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ABSTRACT
“Computing as a service” model in cloud has encouraged
High Performance Computing to reach out to wider scien-
tific and industrial community. Many small and medium
scale HPC users are exploring Infrastructure cloud as a pos-
sible platform to run their applications. However, there are
gaps between the characteristic traits of an HPC applica-
tion and existing cloud scheduling algorithms. In this paper,
we propose an HPC-aware scheduler and implement it atop
Open Stack scheduler. In particular, we introduce topology
awareness and consideration for homogeneity while allocat-
ing VMs. We demonstrate the benefits of these techniques
by evaluating them on a cloud setup on Open Cirrus test-
bed.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel Programming;
K.6.4 [System Management]: Centralization/decentraliza-
tion

Keywords
High Performance Computing, Clouds, Resource Scheduling

1. INTRODUCTION
Cloud computing is increasingly being explored as a cost

effective alternative and addition to supercomputers for some
HPC applications [8,13,17,24]. Cloud provides the benefits
of economy of scale, elasticity and virtualization to HPC
community and is attracting many users which cannot af-
ford to establish their own dedicated cluster due to up-front
investment, sporadic demands or both.

However, presence of commodity interconnect, performan-
ce overhead introduced by virtualization and performance
variability are some factors which imply that cloud can be
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suitable for some HPC applications but not all [8, 15]. Past
research [15,16,18,24] on HPC in cloud has primarily focused
on evaluation of scientific parallel applications (such as those
written in MPI [6]) and have been mostly pessimistic. To
the best of our knowledge, there have been few efforts on VM
scheduling algorithms which take into account the nature of
HPC application - tightly coupled processes which perform
frequent inter-process communication and synchronizations.
VM to physical machine placement can have a significant
impact on performance. With this as motivation, the pri-
mary question that we address through this research is the
following: Can we improve HPC application performance in
Cloud through intelligent VM placement strategies tailored
to HPC application characteristics?

Current cloud management systems such as Open Stack [3]
and Eucalyptus [23] lack an intelligent scheduler for HPC
applications. In our terminology, scheduling or placement
refers to selection of physical servers for provisioning virtual
machines. In this paper, we explore the challenges and al-
ternatives for scheduling HPC applications on cloud. We
implement HPC-aware VM placement strategies - specifi-
cally topology awareness and hardware awareness in Open
Stack scheduler and evaluate their effectiveness using per-
formance measurement on a cloud, which we setup on Open
Cirrus [9] platform.

The benefit of our approach is that HPC-aware schedul-
ing strategies can result in significant benefits for both HPC
users and cloud providers. Using these strategies, cloud
providers can utilize infrastructure more and offer improved
performance to cloud users. This can allow cloud providers
to obtain higher profits for their resources. They can also
pass some benefits to cloud users to attract more customers.

The key contribution of this work is a novel scheduler for
HPC application in cloud for Open Stack through topology
and hardware awareness.We address the initial VM place-
ment problem in this paper.

The remainder of this paper is organized as follows: Sec-
tion 2 provides background on Open Stack. Section 3 dis-
cusses our algorithms followed by implementation. Next,
we describe our evaluation methodology in Section 4. We
present performance results in Section 5. Related work is
discussed in section 6. We give concluding remarks along
with an outline of future work in Section 7.

2. OPEN STACK SCHEDULER
Open Stack [3] is an open source cloud management sys-

tem which allows easy control of large pools of infrastruc-
ture resources (compute, storage and networking) through-



out a datacenter. Open Stack has multiple projects, each
with a different focus, examples are compute (Nova), storage
(Swift), Image delivery and registration (Glance), Identity
(Keystone), Dashboard (Horizon) and Network Connectiv-
ity (Quantum).

Our focus in this work is on the compute component of
Open Stack, known as Nova. A core component of a cloud
setup using Open Stack is the Open Stack scheduler, which
selects the physical nodes where a VM will be provisioned.
We implemented our scheduling techniques on top of exist-
ing Open Stack scheduler and hence first we summarize the
existing scheduler. In this work, we used the Diablo (2011.3)
version of Open Stack.

Open Stack scheduler receives a VM provisioning request
(request_spec) as part of RPC message. request_spec

specifies the number of instances (VMs), instance type which
maps to resource requirements (number of virtual cores,
amount of memory, amount of disk space) for each instance
and some other user specified options that can be passes to
the scheduler at run time. Host capability data is another
important input to the scheduler which contains the list of
physical servers with their current capabilities (free CPUs,
free memory etc.).

Using request_spec and capabilities data, the scheduling
algorithm consists of two steps:

1. Filtering - excludes hosts which are incapable of fulfill-
ing the request based on certain criteria (e.g free cores
< requested virtual cores).

2. Weighing - computes the relative fitness of filtered list
of hosts to fulfill the request using cost functions. Mul-
tiple cost functions can be used, each host is first scored
by running each cost function and then weighted scores
are calculated for each host by multiplying score and
weight of each cost function. An example of cost func-
tion is free memory in a host.

Next, the list of hosts is sorted by the weighted score and
VMs are provisioned on hosts using this sorted list.

There are various filtering and weighing strategies cur-
rently available in Open Stack. However, one key disadvan-
tage of the current Open Stack scheduler is that schedul-
ing policies do not consider application type and priorities,
which could allow more intelligent decision making. Fur-
ther, scheduling policies ignore processor heterogeneity and
network topology while selecting hosts for VMs. Existing
scheduling policies consider the k VMs requested as part
of a user request as k separate VM placement problems.
Hence, it runs the core of scheduling algorithm k times
to find placement of k VMs constituting a single request,
thereby avoiding any co-relation between the placement of
VMs which comprise a single request. Some example of cur-
rently available schedulers are Chance scheduler (chooses
host randomly across availability zones), Availability zone
scheduler (similar to chance, but chooses host randomly
from within a specified availability zone) and Simple sched-
uler (chooses least loaded host e.g. host with least number
of running cores).

3. AN HPC-AWARE SCHEDULER
In this paper, we address the initial VM placement prob-

lem (Figure 1). The problem can be formulated as - Map:
k VMs (v1, v2, .., vk) each with same, fixed resource require-
ments (decided by instance type: CPU, memory, disk etc)
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Figure 1: VM Placement

to N physical servers P1, P2, ..., Pn, which are unoccupied or
partially occupied, while satisfying resource requirements.
Moreover, our focus is on providing the user a VM place-
ment optimized for HPC.

Next, we discuss the design and implementation of the
proposed techniques atop existing Open Stack scheduling
framework.

3.1 Techniques
In this section, we describe two techniques for optimizing

the placement of VMs for an HPC-optimized allocation.

3.1.1 Topology Awareness
An HPC application consists of n parallel processes, which

typically perform inter-process communication for overall
progress. The effect of cluster topology on application per-
formance has been widely explored by HPC community. In
the context of cloud, the cluster topology is unknown to
the user. The goal is to place the VMs on those physical
machines which are as close to each other as possible with
respect to the cluster topology. Let us consider a practical
example - the cluster topology of Open Cirrus HP Labs site
- a simple topology, each server is a 4-core node and there
are 32 nodes in a rack, all nodes in a rack are connected by
a 1Gbps link to a switch. All racks are connected using a
10Gbps link to a top-level switch. In this case, the 10Gbps
link is shared by 32 nodes, effectively providing a bandwidth
of 10Gbps/32 = 0.312 Gbps between two nodes in different
rack when all nodes are communicating. However, the point-
to-point bandwidth between two nodes in the same rack is
1 Gbps. Hence, it would be better to pack VMs to nodes
in the same rack compared to a random placement policy,
which can potentially distribute them all over the cluster.

3.1.2 Hardware Awareness/Homogeneity
Another characteristics of HPC applications is that they

are generally iterative and bulk synchronous, which means
that in each iteration, there are two phases - computation
followed by communication/synchronization which also acts
as a barrier. The next iteration can start only when all pro-
cesses have finished previous iteration. Hence, a single slow
process can degrade the performance of whole application.
This also means that faster processors waste lot of time wait-



ing for slower processors to reach the synchronization point.
In case of cloud, the user is unaware of the underlying

hardware on which his VMs are placed. Since clouds evolve
over time, they consist of heterogeneous physical servers.
Existing VM placement strategies ignore the heterogeneity
of the underlying hardware. This can result in some VMs
running on faster processors, while some running on slower
processors. Some cloud providers, such as Amazon EC2 [1],
address the problem of heterogeneity by creating a new com-
pute unit and allocating based on that. Using a new com-
pute unit enables them to utilize the remaining capacity and
allocating it to a separate VM using shares (e.g 80-20 CPU
share). However, for HPC applications, this can actually
make the performance worse, since all the processes com-
prising an application can quickly become out of sync due
to the effect of other VM on same node. To make sure the k
VMs are at sync, all k VMS need to be scheduled together
if they are running on heterogeneous platform and sharing
CPU with other VMs (some form of gang scheduling). In
addition, the interference arising from other VMs can have
a significant performance impact on HPC application. To
avoid such interference, Amazon EC2 uses a dedicated clus-
ter for HPC [2]. However, the disadvantage of this is lower
utilization which results in higher price.

To address the needs of homogeneous hardware for HPC
VMs, we take an alternative approach. We make the VM
placement hardware aware and ensure that all k VMs of a
user request are allocated same type of processors.

3.2 Implementation
We implemented the techniques discussed in section 3.1

on top of Open Stack scheduler. The first modification to
enable HPC-aware scheduling is to switch to the use of group
scheduling which allows the scheduling algorithm to consider
placement of k VMs as a single scheduling problem rather
than k separate scheduling problems. Our topology-aware
algorithm (pseudo-code shown in Algorithm 1) proceeds by
considering the list of physical servers (hosts in Open Stack
scheduler terminology). Next, the filtering phase of the
scheduler removes the hosts which cannot meet the requested
demands of a single VM. We also calculate the maximum
number of VMs each host can fit (based on the number of
virtual cores and amount of memory requested by each VM).
We call it hostCapacity. Next, for each rack, we calculate
the number of VMs the rack can fit (rackCapacity) by sum-
ming the hostCapacity for all hosts in a rack. Using this
information, scheduler creates a build plan, which is an or-
dered list of hosts such that if i < j, ith host belongs to a
rack with higher capacity compared to jth host or both host
belong to same rack and hostcapacity of ith host is greater
or equal to that of jth host. Hence, the scheduler places
VMs in a rack with largest rackCapacity and the host in
that rack with largest hostCapacity.

One potential disadvantage of our current policy of select-
ing the rack with maximum available capacity is unnecessary
system fragmentation. To overcome this problem, we plan
to explore more intelligent heuristics such as selecting the
rack (or a combination of racks) with the minimum excess
capacity over the VM set allocation.

To ensure homogeneity, the scheduler first groups the hosts
into different lists based on their processor type and then
applies the scheduling algorithm described above to these
groups, with preference to the best configuration first. Cur-

Algorithm 1 Pseudo code for Topology aware scheduler

1: capability = list of capabilities of unique hosts
2: request spec = request specification
3: numHosts = capability.length()
4: filteredHostList = new vector < int >
5: rackList = new set < int >
6: hostCapacity = new int[numHosts]
7: for i = 1 to i < numHosts do
8: hostCapacity[i] = max

(capability[i].freeCores/request spec.instanceV cpus,
capability[i].freeMemory/request spec.instanceMemory)

9: if hostCapacity[i] > 0 then
10: filteredHostList.push(i)
11: end if
12: rackList.add(capability[i].rackid)
13: end for
14: numRacks = rackList.length()
15: rackCapacity = new int[numRacks]
16: for j = 1 to j < numRacks do
17: rackCapacity[j] =

∑
i hostCapacity[i] ∀i such that

capability[i].rackid = j
18: end for
19: Sort filteredHostList by decreasing order of hostCapacity[j]

where j ∈ filteredHostList. Call this sortedHostList
20: Stable Sort sortedHostList by decreasing or-

der of rackCapacity[capability[j].rackid] where
j ∈ filteredHostList. Call this PrelimBuildP lan.

21: buildP lan = new vector[int]
22: for i = 1 to i <= numFilteredHosts do
23: for j = 1 to j <= hostCapacity[PrelimBuildP lan[i]] do
24: buildP lan.push(PrelimBuildP lan[i])
25: end for
26: end for

27: return buildP lan

rently, we use CPU frequency as the distinction criteria be-
tween different processor types. For more accurate distinc-
tion, we plan on incorporating additional factors such as
cache sizes and MIPS.

4. EVALUATION METHODOLOGY
In this section, we describe the platform which we setup

and the applications which we chose for this study.

4.1 Experimental Testbed
We setup a cloud using Open Stack on Open Cirrus testbed

at HP Labs site [9]. Open Cirrus is a cluster established for
system level research. This testbed has 3 types of servers:

• Intel Xeon E5450 (12M Cache, 3.00 GHz)
• Intel Xeon X3370 (12M Cache, 3.00 GHz)
• Intel Xeon X3210 (8M Cache, 2.13 GHz)

The topology is as described in section 3.1.1.
We used KVM [7] as hypervisor since past research has

indicated that KVM is a good choice for virtualization for
HPC clouds [25]. For network virtualization, we initially
used the default network driver (rtl8139 ) but subsequently
switched to the virtio-net driver on observing improved net-
work performance (details in section 5). The VMs used for
the experiments performed in this paper were of the type
m1.small (1 core, 2 GB memory, 20 GB disk).

4.2 Benchmarks and Applications
For this study, we chose certain benchmarks and real world

applications as representatives of HPC applications.
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Figure 2: Latency and Bandwidth vs. Message Size for different VM placement.

• Jacobi2D - A kernel which performs 5-point stencil
computation to average values in a 2-D grid. Such
stencil computation is very commonly used in scientific
simulations, numerical algebra, and image processing.

• NAMD [11] - A highly scalable molecular dynamics
application and representative of a complex real world
application used ubiquitously on supercomputers. We
used the ApoA1 input (92k atoms) for our experi-
ments.

• ChaNGa [19] (Charm N-body GrAvity solver) - A scal-
able application used to perform collisionless N-body
simulation. It can be used to perform cosmological
simulation and also includes hydrodynamics. It uses
Barnes-Hut tree [10] to calculate forces between parti-
cles. We used a 300, 000 particle system for our runs.

All these applications are written in Charm++ [20], which
is a C++ based object-oriented parallel programming lan-
guage. We used the net-linux-x86-64 udp machine layer
of Charm++ and used -O3 optimization level.

5. RESULTS
We first evaluate the effect of topology-aware scheduling.

Figure 2 shows the results of a ping-pong benchmark. We
used a Converse [12] (underlying substrate of Charm++)
ping-pong benchmark to compare latencies and bandwidth
for various VM placement configurations. Figure 2 presents
several insights. First, we see that virtio outperforms rtl8139
network driver both for intra-node and inter-node VM com-
munication, making it a natural choice for remainder of the
experiments. Second, there is significant virtualization over-
head. Even for communication between VMs on same node,
there is a 64 usec latency using virtio. Similarly, for inter-
node communication, VM latencies are around twice com-
pared to communication between physical nodes in Open
Cirrus and there is also substantial reduction in achieved
bandwidth, although the degradation in bandwidth (33%
reduction) is less compared to the degradation in latencies
(100% increase). Third, there is very little difference for la-
tencies and bandwidth when comparing communication be-
tween VMs on different nodes but same rack and between
VMs on different nodes on different racks. This can be at-
tributed to the use of wormhole routing in modern network
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Figure 3: Percentage improvement achieved using
hardware aware Scheduling compared to the case
where 2 VMs were on slower processors and rest on
faster processors

which means that the extra hops cause very little perfor-
mance overhead. As we discussed in section 3.1.1, effects
of intra-rack and cross-rack communication become more
prominent as we scale up or the application performs signif-
icant collective communication such as all-to-all data move-
ment.

We compared our topology aware scheduler with random
scheduling. To perform a fair comparison, we explicitly con-
trolled the scheduling such that the default (random) case
corresponds to a mapping where the VMs are distributed
to two racks, we keep the number of VM on each host as
two in both cases. For the topology aware case, the sched-
uler placed all VMs to the hosts in same rack. For these
experiments, we were able to gain up to 5% in performance
compared to random scheduling. We expect the benefits of
topology aware scheduling to increase as we run on higher
core counts in cloud.

Figure 3 shows the effect of hardware aware VM place-
ment on the performance of some applications for different
number of VMs. We compare two cases - when all VMs are
mapped to same type of processors (Homo) and when two
VMs are mapped to a slower processors, rest to the faster
processor (Hetero). To perform a fair comparison, we keep
the number of VMs on each host as two in both cases. % im-



provement is calculated as (THetero−THomo)/THetero. From
Figure 3, we can observe that the improvement achieved de-
pends on the nature of application and the scale at which it is
run. The improvement is not equal to the ratio of sequential
execution time on slower processor to that on faster proces-
sor since parallel execution time also includes the communi-
cation time and parallel overhead, which is not necessarily
dependent on the processor speeds. We achieved up to 20%
improvement in parallel execution time - which means we
were able to save 20% of time * N CPU-hours, where N is
the number of processors used.

We used the Projections [21] tool to analyze the perfor-
mance bottlenecks in these two cases. Figure 4 shows the
CPU (VM) timelines for an 8-core Jacobi2D experiment, x-
axis being time and y-axis being the (virtual) core number.
White portion shows idle time while colored portions rep-
resent application functions. For figure 4a, the first 2 VMs
were mapped to slower processors and are busy for all the
time. It is clear that there is lot more idle time on VMs 3-7
compared to first 2 VMs since they have to wait for VMs 0-1
to reach the synchronization point after finishing the com-
putation. The first two VMs are bottleneck in this case and
result in execution time being 20% more compared to the
homogeneous case. In Figure 4b all 8 VMs are on same type
of processors, here the idle time is due to the communication
time.

Figure 5 shows the overall performance that we achieve
using these techniques on our test-bed. We compare the
performance to that achieved without virtualization on the
same testbed. It is clear that using our techniques, even
communication intensive applications such as NAMD and
ChaNGa scale quite well, compared to their scalability on
the physical platform. However, effect of virtualization on
network performance can quickly become a scalability bot-
tleneck (as suggested by Figures 2 and 4).

6. RELATED WORK
There have been several studies on HPC in cloud using

benchmarks such as NPB and real applications [8, 13, 15–
17, 22, 24]. The conclusions of these studies have been the
following:

• Interconnect and I/O performance on commercial cloud
severely limit performance and cause significant per-
formance variability.

• Cloud cannot compete with supercomputers based on
the metric $/GFLOPS for large scale HPC applica-
tions.

• It can be cost-effective to run some applications on
cloud compared to supercomputer, specifically those
with less communication and at low scale.

In our earlier work [15], we studied the performance-cost
tradeoffs of running different applications on supercomputer
vs. cloud. We demonstrated that the suitability of a plat-
form for an HPC application depends upon application char-
acteristics, performance requirements and user preferences.
In another work, we explored techniques to improve HPC ap-
plication performance in Cloud through an optimized paral-
lel run-time system. We used a cloud-friendly load balancing
system to reduce the performance degradation suffered by
parallel application due to effect of virtualization in cloud.

In this paper, we take one step further and research VM
placement strategies which can result in improved applica-

(a) Heterogeneous: First two VMs on slower processors

(b) Homogeneous: All 8 VMs on same type of processors

Figure 4: Timeline of 8 VMs running Jacobi2D (2K
by 2K): white portion shows idle time while colored
portions represent application functions.

tion performance. Our focus is HPC applications - which
consist of k parallel instances typically requiring synchro-
nization through inter process communication.

Existing scheduler do not address this problem. Cloud
management systems such as Open Stack [3], Eucalyptus [23]
and Open Nebula [5] lack strategies which consider such
tightly coupled nature of VMs comprising a single user re-
quest, while making scheduling decisions. Fan et al. dis-
cuss topology aware deployment for scientific applications
in cloud and map the communication topology of a paral-
lel application to the VM physical topology [14]. However,
we focus on allocating VMs in a topology aware manner
to provide a good set of VMs to an HPC application user.
Moreover, we address the heterogeneity of hardware. Ama-
zon EC2’s Cluster Compute instance introduces Placement
Groups such that all instances launched within a Placement
Group are expected to have low latency and full bisection
10 Gbps bandwidth between instances [2]. It is unknown
and undisclosed how strict those guarantees are and what
techniques are used to provide them.

There have been several efforts on job scheduling for HPC
applications, such as LSF (Load Sharing Facility) [4] - a
commercial job scheduler which allows load sharing using
distribution of jobs to available CPUs in heterogeneous net-
work. SLURM, ALPS, MOAB, Torque, Open PBS, PBS
Pro, SGE, Condor are other examples. However, they per-
form scheduling at the granularity of physical machines. In
Cloud, virtualization enables consolidation and sharing of
nodes between different types of VMs which can enable im-
proved server utilization.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we learned that utilizing the knowledge of

target application for a VM can lead to more intelligent VM
placement decisions. We made a case for HPC-aware VM
placement techniques and demonstrated the benefits of us-
ing HPC-aware VM placement techniques for efficient exe-
cution of HPC applications in cloud. In particular, we im-
plemented topology and hardware awareness in Open Stack
scheduler and evaluated them on a cloud setup on Open
Cirrus testbed.

In future, we plan to research how to schedule a mix
of HPC and non-HPC applications in an intelligent fash-
ion to increase resource utilization. E.g. co-locating VMs
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Figure 5: Execution Time vs. Number of cores/VMs for different applications.

which are network bandwidth intensive and VMs which are
compute intensive to increase resource utilization. Compar-
ison with other network virtualization techniques such as
vhost net and tcp protocol is another direction of future re-
search.
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