
Scalable Algorithms for Constructing Balanced Spanning
Trees on System-ranked Process Groups

Akhil Langer, Ramprasad Venkataraman, Laxmikant V. Kale

Parallel Programming Laboratory
University of Illinois

September 25 2012

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 1 / 26

Pitch

Not all messaging needs fully-capable communicators

Its worthwhile to consider cheaper constructs

We propose:

Unranked or System-ranked Process Groups

User cannot choose member ranks

Cheap and Scalable Creation Mechanisms

I Shrink-and-Balance

I Rank-and-Hash

∼ 100X faster than MPI Comm split on 32K cores of IBM BG/P

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 2 / 26

Is process group creation/management scalable?

Memory capacity is growing slower than available concurrency

Runtime systems have to adopt resource-conserving mechanisms

Typical Process Group Implementations
I Each member can id everyone else
I Storage: O(n) (on each member process)
I Time for creation: O(n log n)

Applications can create many such groups simultaneously

How can we use less than O(n) memory?

Distributed enrollment
Distributed storage

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 3 / 26

Is process group creation/management scalable?

Memory capacity is growing slower than available concurrency

Runtime systems have to adopt resource-conserving mechanisms

Typical Process Group Implementations
I Each member can id everyone else
I Storage: O(n) (on each member process)
I Time for creation: O(n log n)

Applications can create many such groups simultaneously

How can we use less than O(n) memory?

Distributed enrollment
Distributed storage

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 3 / 26

Achieving distributed enrollment

Central specification of membership

MPI Group incl(
MPI Group group,
int n,
int *ranks, ← not scalable
MPI Group *newgroup)

Distributed enrollment

MPI Comm split(
MPI Comm comm,
int color,
int key,
MPI Comm *newcomm)

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 4 / 26

Achieving distributed storage

Distributed Tables

EuroMPI 2010

A Scalable MPI Comm split Algorithm for Exascale Computing.
Sack, P., Gropp, W.
In: Recent Advances in the Message Passing Interface. pp. 110. EuroMPI10 (2010)

Process Chains

EuroMPI 2011

Exascale algorithms for generalized MPI comm split.
Moody, A., Ahn, D., Supinski, B.
In: Recent Advances in the Message Passing Interface. pp. 9-18. EuroMPI11 (2011)

Unranked / System-Ranked Process Groups

EuroMPI 2012

Scalable Algorithms for Constructing Balanced Spanning Trees on System-Ranked
Process Groups Langer, A., Venkataraman, R., Kale L.
In: Recent Advances in the Message Passing Interface. pp. 9-18. EuroMPI12 (2012)

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 5 / 26

Achieving distributed storage

Distributed Tables

EuroMPI 2010

A Scalable MPI Comm split Algorithm for Exascale Computing.
Sack, P., Gropp, W.
In: Recent Advances in the Message Passing Interface. pp. 110. EuroMPI10 (2010)

Process Chains

EuroMPI 2011

Exascale algorithms for generalized MPI comm split.
Moody, A., Ahn, D., Supinski, B.
In: Recent Advances in the Message Passing Interface. pp. 9-18. EuroMPI11 (2011)

Unranked / System-Ranked Process Groups

EuroMPI 2012

Scalable Algorithms for Constructing Balanced Spanning Trees on System-Ranked
Process Groups Langer, A., Venkataraman, R., Kale L.
In: Recent Advances in the Message Passing Interface. pp. 9-18. EuroMPI12 (2012)

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 5 / 26

Achieving distributed storage

Distributed Tables

EuroMPI 2010

A Scalable MPI Comm split Algorithm for Exascale Computing.
Sack, P., Gropp, W.
In: Recent Advances in the Message Passing Interface. pp. 110. EuroMPI10 (2010)

Process Chains

EuroMPI 2011

Exascale algorithms for generalized MPI comm split.
Moody, A., Ahn, D., Supinski, B.
In: Recent Advances in the Message Passing Interface. pp. 9-18. EuroMPI11 (2011)

Unranked / System-Ranked Process Groups

EuroMPI 2012

Scalable Algorithms for Constructing Balanced Spanning Trees on System-Ranked
Process Groups Langer, A., Venkataraman, R., Kale L.
In: Recent Advances in the Message Passing Interface. pp. 9-18. EuroMPI12 (2012)

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 5 / 26

System-Ranked Process Group

User cannot specify or influence ranks of members

MPI Comm split(
MPI Comm comm,
int color,
int key,
MPI Comm *newcomm)

Ranks are assigned by runtime system

Hence, any mapping of application logic / data to ranks has to be
handled manually after creation

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 6 / 26

Are user-supplied ranks needed all the time?

barrier, broadcast, reduce, allreduce

Input / output not dependent on ranks

Assume commutative operators

Sizeable fraction of collective communication in applications involve
these operations 1, 2, 3

Several algorithms can be expressed with just these collectives

1NERSC6 Workload Analysis and Benchmark Selection Process.
Antypas, K., Shalf, J., Wasserman, H.
Tech. Rep. LBNL-1014E, Lawrence Berkeley National Lab(2008)

2Automatic MPI Counter Profiling.
Rabenseifner, R.
In: 42nd CUG Conference(2000)

3Parallel Scaling Characteristics of Selected NERSC User Project Codes
Skinner, D., Verdier, F., Anand, H., Carter, J., Durst, M., Gerber, R.
Tech. Rep. LBNL/PUB-904, Lawrence Berkeley National Lab (2005)

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 7 / 26

Problem Statement

Represent process groups using spanning trees

Low memory footprint
(distributed storage)

Recursive, splitting of original tree
(distributed enrollment)

Immediate availability of efficient
synchronization / housekeeping

Can use spanning tree for the target
collectives too

0

1

3

7 8

4

9 10

2

5

11 12

6

13 14

To support system-ranked groups

Starting from a parent tree, construct balanced spanning tree over enrolled
members only

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 8 / 26

The Reference Centralized Algorithm

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 9 / 26

The Reference Centralized Algorithm

Upward pass: gatherv
Members of new group contribute their process ids

Downward pass
pick immediate children and split the remaining list

O(m+ log n) time and O(m) memory 4

4m is size of the new subtree
Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 10 / 26

The Shrink-and-Balance Algorithm

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 11 / 26

Algorithm: Shrink-and-Balance
Upward Pass

Use enrollment data to shrink original spanning tree by excluding
non-participating processes

“fill” holes with member processes
I leaf process
I immediate child process

leaf process - send min(di,k , subtree size(v)) = O(log n) candidate
fillers to the parent

O(log n) space and O(log2 n) time

4di,k is depth of a rank i process in a balanced spanning tree of branching factor k
di,k = blogk(i(k − 1) + 1)c

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 12 / 26

Algorithm: Shrink-and-Balance
Upward pass

0

1

3

7 8

4

9 10

2

5

11 12

6

13 14

(a)

0

1

7 4

9

2

5 6

13 14

(b)

0

1

7 4

9

13

6

14

(c)

9

1

7 4

13

6

14

(d)

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 13 / 26

Algorithm: Shrink-and-Balance
Downward Pass

Upward pass yields participants-only spanning tree that need not be
balanced

Balance tree while minimizing vertex migrations
I compute ideal height of a perfectly balanced spanning tree
I target height yields max size of subtrees5

I based on current size, mark subtrees as vertex suppliers and consumers,
respectively

I request supplier for vertex if child is missing (takes O(log n) time)
I “matchmaking” step to assign suppliers to one or more consumers
I vertex concludes its role by calling balancing step on its children

O(log2 n) time, as a child could be missing at each level

5max size = kh−1
k−1

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 14 / 26

The Rank-and-Hash Algorithm

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 15 / 26

Algorithm: Rank-and-Hash
Upward Pass

Reduction

Store size of each subtree

07

14

31

7

1

8

0

42

9

1

10

0

23

50

11

0

12

0

63

13

1

14

1

(a) Subtree sizes after the upward pass

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 16 / 26

Algorithm: Rank-and-Hash
Upward Pass

Reduction

Store size of each subtree

07

14

31

7

1

8

0

42

9

1

10

0

23

50

11

0

12

0

63

13

1

14

1

(a) Subtree sizes after the upward pass

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 16 / 26

Algorithm: Rank-and-Hash
Downward Pass

Size of tree determines available ranks [0,m)

Range split amongst subtrees based on their sizes

Splitting continues down the original spanning tree until all available
ranks divided

Non-participating processes not assigned any ranks

10

7

1

42

9

3

64

13

5

14

6

(b) Ranks after the downward pass

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 17 / 26

Algorithm: Rank-and-Hash
Downward Pass

Size of tree determines available ranks [0,m)

Range split amongst subtrees based on their sizes

Splitting continues down the original spanning tree until all available
ranks divided

Non-participating processes not assigned any ranks

10

7

1

42

9

3

64

13

5

14

6

(c) Ranks after the downward pass

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 17 / 26

Algorithm: Rank-and-Hash
Identifying Tree Neighbors

Process ids of parent and children discovered through intermediary processes

id of intermediary process (Hi), for rank i computed via a hash function

Each rank i, sends its id to Hi and Hp (where, p is rank of its parent)

Receive msgs from Hi and Hp with ids of children and parent, respectively

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 18 / 26

Algorithm: Rank-and-Hash
Identifying Tree Neighbors

Process ids of parent and children discovered through intermediary processes

id of intermediary process (Hi), for rank i computed via a hash function

Each rank i, sends its id to Hi and Hp (where, p is rank of its parent)

Receive msgs from Hi and Hp with ids of children and parent, respectively

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 18 / 26

Experimental Setup

Time measured between broadcast on original spanning tree and
reduction on the newly constructed tree

Sample from a uniform distribution u(0, 1) and use participation
probability p to determine participation of a process in the group.

Repeatable seeds to ensure identical groups across runs

Algorithms implemented in Charm++

Runs on BG/P “Intrepid”

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 19 / 26

Results
Performance Comparison on up to 128k cores of BG/P

4k 8k 16k 32k 64k 128k28

29

210

211

212

213 p=0.01

4k 8k 16k 32k 64k 128k28

29

210

211

212

213 p=0.1

4k 8k 16k 32k 64k 128k28

29

210

211

212

213 p=0.3

4k 8k 16k 32k 64k 128k28

29

210

211

212

213 p=0.6

4k 8k 16k 32k 64k 128k28

29

210

211

212

213 p=0.9

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Legend

centralized

Rank-and-Hash

Shrink-and-Balance

ti
m

e
 (

in
 m

ic
ro

se
co

n
d
s)

ti
m

e
 (

in
 m

ic
ro

se
co

n
d
s)

number of processes

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 20 / 26

Results
Performance Comparison on up to 128k cores of BG/P

Distributed schemes outperform the centralized scheme at modest
process counts (except for very small p)

Shrink-and-Balance slower than Rank-and-Hash
I longer critical path

Both schemes attain the goal of reduced memory footprint!

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 21 / 26

Results
Performance Comparison on up to 128k cores of BG/P

Distributed schemes outperform the centralized scheme at modest
process counts (except for very small p)

Shrink-and-Balance slower than Rank-and-Hash
I longer critical path

Both schemes attain the goal of reduced memory footprint!

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 21 / 26

Results
Normalized message counts w.r.t. the centralized scheme on 128k cores of BG/P

0.001 0.01 0.1 0.3 0.6 0.9 0.99
participation probability

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o
rm

a
liz

e
d
 M

e
ss

a
g
e
 C

o
u
n
t

Shrink-and-Balance
Rank-and-Hash

Shrink-and-Balance has far fewer messages
than Rank-and-Hash

at p = 0.6, number of messages sent by
Centralized, Shrink-and-Balance and
Rank-and-Hash were 2.1, 2.6 and
4.9× 105, respectively

Shrink-and-Balance may perform better when
I multiple groups are being formed simultaneously
I group formation occurs simultaneous with other communication in the application

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 22 / 26

Results
Normalized message counts w.r.t. the centralized scheme on 128k cores of BG/P

0.001 0.01 0.1 0.3 0.6 0.9 0.99
participation probability

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o
rm

a
liz

e
d
 M

e
ss

a
g
e
 C

o
u
n
t

Shrink-and-Balance
Rank-and-Hash

Shrink-and-Balance has far fewer messages
than Rank-and-Hash

at p = 0.6, number of messages sent by
Centralized, Shrink-and-Balance and
Rank-and-Hash were 2.1, 2.6 and
4.9× 105, respectively

Shrink-and-Balance may perform better when
I multiple groups are being formed simultaneously
I group formation occurs simultaneous with other communication in the application

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 22 / 26

Results
Comparison with MPI Comm split on 32k cores of BG/P

MPI Comm split comparison with multi-color Rank-and-Hash

Group Creation Time (in milliseconds)

splits MPI-Comm-split Rank-and-Hash

1 134.968 0.708
2 106.573 0.713
4 96.989 0.760
8 93.536 0.785

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 23 / 26

Related Work

Moody et al6 proposed generalized MPI Comm split

I process groups as chain - O(1) space and O(logn) time
I requires O(n) messaging to exchange process ids during collective call
I does collective communication using binary spanning trees

Several differences

I lesser dependencies on remote information for progress of collective
hence, more prominent for one-sided transfer calls supported by some network
messaging APIs

I construct spanning trees of arbitrary branching factors

2 3 4 5 6 7
branching factor

200

400

600

800

1000

1200

1400

1600

1800

tim
e

(m
ic

ro
se

co
nd

s)

Message size (bytes)
32
256
4096
16384

Broadcast time on 32k core of BG/P

6
Moody, A., Ahn, D., de Supinski, B.: Exascale algorithms for generalized MPI comm split. In: Recent Advances in the

Message Passing Interface. pp. 9 - 18. EuroMPI11 (2011)

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 24 / 26

Summary

Space and time complexities for different group creation schemes

MPI(typical) Centralized Shrink-&-Balance Rank-&-Hash

Space O(n) O(m) O(logn) O(1)
Time O(n + m logm) O(m + logn) O(log2 n) O(logn)
Msg Count n logn n + m Ω(n + m) n + 4m + m

k

Max Msg Size O(n) O(m) O(logn) O(1)

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 25 / 26

Summary

System assigned ranks eliminate sorting of user-supplied keys

Spanning-Tree based groups
I Balanced
I k-ary
I Low memory usage
I Outperforms traditional creation mechanisms

Evaluate performance in the presence of other computation and
communication akin to real application execution scenarios

Account for network-topology by executing these algorithms
hierarchically

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 26 / 26

	System-Ranked Process Groups
	Problem Statement
	The Reference Centralized Algorithm
	The Shrink-and-Balance Algorithm
	The Rank-and-Hash Algorithm
	Results
	Experimental Setup
	Performance
	Message Counts
	Comparison with MPI_Comm_Split

	Related Work
	Summary and Future Work

