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Pitch

Not all messaging needs fully-capable communicators

Its worthwhile to consider cheaper constructs

We propose:

Unranked or System-ranked Process Groups

User cannot choose member ranks

Cheap and Scalable Creation Mechanisms

I Shrink-and-Balance

I Rank-and-Hash

∼ 100X faster than MPI Comm split on 32K cores of IBM BG/P
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Is process group creation/management scalable?

Memory capacity is growing slower than available concurrency

Runtime systems have to adopt resource-conserving mechanisms

Typical Process Group Implementations
I Each member can id everyone else
I Storage: O(n) (on each member process)
I Time for creation: O(n log n)

Applications can create many such groups simultaneously

How can we use less than O(n) memory?

Distributed enrollment
Distributed storage
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Achieving distributed enrollment

Central specification of membership

MPI Group incl(
MPI Group group,
int n,
int *ranks, ← not scalable
MPI Group *newgroup)

Distributed enrollment

MPI Comm split(
MPI Comm comm,
int color,
int key,
MPI Comm *newcomm)
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Achieving distributed storage

Distributed Tables

EuroMPI 2010

A Scalable MPI Comm split Algorithm for Exascale Computing.
Sack, P., Gropp, W.
In: Recent Advances in the Message Passing Interface. pp. 110. EuroMPI10 (2010)

Process Chains

EuroMPI 2011

Exascale algorithms for generalized MPI comm split.
Moody, A., Ahn, D., Supinski, B.
In: Recent Advances in the Message Passing Interface. pp. 9-18. EuroMPI11 (2011)

Unranked / System-Ranked Process Groups

EuroMPI 2012

Scalable Algorithms for Constructing Balanced Spanning Trees on System-Ranked
Process Groups Langer, A., Venkataraman, R., Kale L.
In: Recent Advances in the Message Passing Interface. pp. 9-18. EuroMPI12 (2012)
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System-Ranked Process Group

User cannot specify or influence ranks of members

MPI Comm split(
MPI Comm comm,
int color,
int key,
MPI Comm *newcomm)

Ranks are assigned by runtime system

Hence, any mapping of application logic / data to ranks has to be
handled manually after creation
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Are user-supplied ranks needed all the time?

barrier, broadcast, reduce, allreduce

Input / output not dependent on ranks

Assume commutative operators

Sizeable fraction of collective communication in applications involve
these operations 1, 2, 3

Several algorithms can be expressed with just these collectives

1NERSC6 Workload Analysis and Benchmark Selection Process.
Antypas, K., Shalf, J., Wasserman, H.
Tech. Rep. LBNL-1014E, Lawrence Berkeley National Lab(2008)

2Automatic MPI Counter Profiling.
Rabenseifner, R.
In: 42nd CUG Conference(2000)

3Parallel Scaling Characteristics of Selected NERSC User Project Codes
Skinner, D., Verdier, F., Anand, H., Carter, J., Durst, M., Gerber, R.
Tech. Rep. LBNL/PUB-904, Lawrence Berkeley National Lab (2005)
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Problem Statement

Represent process groups using spanning trees

Low memory footprint
(distributed storage)

Recursive, splitting of original tree
(distributed enrollment)

Immediate availability of efficient
synchronization / housekeeping

Can use spanning tree for the target
collectives too
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To support system-ranked groups

Starting from a parent tree, construct balanced spanning tree over enrolled
members only
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The Reference Centralized Algorithm
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The Reference Centralized Algorithm

Upward pass: gatherv
Members of new group contribute their process ids

Downward pass
pick immediate children and split the remaining list

O(m+ log n) time and O(m) memory 4

4m is size of the new subtree
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The Shrink-and-Balance Algorithm
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Algorithm: Shrink-and-Balance
Upward Pass

Use enrollment data to shrink original spanning tree by excluding
non-participating processes

“fill” holes with member processes
I leaf process
I immediate child process

leaf process - send min(di,k , subtree size(v)) = O(log n) candidate
fillers to the parent

O(log n) space and O(log2 n) time

4di,k is depth of a rank i process in a balanced spanning tree of branching factor k
di,k = blogk(i(k − 1) + 1)c
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Algorithm: Shrink-and-Balance
Upward pass
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Algorithm: Shrink-and-Balance
Downward Pass

Upward pass yields participants-only spanning tree that need not be
balanced

Balance tree while minimizing vertex migrations
I compute ideal height of a perfectly balanced spanning tree
I target height yields max size of subtrees5

I based on current size, mark subtrees as vertex suppliers and consumers,
respectively

I request supplier for vertex if child is missing (takes O(log n) time)
I “matchmaking” step to assign suppliers to one or more consumers
I vertex concludes its role by calling balancing step on its children

O(log2 n) time, as a child could be missing at each level

5max size = kh−1
k−1
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The Rank-and-Hash Algorithm
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Algorithm: Rank-and-Hash
Upward Pass

Reduction

Store size of each subtree
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(a) Subtree sizes after the upward pass
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Algorithm: Rank-and-Hash
Downward Pass

Size of tree determines available ranks [0,m)

Range split amongst subtrees based on their sizes

Splitting continues down the original spanning tree until all available
ranks divided

Non-participating processes not assigned any ranks
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(b) Ranks after the downward pass
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Algorithm: Rank-and-Hash
Identifying Tree Neighbors

Process ids of parent and children discovered through intermediary processes

id of intermediary process (Hi), for rank i computed via a hash function

Each rank i, sends its id to Hi and Hp (where, p is rank of its parent)

Receive msgs from Hi and Hp with ids of children and parent, respectively
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Experimental Setup

Time measured between broadcast on original spanning tree and
reduction on the newly constructed tree

Sample from a uniform distribution u(0, 1) and use participation
probability p to determine participation of a process in the group.

Repeatable seeds to ensure identical groups across runs

Algorithms implemented in Charm++

Runs on BG/P “Intrepid”

Langer, Venkataraman, Kale (PPL, UIUC) Spanning Trees on Unranked Process Groups September 25 2012 19 / 26



Results
Performance Comparison on up to 128k cores of BG/P
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Results
Performance Comparison on up to 128k cores of BG/P

Distributed schemes outperform the centralized scheme at modest
process counts (except for very small p)

Shrink-and-Balance slower than Rank-and-Hash
I longer critical path

Both schemes attain the goal of reduced memory footprint!
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Results
Normalized message counts w.r.t. the centralized scheme on 128k cores of BG/P
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Shrink-and-Balance has far fewer messages
than Rank-and-Hash

at p = 0.6, number of messages sent by
Centralized, Shrink-and-Balance and
Rank-and-Hash were 2.1, 2.6 and
4.9× 105, respectively

Shrink-and-Balance may perform better when
I multiple groups are being formed simultaneously
I group formation occurs simultaneous with other communication in the application
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Results
Comparison with MPI Comm split on 32k cores of BG/P

MPI Comm split comparison with multi-color Rank-and-Hash

Group Creation Time (in milliseconds)

# splits MPI-Comm-split Rank-and-Hash

1 134.968 0.708
2 106.573 0.713
4 96.989 0.760
8 93.536 0.785
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Related Work

Moody et al6 proposed generalized MPI Comm split

I process groups as chain - O(1) space and O(logn) time
I requires O(n) messaging to exchange process ids during collective call
I does collective communication using binary spanning trees

Several differences

I lesser dependencies on remote information for progress of collective
hence, more prominent for one-sided transfer calls supported by some network
messaging APIs

I construct spanning trees of arbitrary branching factors
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6
Moody, A., Ahn, D., de Supinski, B.: Exascale algorithms for generalized MPI comm split. In: Recent Advances in the

Message Passing Interface. pp. 9 - 18. EuroMPI11 (2011)
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Summary

Space and time complexities for different group creation schemes

MPI(typical) Centralized Shrink-&-Balance Rank-&-Hash

Space O(n) O(m) O(logn) O(1)
Time O(n + m logm) O(m + logn) O(log2 n) O(logn)
Msg Count n logn n + m Ω(n + m) n + 4m + m

k

Max Msg Size O(n) O(m) O(logn) O(1)
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Summary

System assigned ranks eliminate sorting of user-supplied keys

Spanning-Tree based groups
I Balanced
I k-ary
I Low memory usage
I Outperforms traditional creation mechanisms

Evaluate performance in the presence of other computation and
communication akin to real application execution scenarios

Account for network-topology by executing these algorithms
hierarchically
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