagger [2]. Structured Dagger
lets the programmer describe a sequence of behaviors in an
object that can be abstractly thought of as a local task de-
pendence DAG (from which the name arises).

The basic constructs for describing parallel control flow
are drawn from the traditional control-flow constructs in C-
like languages: conditional execution based on if/else, and
for and while loops. The constructs operate much like com-
mon sequential C or C++ code. In addition to basic C
constructs, the when clause indicates that execution beyond
that point depends on the receipt of a particular message.
Each when clause specifies the entry method it is waiting for,
and the names of its argument(s) in the body of the clause.
A when clause may optionally specify a reference number or
numerical expression limiting which invocations of the asso-
ciated entry method will actually satisfy the clause. A refer-
ence number expression appears in square brackets between
an entry method ’s name and its argument list. Definitions
for entry methods named in when clauses are generated by
the interface translator. Though not used in this submission,

the overlap construct describes divergent control flow, akin
to a task fork/join mechanism specifying that a sequence
of operations must complete, but not an ordering between
them. Because a chare is assigned to a particular core at
any given time, these operations do not execute in parallel,
avoiding many problems encountered by concurrent code.

The various constructs are implemented in generated code
by a collection of message buffers and trigger lists that have
negligible overhead comparable to a few static function calls.
If the body of a method is viewed as a sequential thread of
execution, a when can be seen as a blocking receive call.
However, rather than preserving a full thread stack and
execution context, only the current control-flow location is
saved, and control is returned to the scheduler. Local vari-
ables to be preserved across blocks are encoded as member
variables of the enclosing chare. In contrast, thread context
switches that provide the same behavior with a less sophis-
ticated mechanism can be much more costly. Charm++
does provide mechanisms to run entry methods in separate
threads when blocking semantics are needed for other pur-
poses. Also, unlike linear chains of dependencies in threads,
Structured Dagger allows one to express a DAG of depen-
dencies between messages and local computations.

2.4 Demonstrated Capabilities

2.4.1 Automated Dynamic Load Balancing
As HPC hardware architectures and applications become

more complex, and execution scales continue to grow larger,
load imbalances will intensify further. Making decisions such
as when to balance load, and what strategy to use are al-
ready quite challenging in the context of large applications.
Multiple application runs may be needed to tune for the best
values for all the parameters that control the application’s
execution and utilization profiles. Charm++ has a mature
measurement-based load balancing framework, which relies
on the principle of persistence [3]. During application exe-
cution, the load balancing framework continuously monitors
the performance profile, and on invocation, it redistributes
the load without any requirement from the application. We
have demonstrated beneficial load-balancing strategies for
several scientific applications.

The latest addition to the Charm++ load balancing frame-
work is the Meta-Balancer, which automates decision mak-
ing related to load balancing: when to invoke the load bal-
ancer and what load balancing strategy to use. Meta-Balancer
uses a linear prediction model on the collected information
about the application, and predicts the time steps (or it-
erations) at which load balancing should be performed for
optimal performance. By observing the load distribution,
the idle time on processors and the volume of communication
during an application run, it also identifies a suitable balanc-
ing strategy. This relieves application writers from conduct-
ing theoretical analysis and multiple test runs to tune the
load balancing parameters for the best performance. Given
the increased complexity of applications and systems, such a
analysis may not even be feasible. Meta-Balancer has been
shown to be effective for various real-world applications and
benchmarks [4], and has been used to improve the perfor-
mance of LeanMD in this submission.

2.4.2 Checkpointing Application State
For HPC applications running for days and hours, it is

MPI

Charm++
Time...

P(1) P(2) P(N-1) P(N)

...

P(1) P(2) P(N-1) P(N)

...

P(1) P(2) P(N-1) P(N)

(a) Time Sharing (b) Space Sharing (c) Combined

Figure 1: Supported modes of interoperation between
Charm++ and MPI

difficult to get the allocations needed at one time. Charm++
provides support to checkpoint the application state to disk
for split execution. The application can even be restarted
using the checkpoint file on a different number of processors
than the original run (e.g., a 10000 processors run can be
checkpointed and restarted on 9000 processors). To perform
checkpointing, the user only needs one extra line of code:

CkStartCheckpoint(”log”,callback)

Here “log” is the filesystem path to the checkpoints. call-

back is called when the checkpoint (or restart) is complete.

2.4.3 Tolerating Process Failures
Applications running on large scale machines may face a

high failure frequency as the number of components in every
generation of supercomputers keeps increasing. It will be-
come increasingly difficult for applications to complete exe-
cution without any fault tolerance support. Charm++ offers
a double in-memory fault tolerance mechanism for applica-
tions running on unreliable systems.

The in-memory based checkpointing algorithm helps re-
duce the checkpoint overhead in comparison to the file sys-
tem based checkpointing scheme by storing the checkpoint
in memory. It therefore avoids any congestion caused by
simultaneous access to the file system.

In the scheme, periodically at application synchronization
points, two copies of checkpoints are stored; one in the lo-
cal memory of the processor and the other in the memory
of a remote processor (the “buddy” processor of the local
processor). Charm++ automatically detects failures using
a periodic hearbeat, and chooses a new processor to replace
the crashed processor. This new processor can either be a
previously unused spare processor, or a currently used pro-
cessor that is already part of the execution. The most recent
checkpoint is then copied to the chosen replacement proces-
sor from the buddy of the crashed processor. Thereafter,
every processor rolls back to the last checkpoint, and the
application continues to make progress. The fault tolerance
mechanism provided by Charm++ can be used by adding
only one line of code:

CkStartMemCheckpoint(callback)

callback is called when the in-memory checkpoint(or restart)
is complete. To enable this feature, the syncft option should
be added to the configuration when compiling Charm++.

1 //MPI Init and other basic initialization
2 { optional pure MPI code blocks }
3
4 //create a communicator for initializing Charm++
5 MPI Comm split(MPI COMM WORLD, peid%2, peid, &

newComm);
6 CharmLibInit(newComm, argc, argv);
7
8 { optional pure MPI code blocks }
9

10 //Charm++ library invocation
11 if(myrank%2)
12 fft1d(inputData,outputData,data size);
13
14 //more pure MPI code blocks
15 //more Charm++ library calls
16
17 CharmLibExit();
18 //MPI cleanup and MPI Finalize

Figure 2: Sample code showing a Charm++ library
(FFT1D) being used from an MPI program

We inject failures into the application by randomly select-
ing a process and forcing it to become completely silent and
unresponsive. The “failed” process simply ceases to commu-
nicate with any other process in the execution. All applica-
tion and runtime state on this process is lost to the rest of
the execution. The runtime system, upon failing to receive
heartbeat signals from the “failed” process, flags it as a pro-
cess failure and commences recovery protocol. The silencing
functionality is encapsulated behind a CkDieNow() function
that is called on the randomly selected failing process.

2.4.4 Interoperating with MPI
Charm++ provides support for multi-paradigm program-

ming where only a subset of application modules are writ-
ten in Charm++, while the remaining use MPI (or MPI +
OpenMP). Any legacy MPI application can use a library
implemented in Charm++ in the same way that it uses any
external MPI library. This also provides a gradual migra-
tion path to existing applications that wish to adopt the
Charm++ programming model.

Charm++ supports interoperability in three different modes
as shown in Figure 1. (1) In the time sharing mode, the
control transfers between Charm++ and MPI in a coordi-
nated manner for all the processors in the execution. (2) In
the space sharing mode, a set of processors always execute
Charm++ code, while the rest execute the MPI program. (3
) In the general case, time sharing and space sharing can be
used simultaneously by dividing the MPI ranks using MPI
communicators during initialization, and then, making calls
to Charm++ libraries as desired.

A simple interface function is added to the Charm++
library to permit invocation from MPI. In Figure 2, we
present example usage of a one-dimensional FFT library
written in Charm++, from an MPI program. The state-
ments of interest are the additional calls to CharmLibInit
and CharmLibExit, which are required once at the begin-
ning and end of execution, respectively. After such initial-
ization, Charm++ libraries can be invoked at any time using
the interface methods.

2.4.5 Nonblocking Collective Communication

256 512 1024 2048 4096 8192 16384 32768 65536
10

1

10
2

10
3

10
4

Cores

G
F

lo
p/

s

BG/P
BG/Q
Serial FFT limit (BG/P)

Figure 3: Performance of Global FFT on IBM’s BG/Q and
BG/P

Sizes BG/P BG/Q
m Cores GFlops Cores GFlops

327682 256 19.4 128 43.5
460802 512 39.9 256 72.5
655362 1024 69.1 512 133.8
921602 2048 229.2 1024 220.7

1310722 4096 284.1 2048 325.5
1802242 8192 454.4 4096 634.1
2621442 16384 867.9 8192 974.7
3604482 32768 1430.8 16384 2306.2
5242882 65536 2708.9 - -

Table 2: Performance of Global FFT 1D on Intrepid
(IBM BG/P) and Vesta (IBM BG/Q)

Charm++ supports a number of collective communication
patterns using high performance implementations. Some
collectives, such as broadcast, are expressed by overload-
ing basic operations on proxies. Broadcast, as an exam-
ple, is expressed using the same function invocation syntax
as point-to-point sends, with the distinction that the entry
method is invoked on a collection instead of a single chare or
processing element. The intuitive expression of broadcasts
is an example of the productivity benefits of Charm++.

For more complex cases, Charm++ provides communica-
tion libraries which support the most commonly used col-
lectives: broadcasts, reductions, multicasts, and many-to-
many/all-to-all. All collective communication in Charm++
is naturally asynchronous and non-blocking, and overlaps
with other computation and communication that may in-
volve the same cores or objects.

Some Charm++ libraries are more subtle than the typi-
cal collective calls of a message passing library. One of these
specialized libraries, which we found useful in improving per-
formance and elegance of two of our benchmarks (FFT and
Random Access) is Mesh Streamer. Mesh Streamer is a
library for accelerating all-to-all communication. By aggre-
gating small units of communication into larger messages,
and routing these messages over the dimensions of a virtual
mesh comprising the processing elements involved in the run,
Mesh Streamer improves fine-grained all-to-all communica-
tion performance. The library is asynchronous and highly
flexible in supporting communication patterns that are not
fully all-to-all. As an example, the various processing ele-
ments participating in the collective are free to send differ-
ent numbers of messages, with varying message sizes, as part
of the same streaming step. Processing elements may even
avoid participating in the collective completely. Further,
many-to-many exchanges are also supported, and a single
streaming step can even support numerous localized many-
to-many exchanges in the same streaming step, and combine
intermediate messages which are not part of the same many-
to-many operation. In many ways, Mesh Streamer typifies
the flexibility with which the Charm++ programming model
can handle dynamic communication patterns which do not
belong to commonly accepted patterns.

The library also permits clean expression of communica-
tion in the application. For example, in the random access
benchmark, the receipt of the update messages from remote

processors is expressed as follows:

1 void process(const T &key) {
2 CmiInt8 localOffset = key & (localTableSize − 1);
3 // Apply update to local portion of table
4 HPCC Table[localOffset] ˆ= key;
5 }

The code snippet looks like it is receiving individual up-
dates one at a time. However, the library handles the data
aggregation and routing completely invisibly under the ap-
plication, producing very succinct application code.

3. GLOBAL FFT

3.1 Performance
Runs were performed on Intrepid (IBM’s Blue Gene/P)

and Vesta (Blue Gene/Q). Performance scales well up to at
least 64K cores of Blue Gene/P, in large part due to the use
of our message aggregation and software routing commu-
nication library, Mesh Streamer (also used in the Random
Access benchmark). ESSL was used to perform serial FFTs.
Figure 3 and table 2 summarize the results.

3.2 Implementation
Our implementation of Global FFT takes input size N

and performs a complex 1D FFT on an NxN matrix where
subsequent rows are contiguous data elements of a double
precision complex vector. Three all-to-all transposes are re-
quired to perform the FFT and unscramble the data. All-to-
all operations are done via a general Charm software rout-
ing library, Mesh Streamer, and external libraries (FFTW
or ESSL) perform serial FFTs on the rows of the matrix.

3.2.1 Interoperable with MPI
The FFT library submitted as part of this code can also in-

teroperate with programs written in MPI, and the library in
Charm++. The general concept, and the simplicity of use of
interoperation in Charm++ was described in Section 2.4.4.
In order to use the FFT library with MPI, one should build
Charm++ using MPI as the base layer. For more details,
one can refer to the README and the interface code that
has been submitted as part of this submission for example

 0.0625

 0.25

 1

 4

 16

 64

128 512 2K 8K 32K 128K

G
U

P
S

Number of cores

43.10

Perfect Scaling
BG/P
BG/Q

Figure 4: Performance of random access on Intrepid (IBM
BG/P) and Vesta (IBM BG/Q)

Cores BG/P BG/Q
GUPS Mem(TB) GUPS Mem(TB)

128 0.11 0.031 0.242 0.062
256 0.21 0.062 0.403 0.125
512 0.40 0.125 0.751 0.250
1K 0.71 0.250 1.327 0.500
2K 1.38 0.500 2.360 1.000
4K 2.49 1.000 4.623 2.000
8K 4.43 2.000 8.204 4.000

16K 8.34 4.000 15.001 8.000
32K 15.13 8.00 - -
65K 26.94 16.00 - -

128K 43.10 32.00 - -

Table 3: Performance of random access on Intrepid (IBM
BG/P) and Vesta (IBM BG/Q)

usage. Note that the same library code has been used by
both the drivers (in MPI and in Charm++).

3.3 Verification
The benchmark code self-validates by executing an inverse

FFT and the residual is printed.

4. RANDOM ACCESS

4.1 Productivity

4.1.1 Communication Libraries
Charm++ contains libraries for improving network com-

munication performance for various scenarios. For this bench-
mark we use the Mesh Streamer library, further described
below, for optimizing all-to-all communication on small mes-
sages.

4.1.2 Automatic Topology Determination
The Charm++ Topology Manager automates the task of

determining physical network topology for a partition as-
signed to a job. We use it to provide topology information
for Mesh Streamer.

4.2 Performance
Performance results on IBM BG/P and BG/Q are pre-

sented in Figure 4 as well as in Table 3. We achieve over 35
GUP/s when running on 128K cores of BG/P.

4.3 Implementation
We used a Charm++ group to partition the global table

across the nodes in a run. A group can be thought of as
a chare array with one chare per Processing Element (PE),
which corresponds to either a core or a thread in the system.
For example, on Blue Gene/P, we ran using a single PE per
core, while on Blue Gene/Q, we ran in a mode employing
one PE per thread, and up to 4 threads per core. Each
element of the group allocates its part of the global table,
generates random update keys, and sends the updates to the
appropriate destination.

The small size of individual update messages in this bench-
mark made it prohibitively expensive to send each item as
a separate message. To improve performance, we used a
Charm++ message aggregation and routing library called
Mesh Streamer. Mesh Streamer routes messages over an N-
dimensional virtual topology comprising the PEs involved in
the run. The topology needs to be specified when creating
an instance of the library. To facilitate the specification of
the virtual topology, we used the Charm++ Topology Man-
ager library, which provides an interface to determine the
network topology for the current run. In typical cases, we
found that using virtual topologies with dimensions match-
ing the network representation of the current run led to good
performance.

In the context of Mesh Streamer, each processor is lim-
ited to sending and receiving messages from a subset of the
processors involved in the run. When determining where
to send a particular data item (in our case table update),
Mesh Streamer selects a destination from among its peers
so that data items always make forward progress toward the
destination. Items traveling to the same intermediate des-
tination are combined into larger messages. This approach
achieves improved aggregation and lower memory utiliza-
tion compared to schemes which aggregate separately for
each destination on the network.

Mesh Streamer allows specifying a limit on the number
of items buffered by each local instance of the library. We
set the buffering limit to 1024 to conform to the benchmark
specifications.

4.4 Verification
Verification is done by performing a second phase with the

same updates as in the timed run. In the absence of errors,
this has the effect of returning the global table to its initial
state. To verify correctness, we check the state of the table
to ensure its final state is the same as when the benchmark
is started. In our implementation memory is distributed
among the members of the group. Each region of memory
is only accessed by one group member, making the imple-
mentation thread-safe. As such, our implementation does
not allow for even the small number of errors permissible

according to the benchmark specification.

5. DENSE LU FACTORIZATION

5.1 Productivity
Charm++ is a general and fully capable programming

paradigm, and hence our LU implementation does not em-
ploy any linear algebra specific notations. Our implementa-
tion is very succinct and presents several distinct benefits.

5.1.1 Composable Library
The implementation is presented as a modular library that

can be composed into client applications. By composition,
we imply both modularity during program design and seam-
lessness during parallel execution. Factorization steps can
be interleaved with other computations from the applica-
tion (or even with other factorization instances of the same
library!) on the same set of processors.

5.1.2 Flexible Data Placement
The placement of matrix blocks on processes is completely

independent of the main factorization routines; is encapsu-
lated in a sequential function, and can be modified with
minimal effort. We have utilized this ability to explore novel
mapping schemes, demonstrating that deviating from a tra-
ditional block-cyclic distribution can increase performance
for modern multicore architectures [5].

5.1.3 Block-Centric Control Flow
For block sizes on which dgemm calls perform well, we typ-

ically need hundreds of blocks assigned to each processor
core to meet the memory usage requirements. Such over-
decomposition is also necessary for load balance. By elevat-
ing these over-decomposed, logical, entities to become the
primary players in the expression of parallelism, Charm++
enables a succinct representation of the factorization logic.
Additionally, Structured Dagger allows the control flow for
each block to be directly visible in the code in a linear style
effectively independent of other activity on the same proces-
sor.

5.1.4 Separation of Concerns
The factorization algorithm has been expressed from the

perspective of a matrix block. However, processor-level con-
siderations (e.g, memory management) are implemented as
separate logic that interacts minimally with the factoriza-
tion code. This demonstrates a clear separation of concerns
between application-centric domain logic and system-centric
logic. Such separation enhances productivity of both appli-
cation domain experts and parallel systems programmers.
It also allows easier maintenance and tuning of parallel pro-
grams.

5.2 Performance
We have scaled our implementation to 8064 cores on Jaguar

(Cray XT5 with 12 cores and 16GB per node) by increasing
problem sizes to occupy a constant fraction of memory (75%)
as we increased the number of cores used. We obtain a con-
stant 67% of peak across this range. We also demonstrate
strong scaling by running a fixed matrix size (n = 96, 000)
from 256 to 4096 cores of Intrepid (IBM Blue Gene/P with
4 cores and 2GB per node). The matrix size was chosen to
just meet the requirements of the spec (occupying 54% of

 0.1

 1

 10

 100

 128 1024 8192

T
o
ta

l
T

F
lo

p
/s

Number of Cores

Theoretical peak on XT5
Weak scaling on XT5

Theoretical peak on BG/P
Strong scaling on BG/P

Figure 5: Weak scaling (matrix occupies 75% of memory)
from 120 to 8064 processors on Jaguar (Cray XT5). Strong
scaling (n = 96, 000) from 256 to 4096 processors on Intrepid
(IBM BG/P).

memory) at the lower end of the strong scaling curve (256
cores). Our results are presented in Figure 5. Extensive
experiments with LU are an expensive proposition as the
amount of computation increases as n3 (where n is the ma-
trix size). We fully expect the implementation to scale to
much larger partitions and demonstrate high performance
on multiple architectures.

5.2.1 Adaptive Lookahead
Our implementation provides completely dynamic, memory-

constrained lookahead so that panel factorizations are over-
lapped as much as memory usage limits will allow. In keep-
ing with its library form, applications can choose to restrict
the factorization to use only a fraction of the available mem-
ory.

5.2.2 Asynchronous Collectives
Charm++ collective operations are also asynchronous like

its other messaging semantics and can be overlapped with
other work. For example, this allows asynchronous pivot
identification reductions to be overlapped with updating the
rest of the sub-panel. Masking such latencies allows this
implementation a wider choice of data placements.

5.3 Implementation
We use a typical block-decomposed algorithm for the LU

factorization process. Our focus in this effort has been less
on choosing the best possible factorization algorithm than
on demonstrating productivity with a reasonable choice.

The input matrix of n × n elements is decomposed into
square blocks of b×b elements each. We delegate underlying
sequential operations to an available high performance linear
algebra library, typically a platform-specific implementation
of BLAS and perform partial pivoting for each matrix col-
umn.

5.3.1 Data Distribution
Matrix blocks are assigned to processors when the library

starts up, according to a mapping scheme, and are not re-
assigned during the course of execution. Charm++ facil-
itates the expression and modification of the data distri-

bution scheme by encapsulating the logic into a simple se-
quential function call that uses the block’s coordinates to
compute the process rank it should be placed on:

process rank = f(xblock, yblock) (1)

This is a standard feature in Charm++ and is available
to all indexed collections of chares (chare arrays). This al-
lows library users to evaluate data distribution schemes that
may differ from the traditional two-dimensional block-cyclic
format.

5.3.2 Asynchrony and Overlap
In our implementation, each block is placed in a message-

driven object, driven by coordination code written in Struc-
tured Dagger [2]. The coordination code describes the mes-
sage dependencies and control flow from the perspective of
a block. Thus, every block can independently advance as
it receives data and we avoid bulk synchrony by allowing
progress in the factorization when dependencies have been
met. With many blocks per processor, overlap is automati-
cally provided by the Charm++ runtime system.

5.3.3 Block Scheduler
Our solver implements dynamic lookahead, using a dy-

namic pull-based scheme to constrain memory consumption
below a given threshold. To implement the pull-based scheme,
we place a scheduler object on each processor in addition
to its assigned blocks. The scheduler object maintains a
list of the blocks assigned to its processor, and tracks what
step they have reached. Within the bounds of the memory
threshold, it requests blocks from remote processors that are
needed for local triangular solves and trailing updates. An
earlier technical report [6] describes the dependencies be-
tween the blocks and how the scheduler object uses this to
safely reorder the selection of trailing updates to execute.
We include this in our submission to demonstrate that the
programming model allows separation of concerns in a par-
allel context.

5.4 Verification
Our LU implementation conforms fully to the spec and

passes the required validation procedures for all the results
presented here. We have supplied a test driver with the
library that generates input matrices, invokes the library for
the factorization and solves, and validates the results while
also measuring performance. Performance and validation
statistics are printed at the end.

6. MOLECULAR DYNAMICS
LeanMD is a molecular dynamics simulation program writ-

ten in Charm++. This benchmark simulates the behavior
of atoms based on the Lennard-Jones potential, which is
an effective potential that describes the interaction between
two uncharged molecules or atoms. The computation per-
formed in this code mimics the short-range non-bonded force
calculation in NAMD [7, 8] and resembles the miniMD ap-
plication in the Mantevo benchmark suite [9] maintained by
Sandia National Laboratories.

The force calculation in Lennard-Jones dynamics is done
within a cutoff-radius, rc for every atom. In LeanMD, the
computation is parallelized using a hybrid scheme of spatial
and force decomposition. The three-dimensional (3D) sim-
ulation space consisting of atoms is divided into cells of di-

 1024

 2048

 4096

 8192

 16384

 32768

 1024 2048 4096 8192 16384 32768

Sp
ee

du
p

Number of cores

LeanMD Speedup on BlueGene/Q (2.8 million atoms)

ms/step
44.2
ms/step

Ideal
Charm++

Figure 6: Scaling of LeanMD for the 2.8 million atoms sys-
tem on Vesta (IBM BG/Q)

mensions that are equal to the sum of the cutoff distance, rc
and a margin. In each iteration, force calculations are done
for all pairs of atoms that are within the cutoff distance.
The force calculation for a pair of cells is assigned to a dif-
ferent set of objects called computes. Based on the forces
sent by the computes, the cells perform the force integration
and update various properties of their atoms – acceleration,
velocity and positions.

6.1 Productivity
Our implementation of LeanMD takes only 693 lines of

code while offering capabilities that match some of the pro-
duction molecular dynamics applications. In comparison,
miniMD from the Mantevo benchmark suite, which nurtures
similar objectives of representing real applications, requires
just under 3000 lines of code [9] but does not offer many of
the capabilities of LeanMD.

Below, we present several Charm++ features that have
been exploited in LeanMD that significantly improve pro-
grammer productivity without sacrificing performance and
in some cases, such as load balancing, lead to performance
improvements.

6.1.1 Automatic Load Balancing with Meta-Balancer
Charm++’s fully automated measurement-based load bal-

ancing framework enables strong scaling with minimal effort
from the application programmer. It is critical in an appli-
cation like LeanMD, which can suffer from substantial load
imbalance because of the variation in sizes of computes re-
sulting from a spherical cutoff. To enable automatic load
balancing decisions using Meta-Balancer, the user simply
specifies a flag, +MetaLB, at the command line, and the
run-time system will automatically identify a suitable load
balancing period. Measurement-based load balancing is well
suited for applications where the recent past is a predictor
of the near future. In such situations, load balancing deci-
sions taken by Meta-Balancer based on such predictions are
often correct. This works well for LeanMD because atoms
migrate slowly and hence the load fluctuations are gradual.

6.1.2 In-disk and in-memory Checkpointing
Applications that perform physical simulation are exe-

cuted for a long period (tens of hours to a few days). In such
a scenario, providing fault-tolerance mechanisms are critical
for sustained execution. LeanMD has been used to demon-

 10

 100

 1000

 10000

2k 4k 8k 16k 32k 64k 128k

T
im

e
pe

r
st

ep
 (

m
s)

Number of cores

Performance on Intrepid (2.8 million atoms)

No LB
Periodic LB

Meta LB

 10

 100

 1000

 10000

1k 2k 4k 8k 16k 32k

T
im

e
pe

r
st

ep
 (

m
s)

Number of processes

Performance on BlueGene/Q (2.8 million atoms)

No LB
Hybrid LB

Figure 7: Performance of LeanMD for the 2.8 million atoms system on Vesta (IBM BG/Q) and Intrepid (IBM BG/P)

 32

 64

 128

 256

 512

 1024

 2048

 64 128 256 512 1024

E
la

ps
ed

 ti
m

e
(s

)

LB Period

Elapsed time vs LB Period (BlueGene/P)

8k cores
16k cores
32k cores

64k cores
128k cores

Figure 8: Execution time of LeanMD: variation in LB Period
for 2.8 million atoms system on Intrepid (IBM BG/P)

Cores No LB (s) Periodic LB (s) Meta-Balancer (s)

8k 666 504 413
16k 336 260 277
32k 171 131 131
64k 122 104 100
128k 73 54 52

Table 4: LeanMD application time with various load balancing
strategies

 0

 10

 20

 30

 40

 50

 60

 2048 4096 8192 16384 32768

T
im

e(
m

s)

Number of processes

LeanMD Checkpoint Time on BlueGene/Q

2.8 million
1.6 million

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2048 4096 8192 16384 32768

T
im

e(
m

s)

Number of processes

LeanMD Restart Time on BlueGene/Q

2.8 million
1.6 million

Figure 9: Checkpoint and restart of LeanMD for a 2.8 million atoms system on Vesta (IBM BG/Q)

strate two important checkpointing mechanisms provided by
Charm++ - checkpointing to disk for split execution and
checkpointing to memory for fault tolerance support. As
mentioned earlier, selection of a checkpointing scheme in
Charm++ is as simple as making a different function call.

6.1.3 Dense and Sparse Chare Arrays
Indexed collection of objects in Charm++ provide an el-

egant and easy to understand abstraction for representing
dissimilar but related work units. Different phases and com-
putation in an application can be assigned to different chare
arrays. Cells are a dense 3D chare array that represent a
spatial decomposition of the 3D simulation space. They are
responsible for sending positions and collecting the forces for
their atoms. Computes, on the other hand, form a sparse
6-dimensional array of chares. Such a representation makes
it convenient for a pair of cells with coordinates (x1, y1, z1)
and (x2, y2, z2) to use a compute with coordinates (x1, y1,
z1, x2, y2, z2) to calculate forces for their atoms.

6.1.4 Ability to run variable size jobs
: Charm++ enables users to run applications on any num-

ber of cores without any restrictions on the size or shape of
the processor partitions that are used. It also allows an ap-
plication to checkpoint for a particular number of processors,
and restart on a different number of processors. Addition-
ally, it provides the freedom to choose a convenient number
of work units, depending on the simulation, independent of
the number of cores the application is run on. Note that
this freedom does not come at the expense of performance
which either improves or follows the general trend seen in
the more restricted environment.

6.1.5 Communication Libraries
Charm++ provides a set of communication libraries which

supports efficient multicast and reduction operations. In
each iteration of LeanMD, the atoms contained in a cell are
sent to every compute that needs them. Also, the resul-
tant forces on atoms in a cell are obtained by a summation
of the forces calculated by each compute that received those
atoms. LeanMD exploits the ability of the runtime to gener-
ate efficient spanning trees over arbitrary sets of processors.
In Charm++, creation of such spanning trees is performed
dynamically using asynchronous message passing without
imposing a global barrier.

6.2 Performance
We present performance numbers for LeanMD on two ma-

chines: 1) Vesta - an IBM Blue Gene/Q installation at ANL,
and 2) Intrepid - an IBM Blue Gene/P installation at ANL.
LeanMD was run using a molecular system that consist of
2.8 million atoms distributed in a uniformly random manner
in the space.

We experimented within a range of LB periods (50, 200,
500, . . ., 2000) to find the period at which periodic load
balancing gives the best performance. Figure 8 shows the
application run time using these LB periods on various core
counts. If the load balancing is done very frequently, the
overheads of load balancing overshoots the gains of load bal-
ancing, and results in bad performance. On the other hand,
if load balancing is done very infrequently, the load imbal-
ance in the system reduces the gains due to load balancing.

In Table 4, a comparison of total execution time of LeanMD

for the following three cases is presented - without load bal-
ancing, best periodic load balancing and Meta-Balancer. We
observe that in all the cases Meta-Balancer either improves
the best performance obtained by periodic load balancing,
or matches it. Meta-Balancer successfully identifies that
there is an initial load imbalance in LeanMD and hence calls
load balancing at the very beginning. Thereafter, the fre-
quency of load balancing decreases as the change in loads
of individual chare is slow. Given the superiority of Meta-
Balancer, all load balancing decisions were automated using
Meta-Balancer in the remaining experiments.

Figure 7 presents performance results for execution of
LeanMD on Vesta and Intrepid. On Vesta, time per step
decreases linearly as the process count is increased. The
speed up for the runs on Vesta is shown in Figure 6. The
linear decrease in the time per step to 44 ms/step for a 2.8
million atoms system on just 16384 is a result of accurate
automated decision making by Meta-Balancer. On Intrepid,
the scaling results are shown from 2K cores to 128K cores.
It is to be noted that although LeanMD does not scale lin-
early on BG/P for large core counts, the benefits of load
balancing are always seen. On 128K cores, performing load
balancing reduces time per step from 36 ms to 24 ms, which
is a performance gain of 33%.

Figure 9 shows the checkpoint and the restart time for a
2.8 million atoms and a 1.6 million atoms system on Blue-
gene/Q. For the 2.8 million atoms system, as the number
of processes increase from 2K to 32K, the checkpoint time
decreases by 25% from 43 ms to 33 ms. Such a drop is
observed because the checkpoint data size per process de-
creases as the number of processes is increased, and it over-
shadows the communication overheads. Note that the time
to checkpoint decreases slowly after 8K cores when the syn-
chronization overheads becomes the main bottleneck.

The restart time, which is measured from the time a fail-
ure is detected to the point where the applications is recov-
ered and is ready to continue execution, is shown in Fig-
ure 9. Since several barriers are used to ensure consistency
until the crashed processor is recovered, the complexity of
the recovery process is O(logP) (due to the use of reduction
tree for synchronization). The restart time increases from
66 ms on 4K cores to 139 ms on 32K cores for the 2.8 mil-
lion system. Note that the efficiency of the restart process
is partly due to the fact that the double in-memory fault
tolerance protocol allows the application to restart from the
last checkpoint in the local memory. Hence, an application
can restart without a full stop, and thus job turn-around
time and a new job submission are avoided.

6.3 Implementation
In the Charm++ implementation the computation is par-

allelized using a hybrid scheme of spatial and force decom-
position. The three-dimensional (3D) simulation space con-
sisting of atoms is divided into cells of dimensions that are
equal to the sum of the cutoff distance, rc and a margin.
In each iteration, force calculations are done for all pairs of
atoms that are within the cutoff distance. The force calcula-
tion for a pair of cells is assigned to a different set of objects
called computes.

At the beginning of each time step, every cell multicasts
the positions of its atoms to the computes that need them
for force calculations. Every compute receives positions from
two cells and calculates the forces. These forces are sent back



l11
l21 l22

l33
l43 l44

l54 l55
l66
l76 l77

l81 l82 l83 l88
l91 l92 l93 l99


Figure 10: Sparse matrix divided into blocks.

to the cells which update other properties of the atoms. Ev-
ery few iterations, atoms are migrated among the cells based
on their new positions. Structured Dagger is used to control
the flow of operations in each iteration and trigger depen-
dent events. The load balancing framework is invoked peri-
odically after a certain number of iterations to redistribute
computes and cells among the processors. In addition, the
fault tolerance scheme performs a periodic checkpointing. In
the submitted version, the parallel control flow is described
in the run functions of each chare in leanmd.ci. The reduc-
tion for forces computed by computes is in physics.h.

6.4 Specification and Verification
For a pair of atoms, the force can be calculated based on

the distance by,

~F =

(
A

r13
− B

r7

)
× ~r (2)

where A and B are Van der Waals constants and r is the
distance between the pair of atoms. Table 5 lists a set of
parameters and their values used in LeanMD.

Parameter Values

A 1.1328× 10−133

B 2.23224× 10−76

Atoms per cell 700

Cutoff distance, rc 26 Å

Cell Margin 2 Å
Time step 1 femtosecond

Table 5: Simulation details for LeanMD

The benchmark computes kinetic and potential energy
and uses the principle of conservation of energy to verify
that the computations are stable. Users can choose to run
the benchmark for as many timesteps as desired, and verifi-
cation statistics are printed at the end.

7. SPARSE TRIANGULAR SOLVER
Solution of sparse triangular systems of linear equations is

a performance bottleneck in many methods for solving more
general sparse systems, such as many iterative methods with
preconditioners. It is notoriously resistant to parallelism,
however, and existing parallel linear algebra packages ap-
pear to be ineffective in exploiting much parallelism for this
problem. We chose this benchmark to show the ability of
our system for challenging sparse linear algebra computa-
tions. The algorithm we implement is described in detail

1 // if this chare has some diagonal part of matrix
2 if (onDiagonalChare) {
3 // schedule the independent computation with lower priority
4 serial { thisProxy[thisIndex].indepCompute(...) }
5 // ”while” and ”when” can happen in any order
6 overlap {
7 // while there are incomplete rows, receive data
8 while (!finished) {
9 when recvData(int len, double data[len], int rows[len])

10 serial {if(len>0) diagReceiveData(len, data, rows);}
11 }
12 // do serial independent computations scheduled above
13 when indepCompute(int a) serial {myIndepCompute();}
14 }
15 // if chare doesn’t have diagonal part of matrix
16 } else {
17 // wait for x values
18 when getXvals(xValMsg∗ msg) serial {nondiag compute();}
19 // while there are incomplete rows, receive data
20 while (!finished) {
21 when recvData(int len, double data[len], int rows[len])
22 serial {nondiagReceiveData(len, data, rows);}
23 }
24 }

Figure 11: Parallel flow of our triangular solver in Structured
Dagger

elsewhere [10], and a brief summary follows. The matrix is
divided into blocks of columns, as shown with blue, green
and grey colors in Figure 10. Each block is analyzed to find
its independent rows for computation. If there are dense
regions below the diagonal section (purple and orange in
Figure 10), they are divided into new blocks. Each diago-
nal block starts the computation with its independent parts
and waits for required messages from the left. Nondiagonal
blocks wait for the solution values from their correspond-
ing diagonal block, and then start their computation (and
receipt of other messages). This flow is expressed in the
Structured Dagger code of Figure 11.

7.1 Productivity
Using different features of Charm++, we improve both

performance and productivity, comparing to the state-of-
the-art packages such as SuperLU DIST. We implement a

 0.001

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64 128 256 512

So
lu

tio
n

T
im

e
(s

)

Number of Cores

slu_webbase-1M
slu_helm2d03

slu_hood
slu_largebasis

SuperLU_largebasis
SuperLU_webbase-1M

SuperLU_helm2d03
SuperLU_hood

640µs

Figure 12: Performance of sparse triangular solver on In-
trepid (IBM BG/P) for different sparse matrices. Perfor-
mance is also competetive with SuperLU DIST

more complicated algorithm with only 692 total SLOCs,
comparing to 879 SLOCs of the triangular solver in Su-
perLU DIST. For better load balance and overlap of com-
munication and computations, we divide the columns into
many blocks (more than the number of processors) and map
them in round-robin fashion to processors. This perfor-
mance optimization feature is essential for this solver and
managing the blocks manually is burdensome for the pro-
grammer. Thus, virtualization in Charm++ improves pro-
ductivity significantly for this implementation. In addition,
having parallel units independent of the processors and cre-
ating them dynamically allows the solver to adapt to the
structure of the input matrix (create new blocks for denser
nonzero regions) and benefit from more parallelism. Fur-
thermore, message-driven nature of the algorithm matches
perfectly to the Charm++ programming paradigm, so the
overall flow is easily expressed in Structured Dagger with
high performance and less programming cost. As an ex-
ample, doing the same message-driven computation in MPI
would require MPI Iprobe calls that cost both performance
and productivity. Also, easy usage of priorities improves the
performance with minimal programming effort.

7.2 Performance
Figure 12 compares the performance of our implementa-

tion against the triangular solver of SuperLU DIST pack-
age for different matrices on a Blue Gene/P. As shown,
we achieve much better performance and scaling for all the
compared cases. For example, SuperLU DIST is about 18.5
times slower than the best serial performance on 64 cores for
matrix slu helm2d03, whereas our solver achieves a speedup
of more than 48. SuperLU DIST uses a simple 2D decom-
position approach for parallelism, which is inefficient. Our
scaling and performance is made possible by a better algo-
rithm and its effective implementation in Charm++.

7.3 Implementation
In the Charm++ implementation, column blocks are as-

signed to elements of a Chare array and mapped in round-
robin fashion into processors. The denser regions (with
many nonzeros) below the diagonal sections are also divided
into new blocks and new Chare elements are created for
them. Different Chares start their independent computation
but with a lower priority than the messages they receive,
with the intention of accelerating the critical path. Note
that since there are multiple Chares per processor, a Chare
may receive some messages before starting its independent
computation, while other Chares are using the processor. If
there are some subdiagonal Chares corresponding to a di-
agonal Chare, it will multicast its results for them (using
CkMulticast library for faster communication). These mes-
sages have the highest priority in the system, since they
enable new computations and accelerate the critical path.

7.4 Verification
We verify the solution by computing a residual as de-

scribed by the HPL specification.

8. ADAPTIVE MESH REFINEMENT
Traditional AMR algorithms phrase the design in terms

of processors that contain many blocks. Instead, we pro-
mote blocks to first-class entities that act as a virtual pro-
cessor. As the mesh is refined or coarsened in AMR, the

number of blocks will change and traditional algorithms re-
quire synchronization at these points. However, to enhance
productively, we abstract the blocks as a collection that dy-
namically expands and contracts over time. Refinement de-
cisions can then be local to each block and propagated as
far as algorithmically required so blocks are always within
one refinement level of their neighbors. Because remeshing
occurs only at discrete points in the simulation time, instead
of using collective communication that is proportional to the
depth of the recursive refinement, we use a scalable termina-
tion detection mechanism built into our runtime to globally
determine when all refinement decisions have been finalized.
Previous collective methods require O(d) rounds of collec-
tive communication, where d is the refinement and consume
O(P) memory per processor to store the results. By utiliz-
ing termination detection, we consume a negligible amount
of memory and communicate no data. Besides termination
detection, blocks execute completely asynchronously, com-
municating only with neighboring blocks when required.

Traditional AMR implementations store the quad-tree in-
stance on each process consuming O(P) memory and taking
O(logN) time for neighbor lookup. We organize the blocks
into a quad-tree but address each block by their location
in the tree using bit vectors to represent quadrants recur-
sively. It requires only O(#blocks/P) memory per process
and O(1) lookup time. It also frees the programmer from
having to know where the block lies; instead, the underly-
ing runtime system manages the physical locations of each
block and provides direct, efficient communication between
them. The runtime system can then redistribute the blocks
periodically without any change to the logic.

8.1 Implementation
In our implementation, the collection of blocks is orga-

nized as a chare array that is indexed by a custom array in-
dex. This index is a bit vector used to describe the block’s hi-
erarchical location in the quad tree. More information about
the algorithm and implementation is available [11]. The par-
allel control flow is expressed succinctly for the remeshing
algorithm which consists of two phases: reaching the consen-
sus on granularity of each chare in phase 1, and performing
the actual refinement or coarsening in phase 2.

8.2 Performance
We present strong scaling results for a finite-difference

simulation of advection. A first-order upwind method in
2D space was used for solving the advection equation (fig-
ure 13). The benchmark attains efficiencies of 99%, 95%,
65%, 55% at 2k, 8k, 16k and 32k ranks, respectively (fig-
ure 14a) when the dynamic depth of the mesh is allowed
to vary from 5 to 15. In order to evaluate our remeshing
algorithm, we graph the distribution of remeshing latencies
(Figure 14b) of each block. The remeshing latency is the
time spent in remeshing without any computation overlap,
calculated as the duration between the last processor start-
ing remeshing and the beginning of the next time step.

9. CONCLUSION
Charm++ is a general-purpose parallel programming paradigm

capable of high performance, and suitable for a wide spec-
trum of parallel algorithms. Over the years it has presented
abstractions and semantics that are have evolved as general-
izations of successful domain-specific solutions. The bench-

Figure 13: AMR benchmark: example simulation of a circular fluid advected by a constant velocity field. From left to right,
the figure displays the fluid density after 2, 572, and 1022 iterations respectively. The white squares demonstrate how the
mesh is evolving over time.

 0.1

 1

 10

 100

 256 512 1k 2k 4k 8k 16k 32k

T
im

es
te

ps
 /

se
c

Number of Ranks

IBM BG/Q Min−depth 4
IBM BG/Q Min−depth 5

(a) Timesteps per second strong scaling on IBM BG/Q with
a max depth of 15.

 0

 5

 10

 15

 20

 25

 30

 35

 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k

R
em

es
hi

ng
 L

at
en

cy
 T

im
e

(m
s)

Number of Ranks

Depth Range 4−9
Depth Range 4−10
Depth Range 4−11

(b) The non-overlapped delay of remeshing in milliseconds on
IBM BG/Q. The candlestick graphs the minimum and max-
imum values, the 5th and 95th percentile, and the median.

Figure 14: Performance results for the AMR benchmark.

marks presented here do not use any domain-specific lan-
guages tailored to the problem. However, it is possible to
envision domain-specific languages or targeted, parallel ab-
stractions deployed atop this general model for further pro-
ductivity benefits. Our implementations should underscore
the productivity impact of the programming model and the
benefits of the approaches we have discussed in section 2.

10. READING ORDER
We suggest the following reading order, as a progressive

introduction to the various features of Charm++ used.

Global FFT.

1. main.ci – contains control flow for the driver

2. main.cc – contains serial code and initialization routine

3. fft.ci – contains control flow for FFT calculation

4. fft.cc – contains all serial code for doing an FFT

5. data.cc – contains the the data initializer, container,
and residual calculation routine

Molecular Dynamics.

1. leanmd.ci – contains the parallel control flow; focus on
run() function of each chare.

2. Cell.cc – contains important functions of Cell; focus on
sendPositions() and updateProperties().

3. Compute.cc – interact() function that does the force
computation

4. Main.cc – start point of application; invokes run()

Sparse Triangular Solver.

1. sparse solve.ci – contains the parallel control flow; focus
on start() function.

2. sparse solve.C – reads and analyzes input matrix, ini-
tializes solver and verifies solution

Random Access.

1. randomAccess.ci – contains chare, group, and entry
method declarations

2. randomAccess.cc – contains the driver, rng, table up-
date sends / receives, and verification code

Dense LU Factorization.

1. lu.ci – Control flow for the factorization and solve pro-
cess is described here, starting from the steps that
every block executes, then proceeding to the factor-
ization steps taken by blocks in different active panel
positions (above diagonal, below diagonal, on diago-
nal). The methods used during solving and startup
follow. Implementations of sequential methods called
from lu.ci can be found in order of reference in lu.C.
These include the data copying and sending used in
pivoting, and routines to set up BLAS calls.

2. mapping.h – Some data distributions available for use
with the factorization/solver library. These can be
set independently of the algorithm’s computation and
communication logic.

3. benchmark.C – Setup and validation code.

4. scheduler.C – Logic to adaptively fetch remote data and
schedule block computations while remaining within
memory constraints. Also tracks when latency-sensitive
active panel work is occurring in order to defer bulk
trailing updates.

AMR.

1. advection.ci – contains the parallel control flow for the
remeshing algorithm

2. Advection.C – contains the methods that describe the
local refinement propagation algorithm and decision-
making state machine

3. QuadIndex.C – contains the data type for indexing the
parallel collection via a hierarchical bit vector

Acknowledgements
Results presented here were obtained via experiments on In-
trepid (IBM BG/P ALCF), Vesta (IBM BG/Q ALCF), and
Jaguar (Cray XT5, OLCF). We used resources of the Ar-
gonne Leadership Computing Facility at Argonne National
Laboratory, and the Oak Ridge Leadership Computing Fa-
cility at Oak Ridge National Laboratory. These were sup-
ported by the Of̈ıň ↪Ace of Science of the Department of En-
ergy under contracts DE-AC02-06CH11357 and DE-AC05-
00OR22725, respectively.

11. REFERENCES
[1] L.V. Kalé and S. Krishnan. CHARM++: A Portable

Concurrent Object Oriented System Based on C++.
In A. Paepcke, editor, Proceedings of OOPSLA’93,
pages 91–108. ACM Press, September 1993.

[2] L. V. Kale and Milind Bhandarkar. Structured
Dagger: A Coordination Language for Message-Driven
Programming. In Proceedings of Second International
Euro-Par Conference, volume 1123-1124 of Lecture
Notes in Computer Science, pages 646–653, September
1996.

[3] Laxmikant V. Kale. Some Essential Techniques for
Developing Efficient Petascale Applications. July 2008.

[4] Harshitha Menon, Nikhil Jain, Gengbin Zheng, and
Laxmikant V. Kalé. Automated load balancing
invocation based on application characteristics. In
IEEE Cluster 12, Beijing, China, September 2012.

[5] Jonathan Lifflander, Phil Miller, Ramprasad
Venkataraman, Anshu Arya, Terry Jones, and
Laxmikant Kale. Mapping dense lu factorization on
multicore supercomputer nodes. In Proceedings of
IEEE International Parallel and Distributed
Processing Symposium 2012, May 2012.

[6] Jonathan Lifflander, Phil Miller, Ramprasad
Venkataraman, Anshu Arya, Terry Jones, and
Laxmikant Kale. Exploring partial synchrony in an
asynchronous environment using dense LU. Technical
Report 11-34, Parallel Programming Laboratory,
August 2011.

[7] Abhinav Bhatele, Sameer Kumar, Chao Mei, James C.
Phillips, Gengbin Zheng, and Laxmikant V. Kale.
Overcoming scaling challenges in biomolecular
simulations across multiple platforms. In Proceedings
of IEEE International Parallel and Distributed
Processing Symposium 2008, April 2008.

[8] Chao Mei, Yanhua Sun, Gengbin Zheng, Eric J.
Bohm, Laxmikant V. Kalé, James C.Phillips, and
Chris Harrison. Enabling and scaling biomolecular
simulations of 100 million atoms on petascale machines
with a multicore-optimized message-driven runtime. In
Proceedings of the 2011 ACM/IEEE conference on
Supercomputing, Seattle, WA, November 2011.

[9] Michael A. Heroux, Douglas W. Doer̈ıňĆer, Paul S.
Crozier, James M. Willenbring, H. Carter Edwards,
Alan Williams, Mahesh Rajan, Eric R. Keiter,
Heidi K. Thornquist, and Robert W. Numrich.
Improving performance via mini-applications.
Technical report, Sandia National Laboratories,
September 2009.

[10] Ehsan Totoni, Michael T. Heath, and Laxmikant V.
Kale. Structure-adaptive parallel solution of sparse
triangular linear systems. October 2012.

[11] Akhil Langer, Jonathan Lifflander, Phil Miller,
Kuo-Chuan Pan, , Laxmikant V. Kale, and Paul
Ricker. Scalable Algorithms for Distributed-Memory
Adaptive Mesh Refinement. In Proceedings of the 24th
International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD 2012).
To Appear, New York, USA, October 2012.

	Summary
	Submitted Benchmarks
	Demonstrated Capabilities

	Programming Model
	Salient Features
	Object-based
	Message-Driven
	Over-decomposed
	Runtime-Assisted

	Interface Definitions
	Describing Parallel Control Flow
	Demonstrated Capabilities
	Automated Dynamic Load Balancing
	Checkpointing Application State
	Tolerating Process Failures
	Interoperating with MPI
	Nonblocking Collective Communication

	Global FFT
	Performance
	Implementation
	Interoperable with MPI

	Verification

	Random Access
	Productivity
	Communication Libraries
	Automatic Topology Determination

	Performance
	Implementation
	Verification

	Dense LU Factorization
	Productivity
	Composable Library
	Flexible Data Placement
	Block-Centric Control Flow
	Separation of Concerns

	Performance
	Adaptive Lookahead
	Asynchronous Collectives

	Implementation
	Data Distribution
	Asynchrony and Overlap
	Block Scheduler

	Verification

	Molecular Dynamics
	Productivity
	Automatic Load Balancing with Meta-Balancer
	In-disk and in-memory Checkpointing
	Dense and Sparse Chare Arrays
	Ability to run variable size jobs
	Communication Libraries

	Performance
	Implementation
	Specification and Verification

	Sparse Triangular Solver
	Productivity
	Performance
	Implementation
	Verification

	Adaptive Mesh Refinement
	Implementation
	Performance

	Conclusion
	Reading Order
	References

