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Abstract—An exascale machine is expected to be delivered in
the time frame 2018-2020. Such a machine will be able to tackle
some of the hardest computational problems and to extend our
understanding of Nature and the universe. However, to make
that a reality, the HPC community has to solve a few important
challenges. Resilience will become a prominent problem because
an exascale machine will experience frequent failures due to the
large amount of components it will encompass. Some form of fault
tolerance has to be incorporated in the system to maintain the
progress rate of applications as high as possible. In parallel, the
system will have to be more careful about power management.
There are two dimensions of power. First, in a power-limited
environment, all the layers of the system have to adhere to
that limitation (including the fault tolerance layer). Second,
power will be relevant due to energy consumption: an exascale
installation will have to pay a large energy bill. It is fundamental
to increase our understanding of the energy profile of different
fault tolerance schemes. This paper presents an evaluation of
three different fault tolerance approaches: checkpoint/restart,
message-logging and parallel recovery. Using programs from
different programming models, we show parallel recovery is the
most energy-efficient solution for an execution with failures. At
the same time, parallel recovery is able to finish the execution
faster than the other approaches. We explore the behavior of
these approaches at extreme scales using an analytical model.
At large scale, parallel recovery is predicted to reduce the total
execution time of an application by 17% and reduce the energy
consumption by 13% when compared to checkpoint/restart.

I. INTRODUCTION

As high performance computing systems grow in size and
complexity, a set of new challenges emerge to keep the same
level of productivity as the previous generation of machines.
With exascale on the horizon, resilience and energy consump-
tion are two of the major problems that have to be addressed
[1], [2]. Resilience will become a fundamental concern due to
the extremely large number of components that will form an
exascale machine. Such a supercomputer will have millions
of processors along with memory modules, routers and disks.
With these many pieces, an exascale machine is expected to
experience a failure every few minutes [2]. Power management
will be the driver in the design of architectures, systems and
applications for exascale. In a power-limited environment, it
will be crucial to constrain all the layers of the system to meet
the power budget. Furthermore, reducing power consumption
by one megawatt may save around $1M/year even in a
relatively inexpensive energy contract [2].

Incorporating some sort of fault tolerance technique in the
system will be unavoidable. But, whatever fault tolerance
strategy is used, it should be an energy efficient solution.
An understanding of how costly each of these strategies is,
in terms of energy consumption, is fundamental to drive the
resilience research towards exascale. This paper compares
three standard checkpoint-based fault tolerance methods ac-
cording to their energy consumption. The first method is the
traditional checkpoint/restart based on local storage that has
been implemented in several libraries [3], [4]. The second
strategy is a particular version of message-logging [5] that
requires messages to be stored, but avoids a global rollback in
case of a failure. Finally, the third approach is called parallel
recovery [6] and requires the system to allow tasks to migrate
after a failure. This ability potentially reduces recovery time
to a small fraction of re-execution time from checkpoint.

The contributions of this paper are listed below:
• A comparative evaluation of the energy efficiency of

three fault tolerance strategies. We provide results using
programs in two different programming models (§IV).

• An understanding of the performance of the different
strategies during recovery when failures are injected in
the system (§IV).

• A model to predict how energy efficient the three different
methods will be for a variety of scenarios and particularly
at exascale (§V).

II. BACKGROUND

This section presents an overview of the three fault tolerant
protocols that we evaluate in the rest of the paper. We assume a
parallel program is composed of a collection of tasks and each
task performs part of the computation and holds a piece of the
data. The only way to share information among the tasks is
by message passing. The parallel program runs on a machine
comprising several nodes. A node may run one or more tasks
depending on the decisions made by a runtime system that
assigns tasks to nodes. The nodes of the system may fail
according to the fail-stop model, where the node becomes
non-functional and never comes back up. Other nodes may
replace the failed one. If one node fails, the tasks running on
it are lost and have to be recreated from a checkpoint. The
fault tolerance techniques described below tolerate failures of
one node. Figure 1 presents the composition of the protocols.
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Fig. 1. Schematic view of the fault tolerance protocols.

A. Checkpoint/Restart

The traditional approach to tolerate a failure is to have
the system checkpointing its state periodically. If one node
crashes, the whole system rolls back to the most recent
checkpoint and restarts from there. This scheme is called
checkpoint/restart and it is by far the most popular method
in HPC to provide fault tolerance. Its underlying principle is
simple, which makes it straightforward to implement. Never-
theless, it has adopted many variants, depending on the design
decisions of the protocol.

One decision is to determine whether to checkpoint the
whole system or just the tasks of the parallel program. In
system-level checkpoint, the whole machine state is saved to
disk. A popular library that performs this operation is BLCR
[7]. On the other hand, application-level checkpoint assumes
that the state of the tasks is enough to resume the execution of
the program in case of a failure. The SCR library [3] uses this
approach. One advantage of application-level checkpoint is to
dramatically reduce the amount of memory to be checkpointed.
However, it requires the program to identify what variables
in the program should be stored and at which points of the
execution. We believe this is not a major burden for the
programmer of HPC applications. We assume application-level
checkpoint in this paper.

Another decision in designing a checkpoint/restart protocol
is whether or not to coordinate the tasks at checkpoint.
An uncoordinated protocol allows the tasks to checkpoint
independently. However, this may complicate the recovery
mechanism. On the contrary, a coordinated protocol ensures
that the tasks checkpoint a consistent global state of the
system. We believe HPC applications usually contain global
synchronization points where checkpoint calls can be made.
We assume coordinated checkpoint in the rest of the paper.

Different devices can be used to store the checkpoints. The
traditional NFS-based disk checkpoint has major drawbacks
due to congestion of the file system. An approach that has
been adopted is to use local storage, for instance local disks,
memory or SSDs. The approach we used in this document
is called double in-memory or double in-disk checkpoint [4].
As the name suggests, each node stores two copies of its
checkpoint: one in its own local storage and one in the local
storage of a buddy node. When restarting from a failure, all
nodes can access its most recent checkpoint locally, with the
exception of the crashed node. The replacement node can
obtain a copy from its buddy node.

One fundamental question is how often to checkpoint. The
answer depends on several variables of the system and the ap-
plication. A good approximation for the optimum checkpoint
period has been suggested elsewhere [8], [9]:

δ τ δ τ

δ τ δ τA

τ

τB

Non-faulty execution

Faulty execution and recovery Failure

R

Fig. 2. Execution in non-faulty and faulty case.

τ =
√

2δ(M +R)

where τ is the optimum checkpoint period, δ is the time to
checkpoint, M is the mean-time-to-interrupt and R is the
restart time. Figure 2 depicts these variables and shows the
two possible scenarios for execution (with and without failure).
Note that τA + τB = τ .

B. Message Logging

An important drawback of checkpoint/restart is that it re-
quires all the nodes to roll back in case of a failure. Imagine a
system with a million nodes and having to roll back a million
minus one of them just because one fails. It would be much
more efficient if only the node crashing had to be rolled back.
While the failed node catches up, the rest of the nodes may
continue execution or may wait idle until the recovery of
the crashed node has finished. This last alternative is very
appealing from the energy point of view, since an idle node
runs at a much lower power and consumes less energy. In
figure 2 only the failed node has to re-execute during τA.

Message-logging is an extension of checkpoint/restart that
provides the ability to rollback only the node that fails. It
achieves this goal by storing the messages at the sender’s
memory and resending those messages in case of failure.
Besides logging the messages, a message-logging protocol has
to ensure the recovering node reaches a consistent state with
the rest of the system. In order to do that, all non-deterministic
decisions have to be stored. Message reception is, in general,
non-deterministic. Each non-deterministic event generates a
determinant and those have to be stored in order to guarantee
a correct recovery. Different flavors of message logging exist
according to the way they handle the determinants [10].

In this paper we will use a particular message-logging
protocol called simple causal message-logging [5]. The idea
of this protocol is to store the determinants in the causal
path of the messages that generate them. For instance, once
a message is received at a node, the determinant generated
as a consequence of that reception is piggybacked in the next
outgoing message and stored at the recipient of that message.
If node X crashes, the nodes containing determinants from X
will send them to X to guarantee a consistent recovery.

C. Parallel Recovery

Message-logging only rolls back the node that fails and this
presents a fundamental opportunity to speed up recovery. If the
system allows migratable tasks, then some of the tasks that live
on the recovering node may be migrated to other nodes to be



recovered in parallel. This scheme is an extension of message-
logging and is called parallel recovery [6]. It has the potential
to reduce recovery time to a fraction of the normal rework
time. This speedup can potentially tolerate high failure rates,
including some where the mean-time-to-interrupt is shorter
than the checkpoint period. In figure 2, this means τA can
be significantly reduced.

Since we use application-level checkpoint, tasks can only
be checkpointed at synchronization points. The same rule
applies for migration. The tasks that migrate as part of parallel
recovery will be sent back to their original node once the
application reaches the next synchronization point. This causes
a transient load imbalance from the point where recovery
finishes to the next checkpoint. In figure 2, it implies that
τB will be executed under a load imbalance.

Figure 1 presents a view of the protocols. This hierar-
chical structure is not true for all the different flavors of
checkpoint/restart and message-logging protocols, but it holds
for the particular versions we evaluate in this paper. Check-
point/restart is coordinated, application-level and uses local
storage. It only requires the tasks to be serializable in some
way. Our message-logging protocol extends checkpoint/restart
by storing messages and determinants (but only saves one copy
of the checkpoint in local storage; it does not need the second
copy). Finally, parallel recovery is an extension of message-
logging that requires tasks to be migratable.

III. EXPERIMENTAL SETUP

The three fault tolerance methods described in the previous
section were implemented in the CHARM++ runtime system
[11]. CHARM++ is a parallel programming language based on
asynchronous method invocation between migratable objects.
A parallel program in CHARM++ contains a collection of
objects. The number of objects is typically independent of
the number of physical nodes the program will use to run.
The number of objects running per logical node is called
its virtualization ratio. The runtime system assigns objects
to nodes and may migrate objects during load balancing.
The only communication mechanism between two objects in
CHARM++ is through message passing. However, CHARM++
is based on active messages and this means there is no
synchronization between the objects when sending a message.
An extension to CHARM++ , called AMPI, permits any MPI
program to run on the CHARM++ runtime system. In AMPI,
each MPI rank is handled as a CHARM++ object and, as such,
it can be migrated from one node to another.

We tested the three fault tolerance protocols on a cluster
of 32 nodes (128 cores). Each node has a single socket
with a four-core Intel Xeon X3430 processor chip running
CentOS 5.7. The cluster nodes are connected by a 48-port
gigabit ethernet switch. We use a Liebert power distribution
unit installed on the rack containing the cluster to measure
the machine power after at 1-second intervals on a per-node
basis. We gather these readings for each experiment and
integrate them over the execution time to come up with the
total machine energy consumption. The results reported in
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Fig. 3. Power levels during a run with checkpoint/restart.

Section IV are thus compiled after doing experiments on real
hardware and are not from simulations.

To evaluate the different fault tolerance approaches, we
chose 3 applications from different programming models.
The first code is a CHARM++ program called Jacobi3D and
consists of a 7-point stencil that performs a successive over-
relaxation on a three-dimensional space. This program is com-
putation bound, but has a non-trivial communication pattern.
In addition to it, we used BT and SP, from the NAS parallel
benchmark suite that belong to the MPI programming model.
Both these programs solve a system of nonlinear partial dif-
ferential equations using different methods: BT uses a block-
tridiagonal approach, whereas SP is a scalar pentadiagonal
algorithm. These two benchmarks were run using AMPI.

Although we were interested in measuring the overhead of
the different approaches, being able to examine the faulty case
as well was fundamental for us. In order to inject failures, we
killed a process corresponding to a logical node (a physical
core in our testbed). The CHARM++ runtime system creates
one process per each logical node. In order to simulate the
failure of that node, we executed the command kill -9
PID, where PID was the process ID.

IV. RESULTS

We start this section by presenting the results of running
Jacobi3D over a 10243 space. The space was divided into 643

blocks to have 4096 blocks in total. Each block is represented
by an object in CHARM++ . Since we were using the whole
cluster (i.e. 128 logical nodes) the virtualization ratio comes
down to 32. We ran the benchmark for 200 iterations with
checkpoints in iteration 50 and 150.

Figure 3 presents the power draw of one node for a run
of Jacobi3D with checkpoint/restart storing the checkpoint in
the local disk. The goal of this experiment is to show the
different power levels that occur throughout the execution of
a program. When the node is idle, the power draw is 47 W,
on average. As soon as the execution starts, the power draw
rises to 106 W but drops to 51 W as the application starts the
checkpoint. We intend to highlight how the power drops to
almost the base power during checkpoint. In fact, the average
power during checkpoint is 51 W, a value just 9% higher
than the base power. This means that, in terms of energy
consumption, checkpointing is cheaper compared to compute.
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(a) Checkpoint/Restart
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(b) Message-Logging
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(c) Parallel Recovery

Fig. 4. Progress rate, power draw of one node and power draw of the entire machine for the different fault tolerance schemes.

In other words, if energy consumption were to be optimized,
instead of execution time, the optimum checkpoint period
would be much smaller. The system is better off checkpointing
more frequently (spending less energy consumption) than
recomputing the lost work. Similar results were observed when
checkpointing to memory. However, checkpointing to memory
for the particular problem size of this experiment is faster than
the precision of our power meter frequency. On average, it
takes little less than one second. We used a memory checkpoint
in the following experiments.

We used the same scenario as the last experiment to compare
the three fault tolerance approaches from section II. Since the
message-logging overhead (compared to checkpoint/restart)
was very low, we decided to keep the same checkpoint
frequency and the same failure time. We injected a failure right
in the middle of the second interval at second 35, between the
two checkpoints. This occurs roughly at iteration 100.

Figure 4 presents the results of running the same program
with the three fault tolerance schemes. There are three di-
agrams in each case. The top graph depicts the number of
iterations completed in the program versus elapsed time. We
call this representation a progress diagram and it stresses our
view of a good fault tolerant technique. In HPC, what matters
for most users is speedup, the ability to solve a problem faster
or, in other words, to increase the progress rate of the program.
The same should apply for fault tolerance. A good fault
tolerance technique in HPC is one that has the ability to keep
the progress rate as high as possible, even in the presence of
failures. The progress diagram for checkpoint/restart exhibits
the basic behavior of this approach. After a crash, there is
a global rollback to the previous checkpoint. In this case,
the previous checkpoint occurs at iteration 50. The program

resumes execution after a short break (around 2 seconds),
recovers the lost work in 17.81 seconds and eventually finishes
the total execution of 200 iterations. Note that for message-
logging, there is no global rollback. Instead, only the failed
node is rolled back and the rest of the system waits for it
to catch up. The failed node reaches the 100th iteration in
14.3 seconds. This time is faster than checkpoint/restart. A
possible reason for it is that during recovery, the node has
little interference from other nodes. All messages it requires
to recover are delivered right after the failure. Finally, parallel
recovery uses 8 nodes to recover and manages to accelerate
the recovery to reach the 100th iteration in 4.14 seconds. The
recovery time is much smaller due to the parallelism with
which the failed node is brought back to the current iteration.
In the terminology of Figure 2, this is equivalent to speed
up τA. If we remove the migration time, parallel recovery
manages to recover in 2.43 seconds. The speedup is 7.3, very
close to 8, the degree of parallelism available at recovery.
It is important to mention that for parallel recovery the rest
of the interval before the next checkpoint occurs is executed
with load imbalance. Initially, each node had 32 objects. After
the failure, the crashed node distributed its objects among 8
nodes (4 additional objects per node helping during recovery).
This means, overloaded nodes will have 1

8 additional work to
perform. This means, part τB in Figure 2 does not perform at
the same speed as the normal case. In this case, the slowdown
of this imbalance is 1.14, very close to the extra 1

8 work added
to certain nodes.

Parallel recovery has the ability to move past a failure
and recover the lost work faster. We repeated this same
experiment several times and averaged the execution time.
Checkpoint/restart took 90 seconds, whereas message-logging



completed the same amount of work in 86 seconds (1.04
speedup). Parallel recovery was the fastest out of the three
and only took 79 seconds to complete the same work (1.14
speedup).

The second row of plots in Figure 4 show the power of
one node that does not fail during execution. It is clear that
during this execution, all nodes were executing at max power
when using checkpoint/restart. Conversely, nodes not involved
in a failure were at base power for message-logging and
parallel recovery which gets reflected in the bottom row of
Figure 4. The last row of Figure 4 presents the total power
consumed by the cluster during the execution. It includes
the aggregated power of all nodes across time. Thus, the
area below the curve represents energy consumption. In total,
checkpoint/restart spent 299 kJ, message-logging 255 kJ (85%
of checkpoint/restart) and parallel recovery 203 kJ (68% of
checkpoint/restart).

To extend the results to other programs and into a different
programming model, we ran two NPB benchmarks (BT and
SP) with virtualization ratio 4. In both cases we used 100
logical nodes and 400 virtual ranks to solve the class C
problem. Table I summarizes some of the features of these
benchmarks. In particular, they show a lower max power draw
compared to Jacobi3D. Between the two, SP has the lower
max power. Interestingly, there is almost no difference between
the max power of checkpoint/restart (C) and message-logging
(M). They also have a higher overhead for message-logging
than Jacobi3D.

Jacobi3D NPB-BT NPB-SP

Language Charm++ MPI MPI
Problem size 10243 class C class C
Number of cores 128 100 100
Virtualization ratio 32 4 4
Recovery parallelism 8 4 4
Message-logging overhead 1.0% 3.6% 4.1%
Max power (C) 106 102 95
Max power (M) 106 102 96

TABLE I
PROGRAM FEATURES

To improve our understanding of the different fault tolerance
approaches in these benchmarks, we carried out a set of
experiments. In both cases (BT and SP), we ran the program
with periodic checkpoint and inserted a failure in the middle of
one checkpoint period. We carefully calibrated that point for
each protocol. Then, we measure the total energy consumption
for each protocol in the faulty interval. In other words, we
measured the energy consumption in R + τ from Figure 2.
The results are shown in Figure 5 and it shows the energy
consumption of message-logging and parallel recovery relative
to the one of checkpoint/restart. Again, parallel recovery
manages to execute through the failure with the minimum
amount of energy consumption. In this case, both benchmarks
show similar results, with message-logging using around 70%
of checkpoint/restart and parallel recovery using close to 63%.
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Fig. 5. Relative energy consumption during a faulty checkpoint period.

V. ENERGY MODEL

The previous section showed the advantages of message-
logging techniques to save energy consumption in faulty
scenarios. Furthermore, having migratable tasks can fetch an
additional benefit by means of parallel recovery. In this section,
we generalize the fault tolerance framework and describe a
model that incorporates the main costs of the different fault
tolerance protocols described early in the paper.

Parameter Description Value

V Optimal virtualization ratio > 8
W Time to solution with V 25 h
M Mean-time-to-interrupt of the system -
S Total number of sockets in the system -
δ Checkpoint time 180 s
τ Optimum checkpoint period -
R Restart time 30 s
T Total execution time -
E Total energy consumption -
µ Message-logging slowdown 1.02
P Available parallelism during recovery 8
φ Message-logging recovery speedup 1.2
σ Parallel recovery speedup P
λ Parallel recovery slowdown P+1

P
H Max power of each socket 100 W
L Base power of each socket 40 W

TABLE II
PARAMETERS OF ENERGY MODEL

Table II presents the list of parameters for this model.
The meaning of most of them should be clear to the reader.
However, we will discuss a few of them. V represents the
number of tasks (MPI ranks or CHARM++ objects) running per
logical node. V determines the maximum level of parallelism
during recovery, P . Since P represents the number of logical
nodes helping to recover the failed one, it must hold that
P ≤ V . We use S as the system size in terms of number
of sockets. This is mainly for convenience, because it is
understood the reliability per socket will probably be constant
across the next decade. A typical value for the MTTI (mean-
time-to-interrupt) of a socket is 5 years [12]. We compute M
based on S and the reliability per socket, M = 5 years/S.
For message-logging, µ is the slowdown in the execution of an
application, whereas φ is the speedup during recovery. Finally,
σ is the speedup of parallel recovery for section τA in Figure
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Fig. 6. Improvement in execution time and energy consumption.

2 and λ is the overhead for section τB .

Most of the parameters for this model have a determined
value depending on the architecture and the application. How-
ever, in order to obtain τ we must first minimize the objective
function. The objective function may be execution time or
energy consumption, for instance. In principle, the users of
HPC systems are interested in solving a problem faster. That
is the reason to have execution time as the objective function
[9]. Using this philosophy, we can define T as follows [9]:

T = TSolve + TCheckpoint + TRecover + TRestart

where TSolve is the computation time required to solve a
particular problem, TCheckpoint is the overhead of saving the
checkpoint to local storage, TRecover is the total time required
to recover the lost work after a failure happens, and TRestart
the total time necessary to restart the program after a crash.

For simplicity, we will assume the failures follow an expo-
nential distribution and occur in the middle of a checkpoint
period. Although other distributions are better at modeling
failures for real supercomputers, this assumption keeps the
model simple to understand.

In a similar fashion, the equation for energy consumption
is defined as:

E = ESolve + ECheckpoint + ERecover + ERestart

where each component of the formula above depends on the
power draw and elapsed time for each part. Since energy
consumption depends on execution time and execution time
in turn depends on the checkpoint period τ , the equation
for energy consumption can have two possible solutions,
depending on what value of τ is used. In one case, we may
use the optimum τ to minimize time (called time-optimum
τ ). In the other case, τ can be used as the optimum value to
minimize energy consumption (called energy-optimum τ ). We
analyze both these possibilities in the following discussion.

Table III presents the detailed formula of execution time
and energy consumption for each of the fault tolerance pro-
tocols studied in this paper. To help in the clarity of such
formulae, we have conveniently divided each formula into four
components that match the four parts of both the execution
time and energy consumption formulae above. We will only
describe how we constructed the energy consumption function
for parallel recovery. The other functions should be easy to
interpret. The energy spent by parallel recovery to solve the
problem, ESolve is WµSH . This is the case because all the
system (S sockets) will be executed at max power for W
units of time. Since message-logging has an overhead µ, we
must factor that in. For checkpoint, ECheckpoint is equal to the
number of checkpoints (Wµ

τ − 1) times the duration of each
checkpoint, δ, multiplied by the power during checkpoint that



we assume is L (see Figure 3). The number of failures in the
execution is given by T

M . Every failure occurs in the middle of
a checkpoint period (τ+δ). ERecover is equal to the number of
failures times the energy consumed in recovering. Since the
checkpoint has to be brought, we assume the whole system
waits for δ units with power L. The rest of the half period
of τ + δ is accelerated by σ. During this time, P sockets are
working at max power H , while the rest execute at power L.
Since parallel recovery adds a slowdown for the second part of
the checkpoint period, we need to multiply that part by λ. The
explanation for ERestart follows from the description above.

Using the results from our experimental section and based
on the Jacobi3D case, we set proper values for the param-
eters of the model (listed in the third column of table II).
We computed the execution time and energy consumption
values for the different fault tolerance approaches with the
formulae of table III. Figure 6 plots the relative improvement
of message-logging and parallel recovery with respect to
checkpoint/restart. This relative improvement is the speedup
in case of execution time or the ratio between the total energy
consumed in checkpoint/restart over the energy consumed of
the other approach. In Figure 6(a) we see the comparison in
the total execution time for a number of sockets up to 256.000.
An exascale machine is expected to have at least 200.000
sockets [1]. Parallel recovery manages to reach up to 1.17
speedup with respect to checkpoint/restart, while message-
logging marginally outperforms checkpoint/restart.

Figures 6(b) and 6(c) present the energy consumption
dimension in both cases of τ . When execution time has
the priority, parallel recovery reaches a maximum of 1.13
improvement versus 1.09 of message logging. On the other
hand, when energy consumption is the function to optimize,
the two approaches decrease in their benefit. The reason
is that in a energy-optimum τ , the system will checkpoint
with more frequency than in a time-optimum scenario. If
the checkpoint period decreases, the advantage of message-
logging and parallel recovery over checkpoint/restart decreases
too. The former two approaches rely on a relatively long
recovery time to decrease the energy consumption.

As any model, the one presented in this section has some
sensibility to variations in certain parameters. In particular, we
were interested in looking at different values of the effective
parallelism during recovery P , that dictates the speedup for
parallel recovery in segment τA and the slowdown λ for
segment τB . Figure 7 shows the results of four different
values of σ, ranging from 8 to 20. The higher P is the more
improvement in energy consumption over checkpoint/restart.
Furthermore, a high value of P permits scaling in the energy
consumption savings to larger systems.

VI. ANALYSIS

There are a few important things to discuss given the
experimental and the analytical model results.

First of all, we must address the power management con-
cerns in a resilient runtime system. We demonstrated, empir-
ically (§IV, table I), that there is no evidence to assume that
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Fig. 7. Effect of changing parameter P in the model.

any of the fault tolerant approaches will increase the maximum
power of any of the applications studied. Even when message-
logging stores messages in memory and handles determinants,
that does not translate in an increase of the power draw. It does,
however, impact the energy consumption as a consequence of
the overhead in the execution time. In a fault-free scenario,
message-logging and parallel recovery increase energy con-
sumption directly proportional to the overhead.

Secondly, there is an impact of changing the ratio
max/base power. The smaller this ratio is, the more energy
message-logging and parallel recovery can save. The exper-
imental results showed that during recovery, the non-faulty
nodes return to a value close to the base power (§IV Figure
4). If the base power is smaller relative to the max power, the
savings during recovery can be substantial. Table IV shows
a power comparison of different architectures released over
the last 3 years. These results were obtained by running a
5-point stencil CHARM++ application, Wave2D, on a single
node of each of these architectures. The table suggests the ratio
base/max power is decreasing with time. The oldest machine,
Intel Xeon, has the highest ratio (0.48), whereas the most
recent machine, Sandy Bridge, has the lowest ratio (0.21). This
trend points towards a lot of potential for energy consumption
savings using message-logging and parallel recovery.

Release Max Base Base/Max
Processor Date Power Power Ratio

Intel Xeon E5520 Q1,09 125 60 0.48
Intel Nehalem i7 860 Q3,09 151 52 0.34
Intel Sandy Bridge i7 2600 Q1,11 101 21 0.21

TABLE IV
POWER STATISTICS FOR DIFFERENT ARCHITECTURES RUNNING Wave2D

Thirdly, overdecomposition (the ability of dividing a com-
putation into small units) has an impact on how much en-
ergy consumption can be reduced. This degree of freedom
empowers the runtime system. Overdecomposition is not only
fundamental to the load balance of an application, but also to
the available parallelism during recovery (P in our model).
As we saw in section V, the higher the value of P the
more energy saving and more scalability for parallel recovery.
Programming models that encourage overdecomposition will
be in a better position for accelerating recovery and achieving
better utilization of the system.



VII. RELATED WORK

To the best of our knowledge there is only one work
in the literature that deals with fault tolerance and energy
consumption issues [13]. In that paper, the authors present
a series of benchmarks to measure how much power draw
and energy consumption is involved in doing three tasks for
fault tolerance: checkpointing, coordinating tasks and logging
messages. None of these tasks significantly increases the
power draw of a node, but logging messages increases the
total energy consumed by a program. However, in the context
of four NPB applications (BT,CG,LU,SP), it seems logging
messages can be comparable to coordinating tasks. They do
not present results with failures of nodes, nor do they include
parallel recovery and there is no model to predict the energy
consumed at extreme scales.

The MPICHV project implemented several fault toler-
ance strategies, including checkpoint/restart and a handful of
message-logging variants. A comparison between coordinated
checkpoint/restart and causal message-logging [14] shows that
causal message-logging is able to tolerate a higher failure
rate than checkpoint/restart. However, the message-logging
overhead comes close to 20% in the failure-free execution.
Part of the reason for such a high overhead is the use of a
centralized event logger that handles all the determinants of
the system. The results were not scaled beyond 25 cores.

VIII. CONCLUSION AND FUTURE WORK

This paper provided an energy efficiency comparison of
three fault tolerance protocols: checkpoint/restart, message-
logging and parallel recovery. We evaluated the three protocols
by using a set of benchmarks from two different programming
models. Using the experimental results as a guide, we built an
analytical model to predict the behavior of the protocols at
extreme scales.

Here is a summary of the findings in this paper:
• There is no empirical evidence to claim that message-

logging will increase the power draw when used as a fault
tolerance technique. It will, though, increase the energy
consumption in a failure-free scenario due to the overhead
it imposes in the progress rate of an application.

• The experimental results showed that parallel recovery
outperforms the other two approaches in both execution
time and energy consumption in a faulty execution. It
does so by accelerating the recovery of a node via task
migration. In that sense, parallel recovery can satisfy both
users (minimum execution time) and system administra-
tors (minimum energy consumed).

• The analytical model predicts that parallel recovery will
be fundamental at extreme scales in decreasing the exe-
cution time and energy consumption of applications. The
savings can be as much as 17% in execution time and
13% in energy consumption.

For the future, we are planning to understand how these fault
tolerance protocols work with a full-fledged application. In
particular, we are interested in particle-interaction simulations.

We believe these programs have the ability to generate a high
degree of overdecomposition and will be a good match for
parallel recovery.
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