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Abstract
Termination detection is relevant for signaling completion (all pro-
cessors are idle and no messages are in flight) of many operations in
distributed systems, including work stealing algorithms, dynamic
data exchange, and dynamically structured computations. In the
face of growing supercomputers with increasing likelihood that
each job may encounter faults, it is important for high-performance
computing applications that rely on termination detection that such
an algorithm be able to tolerate the inevitable faults. We provide
a trio of new practical fault tolerance schemes for a standard ap-
proach to termination detection that are easy to implement, present
low overhead in both theory and practice, and have scalable costs
when recovering from faults. These schemes tolerate all single-
process faults, and are probabilistically tolerant of faults affecting
multiple processes. We combine the theoretical failure probabilities
we can calculate for each algorithm with historical fault records
from real machines to show that these algorithms have excellent
overall survivability.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel & distributed programming; D.4.5 [Relia-
bility]: Fault-tolerance

Keywords Termination Detection, Fault Tolerance

1. Introduction
As parallel programs scale to larger systems, the occurrence of
faults becomes increasingly likely to impact their execution [9]. At
the same time, the popularity of distributed parallel programming
systems that implement high degrees of dynamic behavior, such
as asynchronous tasks [1], work stealing [4, 11, 12], and message-
driven execution [8, 18, 19], are increasing. Unlike in bulk syn-
chronous parallel programs, and even in dynamic data exchanges
within BSP programs [7], there is often no clear global indication
of when some particular distributed computation is complete. Thus,
they instead rely on termination detection algorithms to provide
that indication.

Termination in a distributed system is the state in which all pro-
cesses are idle, and no message is in flight that may cause a process
to become active [3]. There are many different approaches to termi-
nation detection (TD), which have been surveyed by Mattern [13].
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Several researchers have constructed fault-tolerant algorithms for
TD [10, 15, 16]. The past work in the area of fault-tolerant TD has
focused on the problems of arbitrary failures in general distributed
systems. These previous approaches handle failures of nearly the
entire system, but at the cost of substantial complexity and non-
scalable operations when faults occur. For instance, one algorithm
routes and replicates all information used in termination detection
through a constant number of processes, creating a sequential bot-
tleneck that will grow with the system and problem sizes [16].

We approach the problem of fault tolerance (FT) from a dif-
ferent perspective: we should expect to experience faults, and pay
only scalable and local costs to recover from faults that are likely
to occur and unlikely to necessitate job termination. Specifically, in
HPC systems, a large fraction of faults affect only a single node,
and the likelihood of a fault decreases with the number of nodes it
affects [14]. Thus, we explore several schemes to make TD tolerant
of all single-process failures, and probabilistically tolerant of larger
failures. The cost of recovery in our algorithm is very low, scalable
relative to application behavior, and local to the communication
neighborhood of the failed process. For applications whose behav-
ior is scale-invariant [6], our algorithm is scale-invariant as well.
We also show through experiments that our overhead on fault-free
execution is minimal.

The primary contributions of this paper are as follows:

• We describe a new theoretical metric for TD, process fanout,
that is used in analyzing our algorithms (§ 5.2).
• We characterize the (in)applicability of various fault-tolerant

TD mechanisms to HPC applications (§ 3).
• We describe a series of three FT termination detection mecha-

nisms (INDEP, RELLAZY, & RELEAGER) that present low the-
oretical overhead (both process-optimal and equal to or better
than the cost of the message-optimal termination detector itself)
on fault-free execution and do not impose non-scalable costs
when recovering from faults (§ 5, § 6).
• We relate our algorithms’ failure probabilities to fault data from

real systems, to demonstrate their high practical survivability
(§ 5.4, § 6.4, Table 1).
• We provide empirical measurements showing that the overhead

costs of these schemes in a highly-scalable parallel runtime are
low in practice (§ 7).

2. Background: Parental Responsibility
Termination Detection

In constructing our fault tolerant termination detection algorithms,
we build on the seminal work of Dijkstra and Scholten in defin-
ing the parental responsibility approach to termination detection [3,
13]. Our algorithms are constructed in terms of extensions to their
original scheme. In this section, we introduce a concrete implemen-



tation of their algorithm, the invariants that they proved it obeys,
and how those invariants provide for its correctness. We omit proofs
of these invariants, since they can be found in their paper.

The computation is distributed among processes in a system. It
is assumed to start at a particular root process which will eventu-
ally signal termination. All other processes are initially idle, or pas-
sive, and cannot be activated except by receiving a message from
an already active process. This structure is generally known as a
diffusing computation [3].

The general intuition of parental responsibility termination de-
tection is that every message the application sends (also referred
to as basic or primary messages) will eventually be acknowledged,
and when all messages have been acknowledged, then termination
is detected. The key to detecting termination using message ac-
knowledgment is that some acknowledgments cannot be sent im-
mediately, but must be delayed until the recipient can be sure that
all work its messages have initiated in the system is complete.

To accomplish this, some processes are characterized as en-
gaged, which means it or some process that was transitively ac-
tivated by it is actively working, and all other processes are unen-
gaged. The root is initially engaged, and all others are initially un-
engaged. An unengaged process becomes engaged upon receiving a
message. An engaged process becomes unengaged when it has pro-
cessed and acknowledged all messages sent to it and all messages
it has sent have been acknowledged.

Every message carries an indication of its origin, denoting for
the recipient who it must acknowledge, and when an unengaged
process receives a message, that sender process becomes its parent:

def gotMsg(Endpoint predecessor):
if (cornet.size() == 0):
parent = predecessor;
cornet.insertParent(parent, 1);

else:
cornet[predecessor].acksOwed++;

Dijkstra and Scholten describe storing the acknowledgments a pro-
cess must send in a structure called a cornet, which distinguishes
the first element placed in it to be removed last, and all other en-
tries can be accessed or removed arbitrarily. In other words, it is
‘very first in, very last out’ and otherwise unordered. The subset
of processes that are engaged form a directed tree determined by
their parents, which is called the engagement tree. We describe an
engaged process with parent p as engaged to p.

As processes consume messages that they receive, they may
send messages to other process. That creates a debt of acknowledg-
ments that must be repaid before the process can disengage, stored
in D, which is initially zero:

def willSendTo(Endpoint successor):
D++;

When these messages are acknowledged, the debt is reduced:

def gotAck(Endpoint successor, unsigned int count):
D −= count;
tryDisengage();

Once a process consumes a message, the process gains credit
which can be used to acknowledge a message, stored in C, which
is initially zero:

def processedMsg():
C++;
tryAck();
tryDisengage();

With credit in hand, it is possible that the process may safely ac-
knowledge some messages. The process checks whether it has con-
sumed enough messages to acknowledge some source other than

its parent (chosen arbitrarily), and if so, transmits that acknowledg-
ment and reduces its available credit:

def tryAck():
if (cornet.size() <= 1): return;
Endpoint predecessor = cornet.chooseNonParent();
int a = cornet[predecessor].acksOwed;
if (C >= a):
C −= a;
@predecessor { gotAck(self, a) };
cornet.remove(predecessor);

We use the notation @proc { foo(); } to indicate sending a
message to process proc asking it to execute the enclosed code.
These messages are assumed to be processed between basic mes-
sages, and not in a preemptive manner, such as in an interrupt.

When a process has no one left to acknowledge but its parent, it
may try to disengage:

def tryDisengage():
if (cornet.hasNonParent()) return;
if (D == 0 && C == 1):
if (isRoot()) rootTerminated();
else:
@parent { gotAck(self, 1); }
cornet.clearParent();

C = 0;

In order to do so, all messages it sent must have been acknowledged
(D = 0), and the only acknowledgment debt it still owes must be
to its parent (C = 1).

INVARIANT 1. Cp ≥ 0 ∧Dp ≥ 0

Both accounting variables are non-negative on all processes.

INVARIANT 2. Process p being engaged is equivalent to∑
pred∈cornetp cornet[pred].acksOwed > 0

INVARIANT 3. Dp > 0→ process p is engaged.

A process must be engaged in order to send messages, and thus
increase D above zero.

During execution, we denote the number of messages the ap-
plication sends by M . The Dijkstra-Scholten algorithm sends an
additional O(M) messages to accomplish its purpose.

The correctness of this TD algorithm is defined by two prop-
erties: it does not detect termination while any process is still en-
gaged, and it detects termination when all processes have disen-
gaged. For purposes of fault tolerance, we generalize this correct-
ness to mean that the algorithm does not detect termination while
any process is still engaged, and it either detects termination when
all surviving processes have disengaged or reports a fatal error
when it can no longer determine when that has occurred. When
faults occur, it is still the application’s responsibility to determine
what work was lost in the fault and how to address that loss.

3. Related Work
The goal of the present effort is to describe an algorithm that is
scalable – no single process or narrow subset of processes should be
burdened with work that grows disproportionately from the effort it
expends in executing the client application. Existing algorithms do
not satisfy these desires, either during fault-free execution or during
fault recovery.

Venkatesan’s algorithm designates a number of ‘leader’ pro-
cesses that are responsible for declaring termination [16]. To toler-
ate k-process faults, it must have at least k+1 leaders. Each of those
leaders receives termination detection signals from all of the pro-
cesses in the system, and must store and simulate the state of all of



those processes to track when they have terminated. This presents a
clear sequential bottleneck, and a potential memory overload, that
is impractical in a high performance computing environment.

The protocol described by Lai and Wu [10] avoids all overhead
during fault-free execution. However, in the event of a fault, ev-
ery surviving process communicates directly with a designated root
process. While the total number of messages necessary does not
scale beyond the system’s scale, the root process becomes a se-
quential bottleneck that will take O(N) time to receive these mes-
sages, process them, and respond. As systems scale up, this will
lead to recovery taking longer than the time between failures, and
thus ultimately does not achieve its goal.

Much recent research in fault-tolerant parallel computing has
focused on algorithmic fault tolerance [6]. This approach does not
generically try to make entire parallel applications fault-tolerant,
but instead addresses itself to single component algorithms and li-
braries, with the expectation that these can later be composed to
construct applications that derive their fault tolerance from that of
the underlying pieces. Algorithmic fault tolerance has gained par-
ticular traction in numerical linear algebra [2], where the problems
have structural characteristics that provide low-cost recovery mech-
anisms. Our work can be viewed as providing a fault-tolerant ver-
sion of a scalable termination detection component, which can be
readily integrated with other resilient components.

One particular environment where the need for fault-tolerant
termination detection appears is work stealing with idempotent up-
dates to global data [12]. That paper describes a mechanism to write
distributed work stealing code that reads and writes global array
structures, which are commonly used in computational chemistry
applications. The work stealing mechanism provides load balance
across the system, and relies on a termination detector to determine
when there is no work left in the system. The tasks are arranged and
programmed such that their execution is idempotent with respect to
the global data. Thus, when a process fails, any potentially affected
tasks are simply re-executed. The work stealing machinery main-
tains sufficient records to identify the subtrees that were stolen by
a failed process, and can restart them. The system described in that
paper is implemented in terms of a termination detector that is not
itself fault tolerant. Thus, while it can be shown to survive simu-
lated faults, it was not suitable for production use. We provide the
necessary implementation of a fault-tolerant termination detector,
and measure its overhead using a similar set of benchmarks.

4. System Model
In describing a fault-tolerant termination detection scheme, we
make a number of assumptions about the parallel computer and
interconnection network that it will run on. We do not rely on
synchronized delivery of messages between sender and receiver,
but instead let processes transmit message asynchronously and
obliviously. The network may then deliver these messages in any
order. We assume the network itself does not fail, or that such
failures are accepted as leading to complete job failure.

We require a sort of ‘network send fence’ that permits us to con-
clude that a particular message has been successfully transmitted
(but not necessarily received or processed) before sending another.
This is a weaker assumption than some other schemes that depend
on transmitting pairs of messages simultaneously [16]. However, a
network satisfying such an assumption meets our own as well.

We assume that failures are fail-stop - i.e. failed processes
do not recover [5], and do not behave maliciously (no byzantine
failures). We make no assumption regarding process replacement
after failure, since a fresh process is free to engage just like the
initial set of processes do, by receiving a message.

In the event of a failure, we require two things of the underlying
system. The first is that communication partners of failed processes
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Figure 1: The INDEP protocol (§ 5) handles independent failures:
k1, k2 . . . kn can all fail simultaneously as long as they do not
communicate.

receive notifications of the failure, so that they can react accord-
ingly. In a closely-coupled HPC environment, it is reasonable to
assume that an out-of-band mechanism such as the system’s re-
source manager can provide this facility. The second requirement
is a primitive to ensure that all messages sent by a failed process to
a particular recipient have been received. Venkatasan refers to this
facility as fail-flush [16].

To avoid undue complication of the descriptions, we do not ex-
plicitly address the failure of the root process. This could be miti-
gated in the protocol by electing or designating a backup process to
take its place, which can be done with low execution-time cost but
substantial implementation complexity. It would also be possible
for the (assumed reliable) environment to take on the root’s respon-
sibilities, either initially, or in the event of its failure. As a single
process in a prospectively large system, randomly distributed faults
are unlikely to include the root process. For it to be worthwhile
for our protocols to handle root failure, any parallel application or
programming environment using our scheme must also be tolerant
of the root failing, which imposes a similar complexity burden on
them as well. Given our starting assumption that some unrecover-
able faults are acceptable, as long as they are rapidly and reliably
reported, we thus do not consider this vulnerability to be of funda-
mental importance.

5. INDEP: Tolerating Independent Failures
Our general approach to making these termination detection algo-
rithms fault tolerant is to make potential parents of a failed process
responsible for retaining and exploiting the information necessary
for recovery. Who these children are and how they relate to a failed
process is communicated through additional control signals. When
processes fail, their parents delay termination until recovery has
progressed far enough to take stock of their children and reattach
them to the engagement tree as appropriate. If that is found to be
impossible, our protocols reliably and rapidly report overall failure.

We begin by describing INDEP, a protocol for recovery from
the failure of any single process or sets of independent processes
that are not related by direct communication, as shown in Figure 1.
These cases are always recoverable, and the completion of the
recovery process is clearly delineated by the receipt of particular
control signals between surviving processes.

The intuition behind INDEP is that any time a process p is about
to send a message to a new recipient pc, p ensures that its grandpar-
ent pp will receive a message informing it of the possibility that pc
was a child of p should p fail. When a failure of p occurs, pp will
exchange messages leading it to adopt the children pc as its own.

5.1 Modifications to Fault-Free Execution
When sending a message, each process records how many unac-
knowledged messages it has sent to each destination. For messages



gp

p

c1 c2 cf

a' a''

(i) cf

(ii)

p: { c1, c2 }

... ... ...

(a) Extra messages sent during forward execu-
tion: p sends a potentialGrandChild mes-
sage (i) before the first application message it
sends to a new recipient (ii).
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(b) The recovery process: processes that sent messages
to the failed process p are notified. The parent, gp,
contacts its potential grandchildren to see which were
orphaned by the failure and should be adopted as its
children.
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p: { }

... ... ...

(c) The state after recovery: All processes have
written off their debts to or from p. Depending
on the responses from (c1, c2, and cf ), gp will
modify its deficit by the count of its new children
so it appropriately waits for them to finish.

Figure 2: The INDEP fault tolerance protocol.

that might engage a child, it also notifies its parent of the new
prospective child (Figure 2a). This is where we depend on a net-
work fence – if the child process receives the application message,
that child’s potential grandparent process must have been sent a
notice regarding its presence.

def willSendTo(Endpoint successor):
D++;
successors[successor].acksOwed++;
if (successors[successor].acksOwed == 1):
@parent { potentialGrandchild(self, successor) };
requestFailureNotice(successor);
sendFence();

Because of the potential fault recovery responsibility that comes
with sending a message to a process, the termination detector must
request failure notifications regarding that process as well.

During forward execution, the grandparent processes record
these notifications on a per-child basis:

def potentialGrandchild(Endpoint child, Endpoint gc):
successors[child].potentialChildren.insert(gc);

During fault-free operation, the grandparents’ records are never
consulted. When process p receives an acknowledgment from pro-
cess q, p’s corresponding debt counter for messages to q is decre-
mented. When q’s debt goes to 0, indicating disengagement, its
failures are no longer of interest, and any potential grandchildren
it might have introduced are forgotten, since they are guaranteed to
have previously disengaged from the child process:

def gotAck(Endpoint successor, unsigned int count):
D −= count;
successors[successor].acksOwed −= count;
if (successors[successor].acksOwed == 0):
dropFailureNotice(successor);
successors.erase(successor);

tryDisengage();

We also introduce a counter of pending recovery events named
pendingRecoveryEvents, which is initialized to zero. The con-
dition guarding disengagement must additionally check that this is
zero. Its use is described below.

LEMMA 5.1. In the absence of faults, termination is detected cor-
rectly.

Proof. The additional messages and data structures are irrelevant,
with the exception of the pending recovery event counter. This is
initialized to zero and is never changed during fault-free execution.
Thus, when termination would otherwise occur, the added condi-
tion that this counter is zero is satisfied. Therefore, we conclude that
there is no change in the fault-free operation of the fault-tolerant
variant of our termination detector, and the original algorithm’s
proof of correctness continues to hold. ut

5.2 Fanout Bound
For every process, there is some number of other processes that it
will send messages to over the course the computation. In scalable
applications, this number is typically limited, and should not grow
with the size of the computer system or the problem being solved.
In particular, within a given phase or step of a computation that
is run with termination detection, each process is only likely to
communicate with a reasonably small subset of the system, and
we refer to the size of the largest such subset as the application’s
fanout during that phase or step. For example, in preparing the data
exchange necessary to obtain column data in sparse matrix-vector
multiplication, this would be the number of processors having
entries on that column [7].

We use the fanout, denoted f , to describe the bounds on our
algorithms’ costs. Note that f ∈ O(M) – it can never exceed
the number of messages the application itself sends. In practice,
it may be much lower. Where that is the case, we will see that our
FT overheads scale more slowly than the cost of TD itself. The
fanout is also bounded by the number of processes – it is impossible
for any one process to send to more destinations than exist in the
system.

Fault-free execution of INDEP sends additional control mes-
sages corresponding to the cumulative fanout of the system, dis-
tributed according to the engagement structure that the applica-
tion’s messages create. Each process stores its potential grandchil-
dren in a structure with entries corresponding to its own fanout,
and each entry lists grandchildren according to that child’s fanout.
Thus, it will occupy space that is O(f2) in the worst case. These
structures can be implemented as hash tables, allowing constant-
time lookup.

5.3 Fault Recovery
When a fault occurs that kills process pf , the processes that have
interacted with it cooperate to use the extra information they have



stored to effectively ‘contract’ around its vertex in the engagement
tree (Figure 2b). All of the processes that sent primary messages to
pf will receive notifications from the environment, indicating the
failure and complete flushing of messages. These processes can all
write off any debt pf owed them, and ignore further acknowledg-
ments from pf :

def failureHappened(Endpoint failedProcess):
if (successors.contains(failedProcess)):
D −= successors[failedProcess].acksOwed;
foreach (Endpoint grandchild

: successors[failedProcess].potentialChildren):
pendingRecoveryEvents++;
willSendTo(grandchild);
@grandchild { tryEngageGrandchild(self, failedProcess) };

successors.erase(failedProcess);

One of the processes that sent pf messages will discover that it was
the failed process’s parent, and is thus responsible for waiting on
the termination of its children. The recovery counter is increased by
the number of potential grandchildren that must be dealt with (zero
for non-parent processes). The parent pg informs each of them that
pf has died and tries to engage them.

Each of pf ’s potential child processes will receive a message
from the failed process’s parent pg notifying it of the failure. All
of these processes write off any acknowledgment debt they owed
pf . If pf was their parent, they then adopt pg as their parent, and
replace their debt to pf with a parental debt of 1 to pg . They then
each send a message to pg indicating what new debt, if any, they
owe it, and any new potential grandchildren that pg must be aware
of as a result of having adopted an additional child.

def tryEngageGrandchild(Endpoint gp, Endpoint failedParent):
if (cornet.contains(failedParent)):
C −= cornet[failedParent].acksOwed;
cornet.erase(failedParent);

if (failedParent == parent):
parent = gp;
C++;
cornet.insertParent(parent, 1);

@gp { replyToGrandparent(self, 1, keys(successors)) };
tryDisengage();

else:
// Potential grandparent expects a response, even if we don’t

engage it
@gp { replyToGrandparent(self, 0, {}) };

When pg receives these responses, it decrements the recovery
counter, notes any additional debt new children owe it, and records
their associated potential grandchildren:

def replyToGrandparent(Endpoint child, unsigned int debt,
set<Endpoint> children):

if (debt != 0):
D += debt;
successors[child].acksOwed += debt;
successors[child].potentialChildren.insert(children);

pendingRecoveryEvents−−;
gotAck(child, 1);

As each potential child’s response is received, there is the possibil-
ity that termination has been reached, and so we test for it.

Note that there is a potential race between an affirmative re-
sponse from a former child of pf to pg and a subsequent disen-
gagement acknowledgment message from that child to pg . Without
treating each outstanding potential child as a message send, this
race may cause the value of D on pg to reach zero unexpectedly,
or even become negative. By incrementing and decrementing D

along with the recovery counter, we ensure that Dijkstra’s D > 0
invariant is maintained.

LEMMA 5.2. In the presence of faults, this system does not report
termination when it has not occurred.

Proof. Consider a process pf that fails while it is engaged to parent
pp. After the failure, pf is effectively passive, but any processes
that received messages from it may still be active. When the failure
notification reaches pp, it is aware of all such potential recipients,
because of the send fence before the first message to each new
recipient and the fail-flush before the failure notification. If pf had
no potential children, then its subtree of the engagement tree is
complete at its failure, and pp can disengage when its other debts
are repaid. If pf had children, pp is prevented from disengaging
until each of those children responds by the non-zero recovery
counter. There are four possibilities for each child’s state when the
message from pp arrives:

1. It is passive and not engaged: it responds indicating that it
presents no cause for pp to wait before disengaging.

2. Engaged to some other process: it responds indicating that
another process is already prevented from disengaging until it
does. Thus, pp does not have to wait on it before disengaging.

3. Engaged to pf : it responds that pp is its new parent, which
causes pp to increase its outstanding debt by 1. This prevents
pp from disengaging until the newly acquired child disengages.

4. Failed: pp is notified of the failure after requesting failure no-
tices regarding it, and aborts the job.

Thus, any process that would have had to disengage before pf could
disengage must disengage or indicate its independence from pp
before pp can disengage. We therefore conclude that termination
cannot be reported prematurely. ut

LEMMA 5.3. In the absence of related-process faults, every sur-
viving process will eventually disengage, and termination will be
detected.

Proof. A failure of a process that is not engaged will not prevent
disengagement of any surviving process.

Every engaged failed process pf has a parent pp, some (possibly
empty) set of other processes that sent it messages, and some
(possibly empty) set of other processes to which it sent messages.
The parent pp and all of the other senders will receive failure
notifications regarding pf , allowing them to disregard its debt. All
of the non-parents are then free to disengage despite pf ’s failure.

The parent pp must not disengage until all potential children of
pf are definitively engaged to another parent or have themselves
disengaged. By the hypothesis, all of these processes are alive to
receive and respond to the parent’s query.

Their responses are as follows:

1. Not engaged: they do not engage as a result of the query, and
their reply releases the obligation pp had to them.

2. Engaged to some process besides pf : they dispose of their debt
to pf and ignore further messages that may arrive from it,
allowing them to eventually disengage from their own parent
when appropriate, and their reply releases the obligation of pp.

3. Engaged to pf : As above, their past interaction with pf is
written off and will not impede their eventual disengagement.
Their reply to pp indicates that when they disengage, their
acknowledgment to pp will satisfy its obligation to wait for
them.



Thus, all recipients of messages from pf will be able to disengage
when appropriate. When those that were engaged to pf disengage,
they will free pp to disengage as well. ut

LEMMA 5.4. In the presence of a fault involving a process psend

and a process precv to which psend has sent a message, the system
will report failure.

Proof. If psend has sent messages, then it is engaged to some
parent pp, and has sent notifications about all potential precv to
pp. Thus, after flushing from psend, pp will have knowledge of
the complete set of potential precv , and will attempt to contact
each of them. These contact attempts will either garner an eventual
response, indicating that child is not involved in a related-process
fault, or an eventual failure notice will reach pp, at which point it
will abort. ut

THEOREM 5.5. INDEP is a correct fault-tolerant termination de-
tection protocol.

Proof. By lemmas 5.1, 5.2, 5.3 and 5.4, INDEP is correct. ut

5.4 Survival Probability
An application using INDEP can survive the concurrent failure of
any processes that do not share any communication edges between
them. The probability that the protocol can survive the failure of a
uniformly random selected set of processes is given by[(

n−k
f

)(
n−1
f

)]k
where n is the number of processes in the job, k is the number
of failed processes, and f is the application’s fanout [14]. We can
combine this formula with failure records from real systems to pre-
dict the practical survivability of our protocol. Table 1 shows data
from the Cray XT5 system Jaguar at Oak Ridge National Labora-
tory1 in combination with the failure probabilities for the protocols
presented in this paper with an assumed job size of n = 1024.
For each algorithm/fanout-parameter combination, we multiply the
fraction of faults of a given size by the probability that the termina-
tion detector fails to recover from a fault of that size to compute a
failure probability from faults of that size, and subtract the sum of
those probabilities from 100% to calculate the survivability shown.
Other systems for which we have less data available show single-
node faults representing 70%–98%, and conservative survivability
estimates (taking failures of more than 4 nodes as fatal) ranging
from 85% (15% large failures) to 99.98% [14].

The assumption of uniformly distributed faults is an uncertain
one. In applications with communication patterns optimized for
network locality, this may be problematic. In others settings, such
as work stealing, the randomness of the stealing process itself
decorrelates the communication graph from system structure.

5.5 Recovery Costs
When an engaged process pf fails, its parent will (after flushing)
have a complete set of the processes to which pf potentially sent
messages prior to its failure. The parent will send a number of
recovery messages equal to the size of the set of its potential
adoptees, and each of them will send a response message back
to the parent. The size of the potential orphan set is bounded by
the fanout. Thus, INDEP will send O(f) control signals in order to
recover from each failure.

1 Personal communication with Terry Jones, ORNL
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Figure 3: The RELLAZY and RELEAGER protocols handle related
process failures providing parent-child interior pairs do not fail
simultaneously. In the case depicted, any subset of these processes
can fail as long as the failure set does not contain {a, b′} or {a, b′′}.
L1 . . . Ln are exterior processes in the communication graph.

6. Handling Related-Process Failures
We now turn to the problem of faults affecting processes that com-
municated directly before failing. Given some additional informa-
tion conveyed in both basic messages and control signals sent dur-
ing forward execution, the majority of these cases are recoverable
(see Figure 3). The non-recoverable case, in which our algorithm
reliably reports failure, is one in which it appears to a recovering
grandparent that a failed process had a child that was interior to the
communication graph that also failed.

We define an interior process to mean one that has sent mes-
sages to any recipients that have not fully acknowledged them. An
exterior process is any process that is not interior. Interior processes
must be engaged, by dint of invariant 3, and thus must have a well-
defined parent and grandparent. Exterior processes may be engaged
or unengaged; if they are engaged, they are leaves of the engage-
ment tree, since they cannot have sent any message that would
cause a child to engage to them.

The length of the interval in which the failure of a process and an
interior child of that process would be fatal (the vulnerability win-
dow) depends on a tradeoff against additional control signals dur-
ing recovery. In the RELLAZY protocol (§ 6.2), recovery uses the
same control signals as in INDEP, but with fewer multi-process fault
cases ending in failure, and full recovery is achieved when adopted
processes disengage. The RELEAGER protocol (§ 6.3) sends more
control signals than INDEP or RELLAZY, but it achieves full recov-
ery once those control signals are processed.

During forward execution, each process process p sends mes-
sages to its grandparent pp indicating its transitions from exterior
to interior or vice versa. If p and its parent fail concurrently, pp
flushes those messages from p and checks whether it received an
equal number of the two types of messages, or one more interior
than exterior, to determine the condition of p when it failed. As we
will describe, failed exterior processes can be safely written off, but
failed interior processes can not, and are thus fatal.

6.1 Modifications to Fault-Free Execution
In these variants of the protocol, every message carries a note not
just of the sender, but also of the sender’s parent, so that the recipi-
ent knows what process is its grandparent if the sender becomes its
parent. This is necessary because each process now transmits addi-
tional control signals to its grandparent during forward execution.
Those signals convey sufficient information for the grandparent pp
to reconstruct whether the potential grandchild pc was engaged to
a failed child process, and if so, whether pc was also potentially an
interior process.



Nodes Failed 1 2 3 4 5 6 7 8 9 10 11 15 18 26, 86, 126, 338 Survival
Fault % 92.3 3.672 0.942 0.753 0.565 0.094 0.094 0.377 0.094 0.188 0.188 0.282 0.094 4× 0.094 = 0.377 %

INDEP f = 2 0 1.4e-4 1.1e-4 1.8e-4 2.2e-4 5.4e-5 7.4e-5 3.9e-4 1.2e-4 3.1e-4 3.7e-4 9.6e-4 4.3e-4 3.5e-3 99.315
f = 8 0 5.7e-4 4.3e-4 6.8e-4 8.2e-4 2.0e-4 2.7e-4 1.3e-3 4.1e-4 9.6e-4 1.1e-3 2.3e-3 8.6e-4 3.8e-3 98.633

f = 32 0 2.3e-3 1.6e-3 2.4e-3 2.7e-3 5.8e-4 6.9e-4 3.1e-3 8.5e-4 1.8e-3 1.8e-3 2.8e-3 9.4e-4 3.8e-3 97.466
f = 512 0 2.8e-2 9.3e-3 7.5e-3 5.6e-3 9.4e-4 9.4e-4 3.8e-3 9.4e-4 1.9e-3 1.9e-3 2.8e-3 9.4e-4 3.8e-3 93.210

REL* 0 7.2e-5 5.5e-5 8.8e-5 1.1e-4 2.7e-5 3.8e-5 2.0e-4 6.4e-5 1.6e-4 1.9e-4 5.3e-4 2.5e-4 3.3e-3 99.495

Table 1: Distribution of the node counts of concurrent failures on Jaguar, the probability the protocol sees a fault of the given size and fails
to recover, and the probability a 1024-process job survives the distribution of concurrent failures using the various algorithms presented.

When a process sends its first message after engaging or after
all of its recipients have fully acknowledged it, the process informs
its grandparent:

def willSendTo(Endpoint successor):
D++;
if (D == 1):
@grandparent { informGrandparentInterior(self, parent) };
sendFence();

successors[successor].acksOwed++;
if (successors[successor].acksOwed == 1):
@parent { potentialGrandchild(self, successor) };
requestFailureNotice(successor);
sendFence();

There are two places a process might send
informGrandparentExterior. The most aggressive is when it
receives an acknowledgment that brings its outstanding message
count to zero:

def gotAck(Endpoint successor, unsigned int count):
D −= count;
successors[successor].acksOwed −= count;
if (successors[successor].acksOwed == 0):
dropFailureNotice(successor);
successors.erase(successor);

if (D == 0):
@grandparent { informGrandparentExterior(self, parent) };
sendFence();

tryDisengage();

This creates the shortest intervals in which the failure of both an ap-
parently interior process and its parent would be reported as fatal by
the recovering grandparent process. However, it also creates a po-
tentially large number of additional control signals (up to O(M)),
depending on how aggressively acknowledgments are transmitted.
The other possibility is when it sends an acknowledgment to disen-
gage from its parent, which is alsoO(M) in theory, but likely to be
lower in practice.

Note that in either case, an exterior signal from process pc to
its grandparent pg labeled with its parent pp is always preceded
by a similarly labeled and directed interior message, and two inte-
rior messages with the same label and destination cannot be sent
without a single corresponding exterior signal intervening between
them.

At the point of failure of a process pf , its parent pp must be
able to distinguish whether each of pf ’s message recipients pc was
an interior process engaged to pf , even if pc fails as well. Using
the pairing property between the interior and exterior messages
from pc to pp, pp can compute whether pc was engaged to pf
and interior at the time of its failure by flushing from pc and then
examining the parity between interior and exterior messages. Even
parity indicates that every interior message pc sent was followed by
a exterior message, while odd parity indicates that pc sent one last
interior message that was never balanced by a exterior message.

LEMMA 6.1. In the absence of faults, the related process protocol
detects termination correctly.

Proof. As before, the additional messages and recorded data do
not affect detection of termination when no fault occurs. Thus, the
correctness of the basic algorithm is maintained. ut

6.2 RELLAZY: Lazy Multiprocess Recovery Protocol
The recovery process proceeds as before, but with an increase in
the range of failures that a recovering parent pp can accept from
the children of its failed child pf . In addition to processes that
reply to pp telling of their own non-engagement to pf , pp can
now write off any process pc that fails with even parity of interior
and exterior messages to pp after flushing but hasn’t responded to
the engagement query from pp. This is safe because it guarantees
that pc was either not engaged to pf (it sent no interior/exterior
messages to pp) or it was engaged to pf but had no children of its
own (interior and exterior messages from pc to pp balanced out). If
any pc fails and flushes out odd parity to pp, then pp must report
failure because it cannot contract around a failed process for which
it was newly responsible.

In this setting, each child pd of pc has no knowledge that pp
is its new grandparent, even though pp successfully adopted pc as
its child and learned about all of pc’s children. Thus, if pc were
to fail in concert with one of its children pd, pp would not be
able to safely determine whether pd was an interior process or not,
and thus must conservatively report failure. In order to do this,
pp must keep a record that pc was adopted until pc disengages.
The subsequent failure of such a marked child will be reported as
an error. The window of vulnerability in which the system cannot
uniformly recover therefore extends from the failure of pf through
the disengagement of all its children pc from pp.

LEMMA 6.2. In the presence of faults, RELLAZY does not report
termination when it has not occurred.

Proof. We follow the reasoning of the proof of lemma 5.2, with
a change in the handling of failed children of pf by pp. When
such a child has failed, it is effectively passive for purposes of
termination detection. However, its transmissions prior to failure
determine whether recovering parents will be allowed to terminate,
or report failure. If the interior and exterior messages create odd
parity at pp, then pp reports failure, and so does not allow early
termination. If those message create even parity at pp we are left
with two possible cases:

1. pc was not engaged to pf at the time of its failure: if pc was
still engaged at all, it was to some other process that is respon-
sible for its recovery. That process will not disengage and allow
termination until its recovery around pc is complete. This cor-
responds to case 2 of lemma 5.2.

2. pc was engaged to pf at the time of its failure: the even parity
indicates that it was not an interior process. Thus, it was not
responsible for waiting on any descendants to disengage before
it disengaged. The recovering parent pp has fulfilled its respon-
sibility to delay termination until after pc disengaged, and can
safely disengage without leading to premature termination.

ut



LEMMA 6.3. In the absence of apparent parent/interior-child
faults, every surviving process will eventually disengage, and ter-
mination will be detected.

Proof. Consider each process p that receives failure notifications
regarding a set of processes. For each of those processes, p has
some set of potential grandchildren pc that it must address. The pc
come in the following varieties:

1. Still alive: they respond to the query from p, and the eventual
disengagement of p and these grandchildren is as described by
lemma 5.3.

2. Dead, with the resulting flush of messages providing

(a) Even parity: pc was not engaged to p’s child at the time of
failure, or was so engaged but had no potential children and
so could not be interior. p can safely write them off, as it has
no obligation to await disengagement of any children they
may have had.

(b) Odd parity: the hypothesis that the fault did not involve an
apparent parent/interior-child pair was violated, and p will
report an error.

In all cases satisfying the condition, p and all recipients of messages
from failed processes are therefore allowed to disengage when their
other obligations are satisfied, and termination will be reported. ut

LEMMA 6.4. In the presence of a fault involving a process psend

and an interior process precv which was engaged to psend, the
system will report failure.

Proof. The parent pp of psend will receive a notification that
psend failed with a flush of messages. In the recovery process,
pp will request failure notification from all processes to which
psend sent messages, including precv . By the construction of the
message sending code and the pairing property of the interior and
exterior messages, precv must have transmitted odd parity of these
messages to pp. Upon flushing, pp will observe this odd parity,
conclude that the fault included a parent/interior-child pair, and
report failure. ut

THEOREM 6.5. RELLAZY is a correct fault-tolerant termination
detection protocol.

Proof. By lemmas 6.1, 6.2, 6.3 and 6.4, RELLAZY is correct. ut

6.2.1 Recovery Costs
The recovery communication resulting from a failure in RELLAZY
is the same as in INDEP. Thus, RELLAZY sends at most O(f)
control signals in order to recover from each failure.

6.3 RELEAGER: Eager Multiprocess Recovery Protocol
We now address recovery from failures of the following form:

• a process pf fails, causing its parent pp to initiate recovery,
• a process pc was a child of pf , and is adopted by pp,
• pc sent one or more messages to an exterior process pd before

the failure of pf and subsequent recovery steps, where
• pc and pd subsequently fail concurrently.

As noted earlier, the challenge in this situation is that pp will never
have been sent the information necessary to determine whether
its adopted potential grandchild pd is an interior child of pc or
not. To correct that deficiency, the recovery protocol can exchange
additional signals that convey the necessary information.

This eager recovery protocol variant still begins the same way,
with processes that sent messages to a failed process pf being
informed of the failure and flushing from it, and its parent pp
querying each of its potential grandchildren pc. We depart from the
lazy recovery protocol in that the responses from pc will no longer
be returned immediately. Instead, they send a message to each
of their own potential children pd indicating their new potential
grandparent pp.

Each of those pd respond to pc indicating whether they are
engaged to pc, and if so, whether they are interior. The pd that are
engaged to pc update their grandparent record to point to pp instead
of the now-dead pf . When pc receives all of those responses, it
sends an aggregated response to pp with the list of actually engaged
children and an indicator of which of those children are interior.

When pp receives the response message from pc, the list of
grandchildren is recorded as before, but with the interior bits used
to initialize its view of each grandchild’s interior/exterior parity.
Essentially, this reconstructs the unpaired interior messages that
those pd would have sent to pf before its failure. When pp receives
responses from all of its adopted children pc, the system is no
more susceptible to failure than it was prior to the failure of pf–
the window of vulnerability is closed.

Note that this recovery protocol races with potential disengage-
ment of the affected processes. This race is not only tolerated, but
actually aids resilience. Any process that disengages before the pro-
tocol finishes recovery is one fewer process whose failure will bring
down the entire job.

THEOREM 6.6. RELEAGER is a correct fault-tolerant termination
detection protocol.

Proof. The reasoning of lemmas 6.1, 6.2, 6.3 and 6.4 applies to
RELEAGER as well, and thus RELEAGER is correct. ut

6.3.1 Recovery Costs
Each failed engaged process will cause its parent to send a message
to each of the failed processes’ potential children. Failures among
those children do not increase the message count. Each of the ac-
tual grandchildren sends a message to their own potential children
(i.e. the potential great-grandchildren), and gets a response from
each. The grandchildren then each send a response to the grand-
parent. Each of the grandparent and grandchildren may have O(f)
messages to send, and there may be up to f grandchildren, giving
a total message count bound of O(f2). These messages are dis-
tributed such that each process handles at most O(f) of them.

6.4 Survival Probability
Out of an N -process job, consider a failure of k processes. By
lemma 6.3, the algorithm can survive the failure of any one pro-
cess, as long as its parent does not also fail with it. Out of the failed
subset, consider the probability that a single process v has failed
along with its parent. The number of k-process failure sets contain-
ing v is (

N − 1

k − 1

)
The number of these that also contain v’s parent is(

N − 2

k − 2

)
Thus, the probability that the failure set will contain v’s parent,
given that it contains v, is given by their ratio

k − 1

N − 1
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Figure 4: The overhead of our related-process fault tolerance protocols (RELLAZY or RELEAGER). Each bar shows the ratio of the average
execution time using the protocol vs. average execution time without. Sample size is 24 runs of each application, at each scale, both with and
without our protocol enabled. The whiskers represent the error in the difference of means at 99% confidence, using a Student’s t-test.
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Figure 5: For three benchmarks, the percent of total execution time (in terms of processor-seconds) spent engaged: the time when a process is
interior in the communication graph. For the RELLAZY and RELEAGER schemes, a process and its parent cannot fail simultaneously during
this time or the protocol will not survive the fault. The vertical lines stretch between the minimum and maximum values; the box spans
between the 25th and 75th percentile; the horizontal line spanning the box indicates the median.

The probability that the system survives this process’s failure is
then 1 − (k − 1)/(N − 1). Note that this directly reproduces the
qualitative result that the algorithm always survives single-process
failures (i.e. k = 1 fails with probability 0).

Given that k processes failed, and pessimistically assuming that
none of them shares a parent (i.e. maximizing the cases that would
lead to failure), the probability that the entire system survives is(

1− k − 1

N − 1

)k

As with INDEP, we can combine these probability estimates
with real failure data to determine how resilient the algorithms will
be in practice. The results are shown in Table 1. Unlike INDEP,
RELLAZY and RELEAGER do not become more vulnerable as
fanout increases, because each process may have many communi-
cation partners, but has at most one parent. As the table shows, the
two related-process protocols are more resilient than INDEP even
in the most lenient fanout-2 case.

7. Experimental Results
7.1 Experimental Setup
We performed our experiments on Intrepid, a 40960-node IBM
Blue Gene/P. Each node consists of a four-core 850MHz PowerPC
450 processor and 2 GB of DDR2 memory. We compiled our code
with the IBM XL C/C++ Advanced Edition for Blue Gene/P, V9.0.

Our codes use an active-message-based runtime [17] imple-
mented using MPI primitives with distributed-memory work steal-
ing to balance work between cores during an iteration. We run one
process per SMP node in a multi-threaded configuration, with one
thread per core. One core is used as a server that polls the net-
work and executes active messages. The other three cores maintain

a local deque of tasks that is optimized for efficient remote steal
attempts and local task execution [4, 11].

7.2 Benchmarks
We evaluate our fault tolerance scheme with three benchmarks
that involve parallel task collections. For the N-Queens benchmark
(NQ), each task at depth d recursively tries to place the next queen
at depth d + 1 creating up to N new tasks. At a certain depth
s, a task stops producing more tasks and executes sequentially.
The Hartree-Fock (HF) method is an algorithm from computational
chemistry that forms the basis for several higher-level theories such
as Coupled Cluster theory and Møller-Plesset perturbation theory.
Our benchmark is comprised of the two-electron contribution com-
ponent of Hartree-Fock. The matrices used for the computation
(schwarz, fock, and dens) are distributed using a global address
space and each task reads/writes the necessary portions. Tensor
Contraction Expressions (TCE) constitute the entirety of Coupled
Cluster methods, used in accurate descriptions of many-body sys-
tems in diverse domains. We benchmark a tensor contraction where
the matrices are also distributed in a global address space.

7.3 Fault-free Execution Overhead
Our fault-tolerance protocols incur extra message sends dur-
ing fault-free execution. All three protocols (INDEP, RELLAZY,
RELEAGER) require a given process to send a message to its par-
ent informing it of a potential grandchild before it actually sends
a message to a new child. The related-process failure protocols
RELLAZY and RELEAGER require a process to send a message to
its grandparent before it possibly engages a child by sending it a
message. We measure and plot the overhead of the related-failure
case in Figure 4. The slightly less overhead induced in the INDEP
protocol is statistically indistinguishable from the related-process



case so we omit it. Figure 4 displays the ratio of execution time
using the fault tolerance protocol versus normal execution without
any fault tolerance.

For the NQ benchmark, the overhead is under 0.5% and is
mostly within the error. The NQ benchmark is very well-behaved
since the tasks are fairly uniform and do not access global data. The
HF and TCE benchmarks have higher run-to-run variation, and the
overhead we induce with our protocol is clearly within the error.
7.4 Measuring Exterior Processes
The RELLAZY and RELEAGER protocols can recover from a fault
when the processes that fail do not include a parent/interior-child
pair. Whether a process is an interior child is transient over time:
processes may switch between exterior and interior over the course
of a run depending on the communication patterns of the applica-
tion. For the three benchmarks that are presented, we measure the
amount of time that processes are in the exterior state compared
to the total execution time of the application. The communication
of these applications is primarily driven by the random work steal-
ing employed, but varies depending on the duration of tasks and
parallel slack available in different regions of the computation.

Figure 5 displays the percent of total execution time spent en-
gaged after sending a message, which is an upper-bound on time
spent as an interior process. Recall that a failed process can only
be part of an unhandled related-process fault while it is interior. We
show for all three benchmarks that this percentage of time is un-
der 40 percent, but it is application dependent in terms of scaling
behavior.

8. Conclusion
We have described a new approach to producing a fault-tolerant
termination detection algorithm based on the original parental-
responsibility algorithm described by Dijkstra and Scholten [3].
The three algorithms we describe have worst-case overhead and re-
covery costs measured in terms of the application’s process fanout,
which is upper-bounded by the DS algorithm’s provably-optimal
O(M) bound and by the number of processes in the system. In
practice, especially in scalable HPC applications, it is often much
smaller. Thus, the overhead for making termination detection fault
tolerant is lower than the overhead of termination detection itself.
Additionally, all overhead costs are distributed in a localized, scal-
able manner, avoiding the centralization that makes other fault-
tolerant termination detectors unsuitable for HPC.

Through benchmark results, we have shown that the practical
overhead costs are minimal. We use real system fault data to show
that our algorithms are highly survivable in the face of the faults
they are likely to encounter. Therefore, we conclude that our algo-
rithms are well-suited to large-scale parallel applications.
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