
c© 2012 Harshitha Menon

METABALANCER AUTOMATED LOAD BALANCING BASED ON APPLICATION
CHARACTERISTICS

BY

HARSHITHA MENON

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Adviser:

Professor Laxmikant Kale

Abstract

With the dawn of petascale and with exascale in the near future, it has become signifi-

cantly difficult to write parallel programs that exploit the processing power and scale the

applications. Load imbalance presents itself as one of the significant challenges to achieving

scalability and high performance. Manually handling the imbalance in dynamic applications

and finding an optimum distribution of load becomes a herculean task. Charm++ provides

the user with a run time system that can carry out dynamic load balancing. To enable

Charm++ to carry out load balancing, the user takes certain decisions related to the load

balancing period and strategy and informs these decision to the Charm++ run-time system.

Many a times, this involves hand tuning each application by observing various runs of the

application. In this thesis, we present a Meta-Loadbalancer which is relieves the user from

load balancing decisions. The Meta-Loadbalancer, which is a part of the Charm++ run-

time system, identifies the characteristics of the application and, based on the principle of

persistence, makes load balancing decisions. We study the performance of Meta-Balancer in

the context of kNeighbor benchmark and mini applications like leanmd, barnes-hut, NPB,

jacobi.

We also present new load balancing strategies implemented in Charm++ and study their

impact on the performance of applications. The new strategies are RefineSwapLB, which is a

refinement based load balancing strategy, CommAwareRefineLB, which is a communication

aware refinement strategy, ScotchRefineLB, which is a refinement based graph partitioning

strategy using Scotch and ZoltanLB, which is a multicast aware load balancing strategy

using Zoltan which is a hypergraph partitioner.

ii

To my parents for their love and support.

iii

Acknowledgments

I would like to thank my advisor, Prof. Kale, for his guidance, support and his faith in my

capability without which this thesis would not have materialized. I would like to thank PPL

members, Nikhil Jain and Gengbin Zheng, who provided valuable suggestions and insights

into the problem. I would like to thank my fiance Saurabh for his love and support. Finally

and most importantly, I would like to thank my parents for their support, encouragement

and being the pillar of my life.

iv

Table of Contents

List of Tables . vi

List of Figures . vii

Chapter 1 Introduction . 1

Chapter 2 Load Balancing in Charm++ 3
2.1 Charm++ Load Balancing Framework . 3
2.2 Existing Load Balancers . 4
2.3 New Load Balancers . 5

2.3.1 RefineSwapLB . 6
2.3.2 ZoltanLB . 7

Chapter 3 Meta-Balancer . 8
3.1 Motivation . 8
3.2 Statistics Collection . 9

3.2.1 Existing synchronous statistics collection 9
3.2.2 Asynchronous Collection of Statistics via Reduction 10
3.2.3 Extracting per iteration information 10

3.3 Load Balancing Period . 11
3.3.1 Ideal LB Period Calculation . 12
3.3.2 Computation Intensive Application 12
3.3.3 Dynamic triggers . 14

3.4 LB Period Intimation . 14
3.4.1 Dynamic Refinement of LB Period 16

3.5 Strategy Selection . 17
3.5.1 Communication vs Computation strategy 17
3.5.2 Refinement vs From Scratch strategy 18

Chapter 4 Conclusions and Future Work 20

References . 21

v

List of Tables

vi

List of Figures

2.1 Comparison of RefineLB with RefineSwapLB for leanmd 6

3.1 periodic stats collection . 11
3.2 Elapsed time vs LB Period for Jacobi . 13
3.3 Identifying LB Period for Jacobi . 14
3.4 Dynamic triggering of LB for kNeighbor benchmark 15
3.5 Intimating the calculated LB period . 17
3.6 flowchart describing strategy selection . 19

vii

List of Abbreviations

LB Load Balancer

viii

Chapter 1

Introduction

With the dawn of petascale and with exascale in the near future, it has become significantly

difficult to write parallel programs that exploit the processing power and scale the applica-

tions. In the case of programming models, such as CHARM++ [2], ParalleX [1], FG-MPI

[3], Adaptive MPI [4] and others, computation is over-decomposed into ne-grained tasks

or objects, where the number of such tasks, n is much greater than p. High Performance

Computing applications, such as Molecular Dynamics and Fractography, have fine-grain par-

allelism to achieve scalability and high performance. Having such fine-grained parallelism

would require a smart and adaptive resource allocation to maintain load balance. Expect-

ing application programmers to handle load imbalance and carry out resource allocation in

dynamic applications is unrealistic. Charm++, a migratable objects based programming

model, provides a measurement-based dynamic load balancing framework. Charm++ run-

time system performs automatic measurement of task load, processor load and communica-

tion pattern which is then used by the load balancing framework to migrate over-decomposed

objects to balance computational load and reduce the communication overhead at runtime.

To enable Charm++ to carry out load balancing, the user takes certain decisions related to

the load balancing period and strategy and informs these decision to the Charm++ run-time

system. Many a times, coming up with these decisions involve hand tuning for each appli-

cation by observing application characteristics and experimenting with the options. For eg:

If the application has communication overhead, then it is beneficial to use graph partitioner

based load balancing strategy rather than the strategy that balances the load. But if the

application is computationally heavy, then using a computational balancing strategy, like

1

greedy, would help improve the performance. The other decision that is left to the user

is the frequency of load balancing, ie how often to call the load balancer. Load balancing

incurs cost of carrying out the strategy to find the new mapping as well as the cost of mi-

gration. After doing load balancing, the performance of the application improves. But, if

the load balancing is done frequently, then the cost of doing the load balancing supersedes

the benefit. Therefore, there is an ideal load balancing period at which we obtain the best

performance. Since the run-time system has the required information to identify the charac-

teristics of the application, it will benefit the application programmer if the run-time system

can automatically decide and control the load balancing decisions. In this thesis, we present

a Meta-Balancer which is relieves the user from load balancing decisions such as when to

do load balancing and which strategy to use. The Meta-Balancer, which is a part of the

Charm++ run-time system, identifies the characteristics of the application and, based on

the principle of persistence, makes load balancing decisions. We study the performance of

Meta-Balancer in the context of kNeighbor benchmark and mini applications like leanmd,

barnes-hut, NPB, jacobi.

2

Chapter 2

Load Balancing in Charm++

Applications written in CHARM++ over-decompose their computation into virtual proces-

sors or objects called chares which are then mapped on to physical processors by the runtime

system. This initial static mapping can be changed as the execution progresses by migrating

objects to other processors if the simulation leads to a load imbalance. This is facilitated

by a load balancing framework that instruments the application to obtain the computa-

tional loads and the communication graph of the objects and uses them to make informed

decisions for migrating objects. Measurement-based load balancing is effective when the

load and communication pattern of the application either change slowly, or change abruptly

but infrequently. In these situations, data from the recent past is a good predictor of the

near future. For other situations, the application can provide performance estimates for the

objects to supplant the measurements.

2.1 Charm++ Load Balancing Framework

CHARM++s object model is particularly well-suited to object-based load balancing. CHARM++

application is written in parallel C++ objects. C++ class promotes data encapsulation,

which usually has well-dened regions of memory on which the class operates. This poten-

tially simplies the packing of data for migration of objects compared to process migration or

thread migration, where the threads entire stack must migrate to a new processor. Message

forwarding after migration is automatically handled by the CHARM++ runtime system.

From a users point of view, CHARM++ objects are location independent; messages are

3

usually delivered to objects instead of processors. Thus, there is no processor-specic state

that an application writer needs to worry about for object migration; CHARM++ run-time

system takes care of the run-time state associated with the migrating objects.

Using the CHARM++ object model, the run-time system treats application objects

uniformly by instrumenting the start and end time of each method invocation on the objects,

rather than deriving execution time from some application-specic knowledge. This makes the

automatic measurement-based load balancing feasible. Further, the CHARM++ run-time

system can automatically record object-to-object and collective communication patterns, so

that load balancers can access the communication pattern information for making optimal

load balancing decisions. CHARM++ can even separate the idle time from communication

overhead. The CHARM++ run-time system can cleanly separate communication overhead

from idle time. With the rich application load and communication statistics, better load

balancing decisions can be made.

2.2 Existing Load Balancers

There are several in-built load balancing strategies in CHARM++ that can be used by

application developers, some of which are described here for completeness (and for the benet

of the reader to understand the results better):

GreedyLB: A comprehensive load balancer based on the greedy heuristic that maps the

heaviest objects on to the least loaded processors until the load of all processors is

close to the average load.

ReneLB: A renement load balancer that migrates objects from processors ith greater than

average load (starting with the most overloaded processor) to those with less than

average load. The aim of this strategy is to reduce the number of objects migrated.

ReneCommLB: A renement strategy similar to ReneLB that also considers the communi-

4

cation between different objects when trying to choose the best underloaded processor

to place an object on.

MetisLB: A strategy that passes the load information and the communication graph to

METIS, a graph partitioning library, and uses the recursive graph partitioning algo-

rithm in it for load balancing.

ScotchLB: A strategy that uses the load information and communication graph from

Charm run-time system and uses Scotch, a graph partitioning library, to find the

new mapping of the processes on to processor.

The CHARM++ runtime also encourages application developers to write application-

specic load balancing strategies or use external libraries for the task. For this, it provides

an easy interface to write new load balancers.

The runtime instruments a few time steps of the application before load balancing and

this information is available in the LBDatabase. Using this information provided by the

CHARM++ runtime, a load balancing strategy can be implemented that returns a new

assignment for the processes. This information is then used by the runtime to migrate

objects for the subsequent time steps. This setup facilitates the use of external load balancing

algorithms/libraries for measurement-based dynamic load balancing of parallel applications,

since they do not have to deal with the mechanics of instrumentation and object migration.

2.3 New Load Balancers

Three new load balancing strategies have been added to Charm++ which are described in

detail in the following sections.

5

 550

 600

 650

 700

 750

 800

 850

 60 65 70 75 80 85 90 95 100

tim
e

(s
)

cores

RefineLB vs RefineSwapLB

RefineLB
RefineSwapLB

Figure 2.1: Comparison of RefineLB with RefineSwapLB for leanmd

2.3.1 RefineSwapLB

This is a refinement based load balancing strategy similar to that of RefineLB. ReneLB is an

algorithm which improves the load balance by incrementally adjusting the existing object

distribution. Renement is used with an overloaded threshold. Typically, this threshold

is set at 1.003 times the average load across all processors. Any processor is considered

overloaded if this load is above this threshold. The computational cost of the algorithm is

low because only overloaded processors are examined, and it results in only a few objects

being migrated. But RefineLB could get stuck in local minima if it cant move any object

from the overloaded processor to another processor without making it overloaded. To handle

this scenario, RefineSwapLB is implemented.

RefineSwapLB tries to move objects from overloaded processor to less loaded processor

without causing them to become overloaded. If it cant find such a processor, then it swaps

objects reducing the load on the overloaded processor.

Performance analysis:

6

2.3.2 ZoltanLB

ZoltanLB uses Zoltan, a hypergraph partitioner, to balance entities indicated by the ap-

plication. This load balancer can be used for multicast aware load balancing. The result

comparing ZoltanLB with MetisLB and ScotchLB is shown in figure. We use leanmd with

multicast enabled.

7

Chapter 3

Meta-Balancer

3.1 Motivation

Understanding the characteristics of an application and taking appropriate load balancing

decisions is key to improve its performance. Some of these decisions involve how frequently to

call the load balancer or the type of strategy to use. In the case of a dynamic application, it

becomes challenging to identify the characteristics of the application and take load balancing

decisions apriori. For such applications, it is difficult and suboptimal to decide upfront on

how frequently the load balancing should be done and which type of load balancing strategy

should be used. To this end, we propose a metabalancer which will relieve application

programmers of such key decision making related to load balancing and improve the overall

performance. The key decisions related to load balancing are Frequency of load balancing

• Strategy Selection

• Communication vs Computation strategy

• Refinement vs From Scratch strategy

• Adaptive triggering of load balancing

Each of these decisions are based on the characteristics of the application, the details

of which are given in the following sections. The Charm++ run-time system collects some

statistics related to the object load, processor load, processor idle time and the communi-

cation pattern which is stored in the Load Balancing Database. These statistics presents a

8

holistic picture of the application. Meta-Balancer, which is a part of the Charm++ run-time

system collects minimal stats at a central location and then based on the characteristics of

the application, controls the load balancing decisions. Details of the stats collection is given

in Section [].

3.2 Statistics Collection

3.2.1 Existing synchronous statistics collection

The CHARM++ run-time system (RTS) provides an accurate measurement of application

load. During execution, the LB Manager, residing on each processor, monitors the load

behavior of that processor. It collects object load, background load and idle time statistics

into the LB Database. When a particular object is being executed, it noties the LB manager

so that the manager may start the timing for its execution. The array manager also reports

about communication initiated by the object.

In the centralized strategies, a dedicated processor gathers global information about the

state of the entire machine and makes decisions for the migrations of tasks for every proces-

sor. Current mechanism for statistics collection for load balancing purpose is synchronous.

All the processors come to a barrier and then send their statistics, which includes the object

load, processor load and communication pattern, to a central processor. Whereas in fully

distributed strategies, each processor executes load balancing algorithms by exchanging state

information with other processors. The migration only happens between neighboring pro-

cessors. For the Meta-Balancer to control the load balancing decision, some information

related to the application needs to be collected periodically, like the average load per proces-

sor, maximum load on any processor in the system, lowest utilization on any processor in the

system. To collect these stats periodically, it is not advisable to have a global barrier since

that would unnecessarily cause an overhead and slow-down of the application. Therefore,

there is a need for asynchronous collection of system stats periodically which is described in

9

detail in the following section.

3.2.2 Asynchronous Collection of Statistics via Reduction

The asynchronous collection of statistics periodically is motivated by the fact that any sort

of barrier, global or local within a processor, would cause unnecessary slowdown of the

application. Each processor has a collection of chares residing on it. The RTS has an

accurate information of the load of each chare at any point of time. Typically, the stats

would be collected every iteration of the application.

3.2.3 Extracting per iteration information

Periodically, chares send their load information since the last send iteration to the Adap-

tiveLB Manager, residing on each processor. Once the chare has sent its load information,

it continues its work. To obtain the utilization of the processor during that iteration, it is

required to obtain the idle time for that iteration. Since, there is no local barrier (barrier at

the processor level), the idle time per iteration needs to be approximated. The idle time is

considered to be total idle time until all chares finish the iteration * (number of chares per

iteration / total number of contributions from all the chares till now). This is approximately

equivalent to idle time till now / total iterations. Utilization is calculated as the idle time

/ load + idle time. Once all the chares residing on a processor has sent its load for that

iteration, the AdaptiveLB Manager contributes this information to the central processor,

which includes the load for the iteration and utilization of the processor, via a reduction

tree. The central processor receives the average load per processor, maximum load in the

system and the minimum utilization ratio. The figures shows the stats collection mechanism

that is described above.

10

a1 b1 a2 b2

c1 d2c2 d1

e1 e2 e3 e4

Stats Red 1

c3

e11 e12 e13

a9 b10

c8 d7

ROOT

PE0

PE1

PE2

Stats Red 2

Figure 3.1: periodic stats collection

3.3 Load Balancing Period

Even though load balancing balances out the load imbalance which results in the improve-

ment of performance, it incurs a cost. The cost involves carrying out the load balancing

strategy to find new mapping of objects onto processors as well as the cost of migrating

them. If load balancing is carried out very frequently, we would either loose performance or

reduce the gains from doing load balancing. Therefore, there is an optimal load balancing

period, where we obtain maximum gains.

τ be the ideal load balancing period

γ be the total iterations of the application

Γ be the total application time

θ be the cost associated with load balancing

11

Let the maximum time per iteration be denoted by the curve equation

y = mx+ cm (3.1)

where m the slope is with respect to the average load linear curve.

Γ =
γ

τ
× (

∫ τ

0
(mx+ cm) + θ) +

∫ γ

0
(ax+ ca)

Γ =
γ

τ
× (

mτ 2

2
+ cmτ + θ) + γ × (

aγ

2
+ ca)

Γ = γ × (
mτ

2
+ cm +

θ

τ
+
aγ

2
+ ca)

d

dτ
(Γ) = γ × (m/2 − θ/r2) = 0

τ =

√
2θ

m

3.3.1 Ideal LB Period Calculation

The figure below shows the relationship between the total application time vs load balancing

period for Jacobi application.

The figure below shows the lb period identified by the Meta-Balancer framework. As can

be seen, the first load balancing step is at 14, followed by an lb period of 210 and 180.

Now we present how this theory is used by the Meta-Balancer to identify the load bal-

ancing period. For this, we consider a computation intensive application, like leanmd.

3.3.2 Computation Intensive Application

The Meta-Balancer periodically collects stats, which include average processor load, max-

imum load and utilization. When load balancing is done, the expectation is that the load

balancing strategy would make the maximum load equal to or close to the average load per

processor. Once a minimum set of stats are collected, we do a linear-extrapolation to predict

12

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350 400

El
ap

se
d

tim
e

(s
)

LB Period

Elapsed time vs LB Period

elapsed time

Figure 3.2: Elapsed time vs LB Period for Jacobi

the future load based on the principle of persistence. Thus, we obtain the curve that repre-

sents maximum load and average load for the application run. Once, we have the max curve

equation with respect to the average curve, and the cost of load balancing, we substitute

that in the above equation to obtain the ideal lb period. This lb period is informed to all the

processors and chares. As more stats are collected, the lb period is refined and this refined

value is informed to all the processors and chares.

We obtain the max curve equation with respect to average curve, as we expect that

after load balancing, the max will become equal to the average. But it can so happen that

the load balancing strategy can still cause some imbalance to remain. This inefficiency in

LB strategies need be incorporated in the lb period calculation. The expected load after

load balancing would depend on how well the load balancing strategy could even out the

imbalance. The imbalance ratio after load balancing is calculated and the expected load is

updated to be average load * imbalance ratio. The max curve is calculated with respect to

this expected load. Once the max curve equation is identified, the lb period is calculated as

described in the earlier section. This adjustment to the expected load after load balancing

prevents frequent load balancing where the load balancer cannot improve the balance of

load.

13

 0.016

 0.017

 0.018

 0.019

 0.02

 0.021

 0.022

 0.023

 0.024

 0.025

 0 50 100 150 200 250 300 350 400

Lo
ad

 (s
)

Iterations

Jacobi

avg
max

Figure 3.3: Identifying LB Period for Jacobi

3.3.3 Dynamic triggers

In dynamic applications, the load in the system can change suddenly. If the load balancing

period has been fixed, then it could result in delayed call to the load balancer which reduces

the performance gains due to load balancing. Since the Meta-Balancer periodically monitors

the load in the system, it is in a position to trigger load balancing if required. The Meta-

Balancer, if sees that the imbalance ratio, given by max load/avg load, is beyond a threshold

of 10earliest.

This can be seen in the following figure for kNeighbor benchmark, where the load in the

system suddenly changes.

3.4 LB Period Intimation

Once the ideal load balancing period has been identified, it needs to be intimated to all

the processors so that they take part in the load balancing. All the processors come to a

barrier and then send their statistics, which includes the object load, processor load and

communication pattern, to a central processor. While the load balancing is carried out, the

chares remain idle. Once the load balancing period is informed, the chares enter the load

14

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300 350 400

Lo
ad

 (s
)

Iterations

kNeighbor

avg
max

Figure 3.4: Dynamic triggering of LB for kNeighbor benchmark

balancing stage on reaching the informed period. Whenever a chare finishes its iteration and

it checks to see if it needs to go into load balancing stage. If it isnt time for load balancing, it

resumes its work. Chares can be in different iterations depending on its load, the processor

load and communication dependencies. To ensure that the application doesnt hang, all the

chares have to be at the same iteration to carry out centralized load balancing. Here is a

scenario which could lead to a hung application. Consider a chare a, which is at iteration

i, goes into load balancing and becomes idle. Another chare b is in the middle of iteration

i+1, is waiting for a message from chare a. Since the chare a is idle, b cannot complete its

iteration and the load balancing cannot proceed until b enters the load balancing phase and

sends its data. This causes the application to hang.

To avoid such a scenario, which causes the application to hang, all the chares need to

reach a consensus on the iteration number to enter load balancing stage. Since the chares

can be in different iterations when the ideal load balancing period is informed, we use the

following scheme to obtain consensus. Once the central processor, root, identifies the ideal

load balancing period, which is tentative lb period, it broadcasts this information to all

the processors. On receiving the tentative lb period, the processors informs the root about

the maximum iteration of the chares residing on the processor. On receiving the maximum

15

iteration of the chares in the system, the root informs the final load balancing period. If

the ideal period is beyond the maximum iteration, ie no chare has reached the ideal load

balancing period, the lb period is fixed to the previously calculated value. But if any of the

chare has gone past the ideal load balancing period, the new load balancing period is set to

be the maximum iteration. This final lb period is informed to all the processors. On each

processor, whenever a chare finishes its iteration, before entering the next iteration, checks

to see if it has reached the lb period. If it hasnt reached the lb period, it resumes its work.

If it has reached the tentative lb period, it waits for the final verdict of the lb period. It is

said to be in a pause state. A chare in pause state, on receiving the final lb period, decides

to either resume its work, if it hasnt reached the final lb period, or enters the load balancing

stage, if it is at final lb period. Any chare which reaches the final lb period, enters into load

balancing stage.

This scheme ensures that all the chares arrive at a consensus regarding the load balancing

period and enters the load balancing stage at the same iteration. Figure shows the scheme.

3.4.1 Dynamic Refinement of LB Period

As the stats collection proceeds, the predicted load might change and become refined. This

inturn leads to the refinement of ideal lb period. When the ideal lb period changes, this is

intimated to all the processors and chares using the same scheme described in the previous

section. Unless a chare has entered the load balancing phase, it is possible to extend the LB

period. Similarly, the LB period can be reduced from the previously announced period if no

chare has gone beyond that period.

16

d7

e11 e12 e13

LB Period
BCast 10

c8

Max
Iteration

a10 b10

c9d8

ROOT

PE0

PE1

PE2

PAUSE b11 b13

Final LB Period
BCast 13

d10 c13d9

LOAD BALANCE

1 2 3 4

PAUSE

Figure 3.5: Intimating the calculated LB period

3.5 Strategy Selection

3.5.1 Communication vs Computation strategy

Data and their associated computations are distributed across several interconnected pro-

cessing elements (processors) which work in parallel. Accessing data on remote processors

requires inter-processor communication. Consequently, the efcient use of such distributed

memory parallel machines requires spreading the computation load evenly across different

processors and minimizing the communication overhead. Depending on the type of appli-

cation, preference should be given to load balancing strategies that either minimizes load

imbalance or that minimizes communication overhead.

Applications have various characteristics that helps determine whether it is communica-

tion intensive or a computation intensive. If it is a computation intensive application, then

imbalance in load will result in heavy degradation of performance. Load imbalance leads to

17

an increasing waste of resources as an application is scaled to more and more processors.

Hence, for computation intensive applications, strategies that balances out the load, such as

GreedyLB, RefineLB, RefineSwapLB, should be used. Imbalance in load can be identified

by the ratio of maximum load/ average load per processor. If this ratio is beyond a thresh-

old of 10then there is considerable imbalance. In Charm++ programs, communication is

overlapped with computation. But if application has high communication volume, it would

result in idle time due to message latency. If the alpha-beta cost of the communication in

the application is atleast 10% of the total load, it indicates that this is a communication

intensive application. To minimize the communication overhead, graph partitioner based

load balancing strategies, such as MetisLB, ScotchLB, should be used.

3.5.2 Refinement vs From Scratch strategy

The load balancing strategies map objects to processors based on the objects computation

load or based on the communication pattern. There are two categories of algorithms. One

is greedy-based or from scratch algorithms that do not take the existing object mapping

into account, and the other is renement-based algorithms that take the existing mapping

into account in order to limit the number of object movements. Reducing the object move-

ment indicates lesser migration cost. The computation based from-scratch strategies include

GreedyLB and computation based refine strategies include RefineLB, RefineSwapLB. In

the case of communication aware load balancing strategies, from-scratch strategies include

MetisLB, ScotchLB, ZoltanLB and refinement based strategies include ScotchRefineLB,

CommAwareRefineLB.

Figure shows the flowchart describing the strategy selection for communication vs com-

putation and scratch vs refinement.

18

Lot of idle
time

load
imbalance

No LB Comm LB

N

N Y

Y

Y ∝𝓑cost first time Y Scratch basedN

high imb

N

Y

good
scratch lb

Y
N

good
Refine LB N

Y

RefineLB

N

start

LB Strategy Selection

Figure 3.6: flowchart describing strategy selection

19

Chapter 4

Conclusions and Future Work

20

References

[1] Hartmut Kaiser, Maciek Brodowicz, and Thomas Sterling, Parallex an advanced parallel
execution model for scaling-impaired applications, ICPPW ’09: Proceedings of the 2009
International Conference on Parallel Processing Workshops (Washington, DC, USA),
IEEE Computer Society, 2009, pp. 394–401.

[2] L.V. Kalé and S. Krishnan, CHARM++: A Portable Concurrent Object Oriented System
Based on C++, Proceedings of OOPSLA’93 (A. Paepcke, ed.), ACM Press, September
1993, pp. 91–108.

21

	List of Tables
	List of Figures
	Chapter 1 Introduction
	Chapter 2 Load Balancing in Charm++
	Charm++ Load Balancing Framework
	Existing Load Balancers
	New Load Balancers
	RefineSwapLB
	ZoltanLB

	Chapter 3 Meta-Balancer
	Motivation
	Statistics Collection
	Existing synchronous statistics collection
	Asynchronous Collection of Statistics via Reduction
	Extracting per iteration information

	Load Balancing Period
	Ideal LB Period Calculation
	Computation Intensive Application
	Dynamic triggers

	LB Period Intimation
	Dynamic Refinement of LB Period

	Strategy Selection
	Communication vs Computation strategy
	Refinement vs From Scratch strategy

	Chapter 4 Conclusions and Future Work
	References

