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Abstract—Solution of sparse triangular systems of linear equa-
tions is a performance bottleneck in many methods for solving
more general sparse systems. In both direct methods and iterative
preconditioners, it is used to solve the system or refine the
solution, often across many iterations. Triangular solution is
notoriously resistant to parallelism, however, and existing parallel
linear algebra packages appear to be ineffective in exploiting
much parallelism for this problem.

We develop a novel parallel algorithm based on various
heuristics that adapts to the structure of the matrix and extracts
parallelism that is unexploited by conventional methods. By anal-
ysis and reordering operations, our algorithm can even extract
parallelism in some cases where most of the nonzero matrix
entries are near the diagonal. We describe the implementation
of our algorithm in Charm++ and MPI and present promising
results on up to 512 cores of BlueGene/P, using numerous sparse
matrices from real applications.

I. INTRODUCTION

Solution of sparse triangular linear systems is an important
kernel for many numerical linear algebra problems, such
as linear systems and least squares problems [1], [2], [3],
that arise in many science and engineering simulations. It
is used extensively in direct methods, following a triangular
factorization, to solve the system, possibly with many right-
hand sides, or to refine an approxmiate solution iteratively [4].
It is also a fundamental kernel in many iterative methods
(such as Gauss-Seidel method) or in many preconditioners
for other iterative methods (such as Incomplete-Cholesky
before Conjugate Gradient) [5]. Unfortunately, the parallel
performance of triangular solution is notoriously poor, so it
is a performance bottleneck for many of these methods.

Solution of sparse triangular systems is particularly resistant
to efficient use of parallelism because there is little concur-
rency in the nature of the computation and the work per data
entry is small. The lack of concurrency is due to structural
dependencies that must be satisfied for the computation of
each solution entry. By the nature of the successive substitution
algorithm, computation of each solution component potentially
must await the computation of all previous entries. Once these
dependencies have been satisfied, computation of the next
solution component requires only one multiply-add and one
division. Thus, the communication cost are high compared
with the computation, especially on distributed-memory par-
allel computers.

Despite the apparent lack of parallelism and relatively high
communication overhead, sparse triangular systems are never-

theless usually solved in parallel, both for memory scalability
and because the matrix is typically already distributed across
processors from a previous computation (e.g., factorization).
This is probably why some standard packages implement trian-
gular solution in parallel even though its parallel performance
may be much slower than sequential computation, as we will
observe later. Thus, it is desirable to achieve as much efficiency
as possible in parallel triangular solution, especially in view
of the many iterations often required that can dominate the
overall solution time. Our algorithm improves the performance
of parallel triangular solution and provides good speedups for
many matrices, even with strong (i.e., fixed problem size)
scaling.

Previous work on this problem has focused on two main
directions. First, various techniques, such as dependency anal-
ysis and partitioning, have been employed to exploit sparsity
and identify parallelism [6], [7], [8]. For example, a level-set
triangular solver constructs a directed acyclic graph (DAG)
capturing the dependencies among rows of the matrix. Then
it computes each level of the DAG in parallel and synchro-
nizes before moving on to the next. Since data redistribution
and many global synchronizations are usually required, these
methods are most suitable for shared memory machines, and
most recent studies have considered only shared memory
architectures [7], [8]. Second, partitioning the matrix into
sparse factors and inversion is the basis of another class of
methods [9], [10]. However, the cost of preprocessing and
data redistribution may be high, and the benefits seem to be
limited. In addition, numerical stability may be questionable
for these nonsubstitution methods. Nevertheless, after years
of development, these methods have not found their way
into standard linear algebra packages, such as HYPRE [11],
because of their limited performance.

Here, we devise an algorithm that uses various heuristics to
adapt to the structure of the sparse matrix, with the goal of
exploiting as much parallelism as possible. Our data distribu-
tion is in blocks of columns, which is natural for distributed-
memory computers. Our analysis phase is essentially a simple
local scan of the rows and nonzeros and is done fully in
parallel, with limited information from other blocks. The algo-
rithm reorders the rows so that independent rows are extracted
for better concurrency. It also tries to compute the rows that
are needed for other blocks (probably on the critical path)
sooner and send the required data. Another good property
of the algorithm is that it allows various efficient node-level



sequential kernels to be used (although not evaluated here).
We describe our implementation in CHARM++[12] and

discuss the possible implementation in MPI. We believe that
many features of CHARM++, such as virtualization, make
the implementation easier and enhance performance. We use
several matrices from real applications (University of Florida
Sparse Matrix Collection [13]) to evaluate our implementation
on up to 512 cores of BlueGene/P. The matrices are fairly
small relative to the number of processors used, so they
illustrate the strong scaling of our algorithm. We compare
our results with triangular solvers in the HYPRE [11] and
SuperLU DIST [4] packages to show the superiority of our
algorithm to current standards.

II. PARALLELISM IN SPARSE TRIANGULAR SOLUTION

In this section, we use examples to illustrate various op-
portunities for parallelism that we exploit in our algorithm.
Computation of the solution vector x to an n × n lower
triangular system Lx = b using forward substitution can be
expressed by the recurrence

xi = (bi −
i−1∑
j=1

lij xj)/lii, i = 1, . . . , n.

For a dense matrix, computation of each solution component
xi depends on all previous components xj , j < i. For a
sparse matrix, however, most of the matrix entries are zero,
so that computation of xi may depend on only a few previous
components, and it may not be necessary to compute the
solution components in strict sequential order. For example,
Figure 1 shows a sparse lower triangular system for which the
computation of x8 depends only on x1, so x8 can be computed
as soon as x1 has been computed, without having to await the
availability of x2, . . . , x7. Similarly, computation of x3, x6,
and x9 can be done immediately and concurrently, as they
depend on no previous components. These dependencies are
conveniently described in terms of matrix rows: we say that
row i depends on row j for j < i if lij 6= 0. Similarly, we say
that row i is independent if lij = 0 for all j < i. We can also
conveniently describe the progress of the algorithm in terms
of operations involving the nonzero entries of L, since each
is touched exactly once.

Continuing with our example, assume that the columns of L
are divided among three processors (P1, P2, P3) in blocks, as
shown by the color coded diagonal blocks (blue, green, gray)
in Figure 1. Nonzeros below the diagonal blocks are colored
red. If each processor waits for all the required data, then
processes its rows in increasing order and sends the resulting
data afterwards, then we have the following scenario. P2 and
P3 wait while P1 processes all its rows in order, then sends the
result from l43 to P2 and the result from l81 to P3. P2 can now
process its rows while P3 still waits. After P2 finishes, P3 now
has all the required data and performs its computation. Thus,
all work is done sequentially among processors and there is no
overlap. Some overlap could be achieved by having P1 send
the result from l43 before processing row eight, so that P2 can

start its computation earlier. But sending data as they become
available allows only limited overlap.

However, there is another source of parallelism in this
example. Row 3 is independent, since it has no nonzeros in
the first two columns. Thus, x3 can be computed immediately
by P1 and sent to P2 earlier than x2. P1 can then process
l43 and send the result to P2. In this way, P1 and P2 can do
most of their computations in parallel. The same idea can be
applied to processing of l76 and l81, and more concurrency is
created.

To exploit independent rows, they could be permuted to
the top within their block, as shown in Figure 2, and then
all rows are processed in order, or the row processing could
be reordered without explicit permutation of the matrix. In
either case, in our example rows 3, 6, and 9 can be completed
concurrently. P1 then processes l43, sends the result to P2,
processes row 1 (in the original row order), sends the result
from l81 to P3, and finally completes row 2. Similarly, P2
first processes row 6, sends the result from l76 to P3, receives
necessary data from P1, and then processes its remaining rows.
P3 can process row 9 immediately, but must await data from
P1 and P2 before processing its other rows.
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Fig. 2. Reordering rows of sparse matrix example 1.

This idea applies to some practical cases, but may not
provide any benefit for others. For example, Figure 3 shows
a matrix with its diagonal and subdiagonal full of nonzeros,
which implies a chain of dependencies between rows, and the
computation is essentially sequential.
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Fig. 3. Sparse matrix example 2.

Our previous example matrices had most of their nonzeros
on or near the diagonal. Matrices from various applications
have a wider variety of nonzero structures and properties.
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Fig. 1. Sparse matrix example 1.

Another common case that may provide opportunities for
parallelism is having some denser regions below the diagonal
block. Figure 4 shows an example with a dense region in the
lower left corner. If we divide that region among two additional
processors (P4 and P5), they can work on their data as soon
as they receive the required solution components. In this
approach, P1 broadcasts the vector x(1..3) to P4 and P5 after it
is calculated. P4 and P5 then complete their computations and
send the results for rows 8 and 9 to P3. For good efficiency,
there should be sufficiently many entries in the region to justify
the communication and other overhead.
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Fig. 4. Sparse matrix example 3.

These three strategies — sending data earlier to achieve
greater overlap, identifying independent rows, and parallel
processing of dense offdiagonal regions — are the bases for
our algorithm.

III. PARALLEL TRIANGULAR SOLUTION ALGORITHM

We now describe our sparse triangular solution algorithm
in greater detail. Algorithm 1 gives a high-level view of
our method. We assume that the basic units of parallelism
are blocks of columns, which are distributed in round-robin
fashion among processors for better load balance. We also
assume that each block is stored in a format that allows easy
access to the rows, such as compressed sparse row format.
The rows of each diagonal block are first reordered for better
parallelism by identifying independent rows, as described in
Algorithm 2. Next, the nonzeros below the diagonal block
are inspected for various structural properties. If there are
“many” nonzeros below the diagonal, they are packed into
new blocks and sent to other processors. Here, “many” means

that the communication and other overheads are justified by
the computation in the block, and this presents a parameter
to tune. In our implementation, if the nonzeros are more than
some constant (20 seems to work well) times the size of the
solution subvector, we send the block to another processor.
After this precomputation is done, we can start solving the
system (described in Algorithm 4), possibly multiple times,
as may be needed.

Algorithm: ParallelSolve
// Matrix columns distributed to

processors round-robin in blocks
Input: Row myRows[]
Output: x[], solution of sparse triangular system
// We know which rows depend on other

blocks
reorderDiagonalBlock(myRows)
inspectBelowDiagonalBlock(myRows)
if many nonzeros below diagonal block then

create new blocks and send to other processors
end
while more iterations needed do

triangularSolve(myRows)
end

Algorithm 1: Parallel Solution of Triangular System

Algorithm 2 describes the reordering step, in which indepen-
dent rows are identified so that they can be computed without
any data required from other blocks. Independent row in the
diagonal block means that it has no nonzero to the left of
the block, and it does not depend on any dependent row. For
instance, l66 of Figure 1 is independent because it has no
nonzero to the left. On the other hand, row 5 is dependent;
it has no nonzero to the left of the block, but it depends on
the fourth row through l54. The first loop finds and marks
any dependent rows. The second loop places the independent
rows on a new buffer in backward order. We reverse the
order of independent rows, in the hope of computing the
dependencies of subsequent blocks sooner. This heuristic has
enhanced performance significantly in our test results.

The PlaceRow routine described in Algorithm 3 inspects all
the nonzeros of a given row to make sure that the needed rows



are already placed and it then places the row. If a needed row
is not placed, the routine calls itself recursively to place it.
It also marks the row as placed, so that it will not be placed
again. For simplicity, we assume that there is another buffer to
contain the rows, but if memory is constrained, then the rows
can be interchanged to reorder them. The final loop places
the dependent rows in forward order, without regard for their
inter-dependencies.

Algorithm: reorderDiagonalBlock
Input: Row myRows[]
for r in myRows (forward order) do

r.depend ← false
// nonzeros in left blocks
if r depends on other blocks then

r.depend ← true
end
for each nonzero in r do

if corresponding row is dependent then
r.depend ← true

end
end

end
for r in myRows (backward order) do

if r.depend = false and r not already placed then
placeRow(r)

end
end
for r in myRows (forward order) do

if r.depend = true then
add r to new buffer

end
end
Result: myRows reordered for more parallelism

Algorithm 2: Reorder Diagonal Block

Algorithm: placeRow
Input: Row r
for e in nonzeros of r (reverse order) do

row e r ← row containing x value for e
if e r not already placed then

placeRow(e r)
end

end
add r to new buffer
Result: r is placed in first possible position of new buffer

Algorithm 3: Place Row on New Buffer

Algorithm 4 performs the local solution for each block.
Initially, the messages received are processed as described in
Algorithm 6, before starting the computation, in the hope of
performing work on the critical path and sending the results

sooner. Receiving messages before starting the computation is
possible when there are multiple blocks per physical processor.
The routine then processes the independent rows (described in
Algorithm 5) and waits for messages until all the rows have
been completed.

Algorithm: triangularSolve
Input: Row myRows[]
Output: Values x[]
if any DataMessage msg arrived then

receiveDataMessage(msg)
end
for each Row r in independent rows do

computeRow(r,0)
end
while there are pending rows do

wait for DataMessage msg
receiveDataMessage(msg)

end

Algorithm 4: Local Triangular Solve

Algorithm 5 describes the computation for each row. The
input value (“val”) is the partial sum from the left of the block
and is updated using the nonzeros of the row and the needed
x values. For the diagonal rows (rows in diagonal blocks), xi,
which is the x entry corresponding to “r”, is computed. If xi

is the last variable needed for the subdiagonal rows that are
needed for the next block, they are computed (if they were
local to the block). This accelerates the dependencies of the
next block and probably the critical path. If xi is the last
variable needed for the subdiagonal rows and they are local,
they are processed. If they are not local, the x subvector is
broadcast to the subdiagonal blocks. For offdiagonal rows, the
updated value is sent to the block waiting for it.

Algorithm 6 describes the processing of data messages. For
each value in the message, the local row that is waiting for it is
determined. This may require a mapping of global row number
to local row number (such as hash table), or this information
can be communicated once during the analysis stage. If the row
is diagonal and it is the current row (the first incomplete row),
it is processed. In this case, all the following rows that are not
still depending on outside data are processed as well until
a depending one is discovered. Those rows can be processed
since all of their dependencies are satisfied by processing them
in order. If the row is offdiagonal and the needed x values are
ready, it can be computed as well. However, if it is diagonal
but not the current row, or offdiagonal but x is not ready, then
val is stored for later use.

IV. IMPLEMENTATION IN CHARM++ AND MPI
To test its effectiveness in practice, we have implemented

our triangular solution algorithm using CHARM++[12]. Blocks
of columns are stored in compressed sparse row (CSR) format
and assigned to Chare parallel objects (of a Chare array),
which are the basic units of parallelism. There can be many



Algorithm: computeRow
Input: Row r, Value val
update val using nonzeros of r and computed x[] values
if r is diagonal then

compute xi = (b−val)/lii
if below diagonal rows for next block are local and x
is last needed variable for next block then

compute below diagonal rows for next block and
send data values

end
if xi is last needed variable for other blocks then

if below diagonals are local then
compute below diagonal rows for next block
and send data values

end
else

broadcast all x values so far to below
diagonal blocks

end
end

end
else

send val to depending block
end
Result: if diagonal row: x value computed, if offdiagonal

row: data value sent to next block

Algorithm 5: Process Local Row

Algorithm: receiveDataMessage
Input: DataMessage msg
for each data Value val in msg do

Row r ← row corresponding to value
if r is diagonal and is current pending row then

computeRow(r,val)
while next Row n r is not outside dependent do
computeRow(n r,0)

else if r is offdiagonal and x variables ready (locally
or received) then

computeRow(r,val)
else store value

end
Result: message used for computation or stored

Algorithm 6: Receive Data Message

more Chares than the number of physical processors, and the
runtime system places them according a specified mapping.
We specify the built-in round-robin mapping in CHARM++
for better load balance.

Each Chare analyzes its block, receives the required data,
processes its rows and sends the results to the dependent
Chares. The analysis phase needs to know only which of its
rows are dependent on the left Chare, which can be deter-
mined by communication or prior knowledge (e.g., symbolic
factorization phase). In our implementation, the analysis phase
determines whether there is a dense offdiagonal region that can
be broken into blocks for more parallelism. It then creates new
Chares, which will be placed on the processors by the runtime
system according to the mapping.

Creating new parallelism units, independent of the fixed
number of physical processors, is an abstraction that is useful
for simplicity of the implementation of our structure-adaptive
algorithm. However, the number of Chares (blocks) can be
determined in advance based on knowledge of the matrix
structure. For example, it can be determined in the symbolic
factorization phase of LU or Cholesky factorization.

Virtualization ratio: The ratio of the number of Chares
to the number of physical processors (virtualization ratio) is
an important parameter since it presents a tradeoff between
communication overlap and concurrency. If the virtualization
ratio is large, then when some blocks are waiting for data to be
received, others can still make progress in computation. On the
other hand, if the matrix is divided too finely into small blocks,
many nonzeros of diagonal blocks may fall in other blocks and
create many dependent rows. Thus, the concurrency might be
compromised because each block has fewer independent rows
to compute. In our implementation, we use a virtualization
ratio of four, which seemed to provide a good balance between
communication overlap and concurrency.

Message priority: We use message priorities of
CHARM++ to make more rapid progress on the critical path
of the computation. Potentially, there may be a chain of
dependencies along the diagonal of the matrix. Therefore, we
give higher priority to data messages than the computation
of other Chares. This means that when the computation of a
Chare is completed, the runtime system tries to choose data
messages over computation of other Chares. This may provide
data for some critical computation that will send enabling data
messages to other Chares. More sophisticated message priority
approaches that use more information from the structure of the
matrix are the subject of future work, but may be subject to
diminishing returns.

Sequential kernels: Efficient sequential kernels are highly
important for this problem, since the computation is very small
relative to the amount of data. Therefore, most overheads,
especially cache inefficiencies, are intolerable. Furthermore,
using high-performance sequential and shared-memory node
kernels inside the distributed-memory code can improve its
performance significantly. For these reasons, in our imple-
mentation, we compute the rows in large chunks without
interruptions. For example, we keep track of the number of



of rows that are required before sending the next block’s data
in the analysis phase. In the computation, we process all of
those rows as a chunk and then send the data afterwards. In this
way no checking (“if” statement) is required after each row,
though it was presented that way in the algorithm statement in
the previous section for simplicity. The only change required
in the sequential kernel is adding the result sum from the left
of the row, which is easy to include. Thus, efficient sequential
and shared-memory kernels can be used readily.

Aggregating data messages: Depending on the nonzero
pattern of the matrix, an offdiagonal row may need to send
its data to any block to its right. However, due to message
startup and receive overheads, it is inefficient to send one
data element at a time (one floating-point value in this case).
Therefore, these data elements are aggregated into larger
messages before sending over the network. This is possible
since the neighboring rows have “locality” and are likely to
send to the same blocks. Thus, we allocate buffers for different
destinations and gather the data in them. We flush a buffer
and send data when it is full, or when all buffers are allocated
and we need to allocate a new one. However, gathering the
data into buffers presents a tradeoff since delaying sending a
message might delay progress on the critical path. Thus, we
flush the buffers and send the data out at various stages of
the algorithm to ensure faster progress. Message aggregation
approaches that minimize both the message overhead and the
delay can also be used [14].

Implementation in MPI: In principle, every CHARM++
program can be implemented in MPI, since CHARM++ itself
can be built on top of MPI, although the programming effort
might make it impractical in some cases. We believe that
our algorithm can be implemented in MPI, perhaps with
somewhat greater effort than for the CHARM++ version. The
major difficulty is mapping and managing multiple blocks of
columns per processor and creating the effect of virtualization,
which can make the code error prone. Allocating blocks
dynamically also seems challenging.

In addition, the priority of data messages over computation
can be implemented using MPI Iprobe. When the computation
of a block is completed, MPI Iprobe could be used to de-
termine whether any data message is available. If a message
is available, then it is processed before moving to the next
computation. Wildcards may also be needed for specifying
the source.

Other parts of the implementation (e.g., message aggrega-
tion) are straightforward, and there would be little difference.
If minimizing programming effort is the goal, these two
major changes can be ignored and the algorithm can be
implemented without multiple blocks per processor. Thus,
some performance enhancements resulting from the overlap
of computation and data dependencies will not be available.
However, the major benefit of the algorithm, the analysis and
reordering, can still be realized.

Tuning parameters: As mentioned, there are various pa-
rameters to choose in our algorithm, such as virtualization ra-
tio, message priorities and buffer size for message aggregation.

Tuning these parameters carefully might result in performance
improvements. Thus, tuning methods specific to this algorithm
and choosing the values based on the structure of the matrix
and the machine is a subject for future research. In addition,
automatic tuning approaches such as Control Points [15] in
CHARM++ framework can be used. However, these parameters
do not seem to be very sensitive for performance so we set
some values manually for all the experiments discussed here.

V. TEST RESULTS

In this section, we evaluate our implementation for up to
512 cores on BlueGene/P. We benchmark the time of one
solution iteration with one right-hand side, without the cost
of benchmarking barriers. In some cases, barriers might be
necessary for the application, but their cost is insignificant if
the matrix is sufficiently large. Furthermore, the application
might be able to overlap different iterations and fill processor
idle times with useful work to attain higher performance.

Our sequential algorithm is just the standard nested loops,
without any significant overhead. Note again that on only
one processor core our algorithm boils down to this efficient
sequential algorithm. Thus, our speedups are measured against
the best sequential case. Note also that BlueGene/P’s proces-
sors are low power by design, so they are somewhat slower
than some other mainstream processors.

Test Problems: We first describe our test problems, which
are drawn from several real application sparse matrices from
the University of Florida Sparse Matrix Collection [13]. Table I
lists these matrices and their properties. Those prefixed with
“slu ” are obtained from a complete LU factorization using
SuperLU. Note that the matrices used are fairly small relative
to the number of processors used. Some of the matrices are
even smaller than those in a recent study of shared-memory
codes [8]. Thus, our results provide a reasonable indication of
the strong scaling ability of our triangular solution algorithm.

There are two measures that can help in understanding the
parallelism available in each matrix: (1) after the reordering
and analysis phases of our algorithm, the total number of rows
(across all processors) that can be computed independently in
parallel, and (2) the number of nonzeros that are in nondiago-
nal blocks. The first metric is a direct measure of parallelism,
while the second may or may not indicate better parallelism.
If the nonzeros are close to the diagonal blocks and they are
spread apart, it is more difficult to have parallelism. However,
if they are in dense regions and far from the diagonal, they
probably can be computed in parallel.

Figure 5 shows the nonzero structure of some of the
matrices we use. We will use this figure, along with Table I, to
help understand the performance behavior for these matrices.

Scaling for no-fill LU matrices: Figure 6 shows the scal-
ing of our implementation for up to 512 cores of BlueGene/P
using triangular matrices from incomplete LU factorization
with no fill. Since the matrices are small relative to the
number of cores used, the results represent strong scaling of
this approach. Matrix nlpkkt120 shows the best scaling and
achieves speedup of 166 on 512 cores. This is because its



TABLE I
BENCHMARK MATRICES

Name Dimension Independent rows Nonzeros In nondiagonal blocks Application domain
circuit5M dc 3,523,317 674,311 10,631,719 4,110,848 circuit simulation
circuit5M 5,558,326 333,841 32,542,244 26,616,437 circuit simulation
dielFilterV2clx 607,232 4,965 12,958,252 7,824,540 electromagnetics
fem hifreq circuit 491,100 8,744 10,365,173 7,321,726 electromagnetics
Freescale1 3,428,755 2,153,121 11,901,587 5,963,982 circuit simulation
FullChip 2,987,012 12,982 14,804,570 8,126,422 circuit simulation
Geo 1438 1,437,960 5,617 32,297,325 17,912,293 structural analysis
Hamrle3 1,447,360 746,720 3,032,733 1,582,170 circuit simulation
kkt power 2,063,494 811,213 8,545,814 5,549,454 optimization
largebasis 440,020 200,010 3,000,060 2,560,040 optimization
nlpkkt120 3,542,400 1,814,400 50,194,096 46,651,696 optimization
StocF-1465 1,465,137 34,822 11,235,263 5,609,744 fluid dynamics
slu bbmat 38,744 6,735 17,819,183 15,762,657 fluid dynamics
slu c-big 345,241 345,141 499,807 17,038 optimization
slu circuit5M dc 3,523,317 3,429,272 8,027,174 332,376 circuit simulation
slu Freescale1 3,428,755 3,329,165 12,624,349 1,079,503 circuit simulation
slu gsm 106857 589,446 312,454 12,107,540 3,654,630 electromagnetics
slu helm2d03 392,257 373,796 648,305 23,380 2D/3D problem
slu hood 220,542 192,353 2,143,007 540,982 structural analysis
slu kkt power 2,063,494 2,043,810 3,298,181 287,311 optimization
slu largebasis 440,020 280,483 5,095,186 1,991,169 optimization
slu nlpkkt80 1,062,400 1,062,400 1,062,400 0 optimization
slu webbase-1M 1,000,005 986,863 3,345,311 512,433 weighted directed graph

structure allows parallel and pipelined execution and it is larger
than the other matrices (about 50 million nonzeros). Matrix
largebasis also scales to 512 cores with a speedup of more
than 78. Some matrices, such as Hamrle3 and kkt power, show
good parallelism initially, but the speedup declines for larger
numbers of cores. The reason is that the parallelism and matrix
size are insufficient to exploit the processing power, so parallel
overhead become relatively more costly. Some other matrices,
such as FullChip and circuit5M dc, show limited parallelism
and need much larger matrix sizes to show good speedup. A
few matrices, such as Geo 1438 and StocF-1465, do not show
any parallelism, and the execution time increases with more
cores. However, their execution time is worse than sequential
by only a small constant (roughly two), which shows the low
overhead of the algorithm in the worst case. For these matrices
and their application domains, new methods are needed.

Scaling for complete LU matrices: Figure 7 shows the
scaling of our method for up to 512 cores of BlueGene/P using
triangular matrices from complete LU factorization. There
are cases with superlinear speedup because of cache effects.
For example, matrix slu nlpkkt80 achieves speedup of 87 on
64 cores. Many matrices scale well up to 32 or 64 cores,
but performance decreases beyond that point. This is mostly
because the matrices are small relative to the number of cores.
For instance, matrix slu c-big has only 500k nonzeros that
occupy only about 5MB of memory in total. However, it
achieves speedup of more than 40 on 64 cores. By reordering,
this matrix is mostly parallel, with few dependencies. Thus, the
parallel overheads are relatively high in this case and should be
alleviated in production implementations. This includes better
implementation of broadcast and reduction (synchronization)
using the collective network of BlueGene/P, if synchronization
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Fig. 6. Scaling for no-fill incomplete-LU matrices.

is required for the application (for example, iterative refine-
ment of the solution with error estimation). If synchronization
is not required (for example, a fixed number of refinements),
much better performance can be obtained with small changes
to the implementation. In addition, communication latency is
critical for solution of sparse triangular systems, because of
structural dependencies and limited computation.

The figure also shows that matrices resulting from com-
plete LU have a different (better on average) structure for
parallelism than no-fill incomplete LU matrices. For example,
slu circuit5M dc is much more parallel than circuit5M dc.
The reason is that SuperLU reorders the rows and elements
for better factorization, so the resulting lower triangular and
upper triangular matrices will have different structures. This



(a) nlpkkt120 (b) Geo 1438 (c) slu c-big

(d) Freescale1 (e) circuit5M

Fig. 5. Nonzero structure of various test matrices

strategy improves the triangular solution using our method as
well.

Scaling for various matrix structures: Performance and
scaling of our algorithm can vary with matrix structure. Table I
and Figure 5 help in understanding the parallelism available in
various matrices. For example, matrix nlpkkt120 (Figure 5(a))
enjoys the best performance on 512 cores. The reason is that its
upper left portion consists mainly of independent rows. They
begin computing in parallel, then they send their solution val-
ues to the nonzeros on the bottom (which form a slanted line)
to compute in parallel. Those blocks send their values to the
right diagonal blocks to complete the computation. Thus, there
are three stages, and each stage has many parallel portions.
Matrix Freescale1 also has similar parallelism opportunities,
but with a different structure (Figure 5(d)). Matrix circuit5M
(Figure5(e)) shows another structure with good parallelism
despite having relatively few independent rows. The top left
diagonal blocks enable the computation of many offdiagonal
blocks on the left. Those will be processed in parallel and
cause the other diagonals to complete in parallel.

On the other hand, matrix Geo 1438 shows poor scaling
because it has little parallelism available. Most of its nonzeros
are near the diagonal, but the rows are dependent on each other
(Figure 5(b)). Most of the matrices with poor scaling have

similar structure. Creating parallelism by numerical methods
(such as dropping some nonzeros) is the subject of future
study. Note that having the nonzeros near the diagonal does not
necessarily result in limited parallelism. For instance, matrix
slu c-big has similar structure but shows good scaling, since
many of its rows are independent after reordering.
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Comparison with HYPRE: Figure 8 compares the perfor-
mance of our method with that of HYPRE, which is a com-
monly used linear algebra package [11]. As shown, our method
can exploit parallelism on many matrices, whereas HYPRE’s
performance is nearly sequential in all cases. The triangular
solution in HYPRE works essentially sequentially among the
processors. Each processor performs its computations and
sends the results to the next one, so the processors form a
chain. The choice of this method for the package illustrates
the ineffectiveness of previous parallel approaches for this
problem. The performance of HYPRE is worse than sequential
in many cases because of parallel overhead, although there is
some improvement for large numbers of processors, probably
due to cache effects. Overall, our method is a significant
improvement over this existing code and will reduce the
solution time for many problems.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1  2  4  8  16  32  64  128  256  512

So
lu

tio
n 

T
im

e 
(s

)

Number of Cores

slu_Freescale1
slu_gsm_106857

slu_kkt_power
HYPRE-slu_kkt_power
HYPRE-slu_Freescale1

HYPRE-slu_gsm_106857
fem_hifreq_circuit

largebasis
HYPRE-fem_hifreq_circuit

HYPRE-largebasis

Fig. 8. Comparison with triangular solver from HYPRE.

Comparison with SuperLU DIST: Figure 9 compares the
performance of our triangular solver to the triangular solver
from the SuperLU DIST package [4]. This solver is called
after factorization of the matrix, sometimes several times to
refine the result or for other purposes. As shown, however,
it does not exploit enough parallelism and the scaling is not
very good, even though it has some very limited scaling with
respect to its own sequential performance (e.g. 6.4 times self-
speedup on 512 cores for matrix helm2d03). In fact, it is
worse than the best serial performance for most cases. For
example, SuperLU DIST is about 18.5 times slower than
best serial performance on 64 cores for matrix slu helm2d03,
whereas our solver achieves a speedup of more than 48.
SuperLU DIST uses a simple 2D decomposition approach
for parallelism, which is inefficient. Our method significantly
improves triangular solution and refinement after complete
LU. Because refinement will be much faster, less accurate but
faster factorizations may also become possible.

Comparison with other approaches: There are other
algorithms for triangular solution, mostly for shared memory
machines. However, it does not seem to be practical to adapt
them for distributed memory machines. For example, the DAG
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approaches have limited concurrency [8], so they cannot scale
to many cores of a distributed-memory machine. In addition,
there can be thousands of barriers for some small matrices [8],
so the barriers are a bottleneck even for shared-memory
machines. Thus, we do not attempt to adapt and compare with
them here.

Memory scaling: Memory scaling is important for many
numerical algorithms. For our algorithm, there are only few
additional scalable data structures per processor, other than the
matrix itself. The largest is a data structure that has only a few
entries for each local row, which contains information such as
if the row is dependent. Importantly, there is no overhead per
matrix element. Thus, the memory consumption is scalable
and very large problem sizes are possible to solve.

Data redistribution: Since triangular solution is usually
used in the context of other algorithms such as factorization,
data redistribution is required when the data layouts do not
match. However, it is negligible in most cases and this can be
seen by some simple back-of-the-envelope calculations. For
instance, matrix circuit5M is less than 300MB in memory. On
512 BGP processors, each solve iteration takes around 28ms.
If each processor has to send 1MB of data, data redistribution
will take less than 15ms (in parallel). Data redistribution
happens only once, and this cost is amortized over many (often
100 or more [8]) iterations.

Analysis performance: Analysis time is an overhead
that must be paid for many approaches to sparse triangular
solution. It is negligible if it is performed only once, followed
by sufficiently many iterations. In our algorithm, analysis is
performed fully in parallel and independently on different
processors. Thus, the analysis also scales with the number
of processors. In addition, analysis reorders only the rows,
based on a simple scan of rows and nonzeros, which is
relatively inexpensive. Figure 10 compares the analysis time
with the solution time for a sample of matrices using various
numbers of processors. As can be seen, the analysis time is
comparable to the solution time, and it is less than that in most
instances. Thus, analysis time is negligible for applications



with multiple solution iterations. Even for applications with
only one solution iteration, our algorithm (with the analysis
time added) performs much better than the packages we
compared with here. In this case, the solution can be thought of
as a constant times slower, with the constant usually less than
two. Thus, analysis time is not a problem for the performance
of our algorithm, so we do not strive to accelerate it further
for now.
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VI. CONCLUSIONS AND FUTURE WORK

Parallel solution of sparse triangular linear systems is an
important kernel for many numerical methods used in applica-
tions. For example, it is often used repeatedly in precondition-
ers for iterative methods. It is not easy to implement efficiently
in parallel, however, especially on modern distributed-memory
computers, because of its dependencies and small amount of
work per data.

We presented a novel algorithm based on heuristics that
strive to extract all of the parallelism available in the matrix.
It uses low-cost analysis and row reordering to prepare for
efficient execution. As opposed to previous methods, our
algorithm does not rely on repeated data redistributions and
many global synchronizations, so it is suitable for large-scale
distributed-memory machines. We implemented our algorithm
in CHARM++ and discussed its potential implementation using
MPI. We saw that CHARM++ provides some features that
simplify the implementation.

We presented promising performance results on up to 512
cores of BlueGene/P for numerous sparse matrices from real
applications. The performance depends on the parallelism
available in the structure of the matrix, and we analyzed the
parallelism using different metrics.

For future studies, more sophisticated methods for map-
ping blocks to processors and for determining priorities for
processing blocks seem most important. In addition, novel
techniques to determine the best virtualization ratio depending
on characteristics of the matrix and the machine may im-
prove performance. Furthermore, techniques for aggregation

of messages that minimize communication overhead but do
not cause delay for computation should be developed. For
matrices that do not allow parallelism using our algorithm,
numerical methods that eliminate some of the non-zeros for
more parallelism seems to be a potentially promising approach.
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