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Abstract—The HPC community has seen a steady increase in
the number of components in every generation of supercom-
puters. Assembling a large number of components into a single
cluster makes a machine more powerful, but also much more
prone to failures. Therefore, fault tolerance has become a major
concern in HPC. To deal with node crashes in large systems,
checkpoint/restart is by far the preferred method. A typical way
to implement checkpoints is by using a blocking algorithm, which
suspends the execution of the application while the checkpoint is
safely stored. One limitation of the blocking algorithm is that it
saturates the network bandwidth at the time of checkpoint. This
problem will become even more critical because the projected
network bandwidth increase will not match the increase in
memory per node. To alleviate this problem, we have developed
a semi-blocking checkpoint algorithm that overlaps execution
of the application with transmission of checkpoints. Our imple-
mentation decomposes a checkpoint into small messages that are
interleaved with application messages. The experimental results
show a dramatic reduction in the checkpoint overhead for various
applications. We present a model for our approach and use this
model to compute the benefit of the semi-blocking algorithm for
different failure rates predicted at Exascale. We estimate our
method can reduce up to 22% the total execution time of an
iterative scientific application.

Keywords-fault tolerance; checkpoint/restart; semi-blocking al-
gorithm; adaptive runtime system; SSD

I. MOTIVATION

Current supercomputers assemble thousands of parts, from
processor chips to routers and disks. Even when each in-
dividual component may be highly resilient, the net result
of clustering too many parts into a single machine is an
alarmingly low mean-time-between-failures (MTBF) of the
system itself. Recent studies show supercomputers have a
MTBF between 6 hours and several days [1], [2]. However,
predictions for Exascale forecast MTBF values from 2 to 60
minutes [1], [3]. It will be hard for applications to make any
progress in such circumstances without incorporating a fault
tolerance mechanism.

In the HPC community, checkpoint/restart is the most
popular fault tolerance technique. Its success comes from its
simplicity: an application periodically saves its state and if
one failure brings part of the system down, the application
rolls back to the most recent checkpoint and restarts from
there. Storing a global checkpoint in the file system (such as
Lustre) is expensive and can be a bottleneck. One promising
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Fig. 1. Disparity between network bandwidth and memory size.

alternative is to use local storage (memory, SSD, local disks)
[1], [2], [4]. During checkpoint, the application usually stops
the execution until the checkpoint is safely stored, using what
is called the blocking algorithm [5].

One drawback of the blocking algorithm is that it stalls the
application while the checkpoint phase finishes. This delay
accounts for most of the overhead of checkpointing. It is
estimated that total checkpoint overhead goes beyond 10%
of the total execution time [2]. In popular implementations of
the blocking algorithm, each node an application is running
on must send its checkpoint to another node across the
network [1], [4]. At this point, the network usually gets
saturated with the large amount of data it must transport before
the application can make any progress. Further, a congested
network transports data at a rate lower than the peak bandwidth
may allow.

Recent studies [6], [7] estimate that the annual increase
in memory size and network bandwidth is 41% and 26%,
respectively. Figure 1 shows the trends in both memory size
and network bandwidth for the period between 2008 and 2020.
The disparity between the two curves aggravates the problem
of a saturated network during checkpoint.

In this paper, we propose a solution for this problem. The
key contributions of this paper are as follows:
• We introduce, in Section III, a semi-blocking checkpoint
protocol that hides most of the checkpoint overhead. We also
present a model to compute the optimal checkpoint interval
for this protocol, which allows us to predict the benefit of our
protocol for scenarios with different failure rates.
• We present an implementation of the semi-blocking check-
point protocol in Section IV. It is based on the CHARM++



runtime system and contains techniques to adaptively overlap
checkpoint with application execution based on the communi-
cation and computation characteristic of the applications.
• We demonstrate that semi-blocking checkpoint protocol can
hide the checkpoint overhead with real-world applications
and improve the performance up to 22% compared to using
blocking checkpoint protocol. Section V summarizes these
results.

II. BACKGROUND

Checkpoint/restart is widely used to provide fault tolerance
in large-scale systems. Each node will save its state, forming
a global checkpoint. If there is a failure on one node, all other
nodes will rollback and restart from the previous checkpoint.
This section presents two different algorithms to obtain a
global coordinated checkpoint. These two methods are usually
referred as non-blocking and blocking. We list the advantages
and disadvantages of each. The traditional method to compute
the frequency of checkpoints is also covered at the end of the
section.

One way to obtain a global checkpoint of an application is
to get a global snapshot of the different tasks that compose
the application. A popular alternative is Chandy-Lamport
algorithm [8], a non-blocking algorithm. This protocol does
not require a global synchronization point in the application
for the tasks to trigger a checkpoint. Instead, it works using
a checkpoint scheduler to initiate a checkpoint by sending
marker messages to every task. After receiving the marker
message, a task stores its local state and sends a marker to
every other task. Messages received through a channel after the
local checkpoint has been taken but before having received the
marker from the sender must be recorded. This non-blocking
algorithm is totally asynchronous and runs in conjunction with
the application. However, since it needs to store the in-flight
messages as part of the checkpoint, it has a higher memory
footprint and a non-trivial implementation [5].

The other way to implement global checkpointing is by
using a blocking algorithm. In this case, once the checkpoint
starts, the application must stop making progress until the
checkpoint has finished. This method is totally synchronous.
Usually, applications use global synchronization points to
trigger the checkpoint in each task. This method does not
require to store messages as part of the checkpoint, because
the checkpoint is triggered at a synchronization point where
there are no in-flight messages. Finding these synchronization
points is not difficult in most scientific computing applications.
Besides, these points may be carefully chosen by the program-
mer as those places where the state size of the application is
minimal. Some runtime systems, like CHARM++ [9] provide
a flexible scheme, where programmers decide what to store as
part of the checkpoint of a task.

There are multiple options for where to store the check-
points of the tasks. Traditionally, NFS disks have been the
choice. However, more recently, local storage have been used
to keep the checkpoints [1], [2], [4]. One of the earliest such
schemes in HPC is the double in-memory checkpoint/restart

approach [4], where each node X has a buddy node Y that
will hold the checkpoint of X in main memory. Each node will
store its checkpoint in its own memory too. If node X crashes,
its buddy Y will provide it with its checkpoint. All other nodes
except the crashed node X will get their checkpoint from their
own memory.

Since the nodes will checkpoint with a certain frequency,
a natural question to ask is how often they need to check-
point. The overhead of checkpointing the whole application
is also related to how frequently the application checkpoints.
Daly [10] investigates the optimum checkpoint interval to
minimize the application execution time. The total execution
time (T ) is divided into:

T = Tsolve + Tdump + Trework + Trestart (1)

where Tsolve is the uninterrupted time to solve the problem,
Tdump is the time to perform the checkpoint, Trework is the
time to recover the lost work due to a failure and Trestart
stands for the time required to resume execution after a failure.

The more frequently an application checkpoints, the more
time an application will spend dumping checkpoints. However,
the application will experience less rework time when a failure
happens. So, there is always a balance between the checkpoint
dumping time, mean time to failure and rework time. In Daly’s
first-order model, the optimum checkpoint interval τ is given
by the following formula:

τ =
√

2δ(M +R) (2)

where δ is the checkpoint dumping time, M is the mean time
to failure and R is the restart time.

III. SEMI-BLOCKING CHECKPOINT

In this section we describe a semi-blocking checkpoint
algorithm that strikes a balance between the blocking and the
non-blocking protocols from the previous section. Like the
non-blocking approach, it allows interleaving the checkpoint
process with application execution. However, similar to the
blocking protocol, it does not need to store in-flight messages
as part of the checkpoint. To facilitate the presentation of the
algorithm, we summarize the most important parameters in
table I. With the exception of Benefit, the unit of all other
parameters is seconds.

A. Algorithm

The semi-blocking algorithm is based on the double in-
memory application initiated checkpoint/restart algorithm [4]
mentioned in the previous section. Figure 2(a) presents a
sketch of the double in-memory blocking algorithm. The
diagram presents nodes 1 and 2, where α is the application’s
data living on node 1 and β is the application’s data living
on node 2. Nodes 1 and 2 are buddies of each other. Upon
reaching a global synchronization point (labeled barrier in
the figure), the checkpoint mechanism kicks in. Each node
saves its own checkpoint in memory and sends its checkpoint
to its buddy. After receiving the checkpoint from the buddy,
each node will store it in main memory. The checkpoint phase



TABLE I
PARAMETERS OF CHECKPOINT MODEL

θ Time to finish remote checkpoint
ϕ Average interference of remote checkpoint to

application
τ Checkpoint interval (semi-blocking protocol)
τblocking Checkpoint interval (blocking protocol)
δ Dump time of local checkpoint
δblocking Dump time of checkpoint (blocking protocol)
R Restart time
M Mean time between failures of the system
Ts Workload of application
T Total execution time (semi-blocking protocol)
Tblocking Total execution time (blocking protocol)
Benefit Performance improvement of the semi-blocking

algorithm over the blocking algorithm

has a duration of δblocking and consists of two parts: saving
their own checkpoint in local memory and saving their own
checkpoint in the remote memory of the buddy. Clearly, it is
the second part that consumes most of the time. That part
involves almost no computation and, for applications with
a non-negligible memory footprint, it may cause network
congestion.

Figure 2(b) depicts the basic operations of the semi-blocking
checkpoint protocol. The intuition behind the semi-blocking
algorithm is to hide the second part of the checkpoint process,
by interleaving the transmission of the checkpoints to remote
memory with the execution of the application. The diagram
shows that once the local checkpoint is saved in memory,
the application resumes execution while the checkpoint traffic
dribbles through slowly, preferably using the network when the
application is not using it. Since the remote checkpoint runs in
the background while the application continues executing, this
method can substantially reduce the checkpoint overhead. With
the semi-blocking algorithm, the checkpoint overhead can be
reduced to the cost of just saving a local checkpoint if the
checkpointing can perfectly overlap with application. This cost
stands for a tiny percentage of the total cost of checkpointing
in the blocking algorithm. We observe a 22% reduction in
the total execution time of iterative scientific applications
because of the low cost to do checkpoints as seen in Section
V. Figure 3 gives the pseudo-code of the semi-blocking
algorithm. In addition to storing the latest checkpoint, each
node will also keep the checkpoint from the previous round
to ensure that the application can recover from failures during
remote checkpointing. We use the names current and previous
to refer to the latest and older checkpoints, respectively.

The benefits of the semi-blocking algorithm are clear. It
can potentially hide the checkpoint overhead by stalling the
application only while the local checkpoint completes instead
of waiting for the remote checkpoint to finish. Additionally,
since checkpointing is faster, we can afford to checkpoint more
frequently to reduce the amount of work lost in a failure.
However, there are drawbacks to this algorithm that need to
be addressed.

First, interleaving the remote checkpoint transmission with

NODE 1 

NODE 2 

barrier checkpoint done

𝜏blocking

βα

β α

𝛿blocking
(a) Blocking Checkpoint.

NODE 1 

NODE 2 

barrier local checkpoint 
done

remote checkpoint 
done

𝛳

βα

β

𝛿 φ
𝜏

α

(b) Semi-Blocking Checkpoint.

α remote  checkpoint local  checkpointα

Fig. 2. Checkpoint operation of blocking and semi-blocking algorithms.

Local Variables
localCkpt[2]← [NULL,NULL]
remoteCkpt[2]← [NULL,NULL]

Upon Global Synchronization
localCkpt[previous]← localCkpt[current]
localCkpt[current]← Datacheckpoint
reduction to mark the finish of local checkpoint

Upon Local Checkpoint Done
resume computation
send Datacheckpointto buddy node

Upon Receiving Datacheckpoint from Buddy Node
remoteCkpt[previous]← remoteCkpt[current]
remoteCkpt[current]← Datacheckpoint
reduction to mark the finish of remote checkpoint

Upon Remote Checkpoint Done
delete localCkpt[previous]
delete remoteCkpt[previous]

Fig. 3. Pseudocode of semi-blocking algorithm.

the application’s messages may create interference and de-
crease the progress rate of the application. We explore an
effective technique in Section IV to decompose the checkpoint
messages into chunks and inject them into the network at
the appropriate time. This mechanism reduces the impact of
remote checkpointing on the execution of the application.

Second, if a failure brings down a node during the remote
checkpoint phase, it will require the system to rollback to an
older checkpoint instead of the most current one. Figure 4
shows the two types of failures the semi-blocking protocol has
to handle. In Failure 1, between the completion of the remote
checkpoint and the start of the new checkpoint phase, the
system rolls back to the first checkpoint. The case of Failure
2, between the start of the checkpoint phase and the end of
the remote checkpoint, still requires the system to rollback
to the first checkpoint. The reason is that a global state is not
available until remote checkpoint is completed. The rest of this
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Fig. 4. Rollback operation of the semi-blocking algorithm.

section presents a model that determines how these two types
of failures affect the reliability of the system under different
failure rates.

B. Model

In order to estimate the benefit of the semi-blocking check-
point algorithm, we present a model that includes all the funda-
mental parameters. Two of them deserve special consideration.
We use θ to denote the time in seconds to finish a remote
checkpoint. Since the remote checkpoint runs concurrently
with the application, it must hold that δ + θ ≥ δblocking . As
we saw above, the larger θ is, the higher the chance a failure
will require the system to rollback to an older checkpoint.
To model the interference remote checkpoint may have on the
execution of the application we use ϕ. It denotes the extra time
in seconds per each checkpoint interval an application requires
due to interference. The lower ϕ is, the better the semi-
blocking algorithm is able to hide the checkpoint overhead.

The total time of a checkpointed workload with failures is
divided into five parts:

T = Ts + Tlocal + Toverhead + Trework + Trestart (3)

where Ts is the pure computation time of the application
without any checkpoints or rollbacks, Tlocal is the total time
to dump local checkpoints in memory or local disk, Toverhead
is the total interference of remote checkpoint to applications,
Trework stands for the wall clock time required to bring the
application back to the point it was right before the crash and
Trestart is the time to restart applications from checkpoint.

The dumping time of local checkpoints Tlocal is the product
of the number of checkpoints and the dumping time of each
checkpoint. The pure computation time in each checkpoint
interval would be τ − ϕ, thus,

Tlocal =
Ts

τ − ϕ
δ (4)

Toverhead is calculated in a similar way,

Toverhead =
Ts

τ − ϕ
ϕ (5)

The dotted lines in Figure 4 mark the finish of remote
checkpoint. Between them is one checkpoint interval τ plus
the local checkpoint dumping time δ. Failures that happen
during that period will rollback to the first checkpoint. The
overlap period θ consists of the useful application work and the
interference of the remote checkpoint ϕ. The useful application
work of θ−ϕ is not checkpointed in the first checkpoint. So,
rework time would be at least θ − ϕ if it happens right after

the first remote checkpoint is done but at most θ−ϕ+τ+δ if
it happens right before the second remote checkpoint is done.
On the average, failures will occur half through the checkpoint
interval. Thus,

Trework =
T

M

(
τ + δ

2
+ θ − ϕ

)
(6)

Trestart depends on the number of failures and the restart time
R, so

Trestart =
T

M
R (7)

Hence, the total execution time including checkpoint and
restart time for a workload of Ts is

T = Ts +
Ts

τ − ϕ
δ +

Ts
τ − ϕ

ϕ

+
T

M

(
R+

τ + δ

2
+ θ − ϕ

)
(8)

Similarly, for the blocking checkpoint, the total execution
time Tblocking of an application with Ts workload is

Tblocking = Ts +
Ts

τblocking
δblocking

+
Tblocking
M

(
R+

τblocking + δblocking
2

)
(9)

In order to minimize the equations 8 and 9 to find the opti-
mum checkpoint interval for these two protocols we may use
a standard numerical optimization technique. The checkpoint
interval τ has strict bounds in both semi-blocking and blocking
model, respectively, θ < τ < M and 0 < τblocking < M.

To quantify the performance improvement using the semi-
blocking checkpoint protocol compared to the blocking one,
we calculate the benefit of the semi-blocking protocol as,

Benefit =
Tblocking − T
Tblocking

(10)

Here, T and Tblocking are the total execution time of the
application with the optimum checkpoint interval using the
semi-blocking and blocking protocols, respectively.

IV. IMPLEMENTATION

In this section, we describe the implementation of the
semi-blocking checkpoint protocol. We show a technique to
overlap the transmission of the remote checkpoint with the
execution of the application. Two schemes to ensure that
remote checkpointing is finished in a timely manner are also
discussed. Then we discuss how to use solid state disk to
reduce memory pressure.

A. A runtime system for multicore clusters

We implemented the semi-blocking algorithm in the
CHARM++ [9] runtime system, which is based on a message-
driven programming model. Applications are divided into fine-
grain tasks using this model and tasks perform computation
and communication through asynchronous method invoca-
tion associated with each message. CHARM++ provides an



SMP extension for machines with multicore nodes. The SMP
version of CHARM++ creates multiple worker threads per
node. Additionally, each node has a dedicated communication
thread to handle all the inter-node communication while cores
on the same node communicate via shared memory. The
worker threads do not need to pay for the communication
overhead themselves. The communication thread is bound to
a certain core in the node. When a worker thread sends a
network message, it enqueues the message into the outgoing
message queue of the communication thread. Using the SMP
mode of CHARM++, we can achieve faster startup, reduction
in memory consumption and optimized node-level collective
communication operations.

B. Overlapping remote checkpointing and computation

The success of semi-blocking checkpoint depends on the
ability to overlap remote checkpoint transmission with the
execution of the application. During remote checkpointing,
each node sends checkpoint messages to its buddy; those
messages are enqueued in the outgoing message queue right
after local checkpoint is finished. Thus, the transmission of
application messages may be delayed by the transmission of
checkpoint messages. To solve this problem, we designed a
separate checkpoint message queue on each communication
thread. Worker threads enqueue the checkpoint messages to
this separate queue. The communication thread sends check-
point messages only when there is no application message
ready to be sent, to reduce the interference of the checkpoint
message to applications. We call this strategy the opportunistic
sending of checkpoint messages. Each checkpoint message
is split into multiple small chunks for transmission to better
overlap with the application execution.

TABLE II
OVERLAP AND INTERFERENCE ASSOCIATED WITH DIFFERENT

COMMUNICATION TO COMPUTATION RATIOS

Case Comm-Comp Ratio θ ϕ
1 0.2 6.6 0.6
2 1.6 13.5 0.8
3 3.1 17.3 1.5

Interference of the remote checkpoint to application is heav-
ily affected by the communication profile of applications. We
use a synthetic benchmark called FT Test to analyze the sen-
sitivity of the semi-blocking protocol to different conditions.
FT Test is a program that simulates a stencil computation.
With FT Test, it is possible to change the computation time
per step, the message size, the communication topology of the
objects and the checkpoint size. Table II presents 3 different
levels of communication-computation ratios for FT Test by
changing the communication topology of the objects. We
consider the time not spent in computation as communica-
tion time. We use the same checkpoint size of 512MB per
node for the different communication-to-computation ratios.
This amount of data requires 6.5s to checkpoint using the
blocking protocol. As seen in the table high communication
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Fig. 5. Effect of communication to computation ratio.

to computation ratio will increase both the overlap period
θ and the interference of checkpointing to applications ϕ
using the semi-blocking algorithm. Figure 5 shows the benefit
of the semi-blocking protocol for these 3 communication-
to-computation ratios. As expected, the benefit is reduced
when the communication-to-computation ratio of applications
increases because of the increment in θ and ϕ . Even with a
communication-to-computation ratio as high as 3.1, the semi-
blocking protocol gives us more than 5% benefit compared to
the blocking checkpoint protocol with an M value of 300s (M
is the MTBF of the system).

C. Opportunistic vs. random scheduling

The semi-blocking protocol can achieve the most benefit
with the smallest overlap period θ and the smallest inter-
ference ϕ. For a given application of certain communication
to computation ratio, reducing θ can help reduce the rework
time when a failure happens. On the other hand, increasing θ
may reduce interference with the application. Finding a good
overlap period is critical to the success of the semi-blocking
protocol.

Opportunistic sending of checkpoint messages will only
give us a fixed overlap period. However, we decided to
test if this approach brings the most benefit of the semi-
blocking algorithm. We implemented lottery scheduling [11] to
control the overlap period. Lottery scheduling is a randomized
resource allocation mechanism used to control the relative
execution rates of computations. It also supports resource
management such as I/O bandwidth or memory. Each time
the resource is granted to the client with the winning ticket.
The allocations of the clients to access the shared resource are
represented by the number of lottery tickets they hold. In the
semi-blocking algorithm, transmission of remote checkpoint
messages and application messages share the same NIC. By
controlling their allocations to use the NIC, we can achieve
different overlap periods.

In FT Test, the amount of messages sent is evenly dis-
tributed over computation. Thus, we use the number of
application messages sent to represent the amount of work
that has been finished. The longer the overlap period is, the
more application messages will be sent during the remote
checkpoint. The number of application messages s and the
number of checkpoint messages c in each checkpoint interval
could be statistically obtained from previous checkpoints.
Given an expected overlap period θ, the number of application



messages sent during remote checkpoint is approximately θ
τ s.

The number of application and checkpoint messages sent
during remote checkpoint can be used as their lottery tickets.
So the probability to send an application message during
remote checkpoint is θs

θs+τc , while the probability to send a
checkpoint message is τc

θs+τc .

Remote Checkpoint Done:
appRatio← θs

θs+τc
ckptRatio← 1− appRatio

Send Network Message:
choose← rand()%100
if choose ≤ ckptRatio ∗ 100 then

Send Checkpoint Message
else

Send Application Message
end if

Fig. 6. Using lottery scheduling to control overlap period.

The pseudo-code of using lottery scheduling to control the
overlap period is shown in Figure 6. Each time, before sending
a network message, a random number generator is used to
randomly select a winning ticket. Then we locate whether
the application or checkpoint message is holding that ticket:
the one who gets the chance to be sent this time. As seen
in Figure 7 for a FT Test with communication/computation
ratio set to 1.6, the interference of opportunistic sending of
checkpoint message is the minimum. Increasing the overlap
period will increase the overhead slightly while decreasing
the overlap period will make the interference to increase
dramatically. Increasing or decreasing the overlap period both
fail to bring us a higher benefit using the model in section III.
So, opportunistic sending of the checkpoint message is better
than lottery scheduling for the semi-blocking algorithm, em-
pirically. Even though a reduced overlap period θ can reduce
the rework time, it cannot offset the interference gained with
the reduced θ.

D. Relieving memory pressure of checkpoint with SSD

The local and remote checkpoints constitute a memory
overhead for this semi-blocking protocol, but (somewhat sur-
prisingly) this is tolerable for a large class of applications that
have a smaller memory footprint at checkpoint. These include
molecular dynamic, N-body codes, certain quantum chemistry
(nanomaterials codes), etc. Even for applications requesting
large memory footprint, we leverage the use of SSD to relieve
the memory pressure.

Solid state disk (SSD) is becoming more and more promis-
ing to store the large amount of checkpoint data because of
its good random access performance and low power consump-
tions. Considering the SSD bandwidth is not comparable to
memory bandwidth nowadays, we need to carefully select
what checkpoint data is to be stored in SSD. We propose two
strategies to checkpoint the data on SSD.
1) Full SSD Strategy. All the checkpoints will be saved to

SSD which can fully relieve the memory pressure.
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Fig. 7. Interference and benefit of different overlap periods.

2) Half SSD Strategy. we reduce the writes to SSD by
only storing the buddy’s checkpoints in SSD. At restart, only
checkpoints of the crashed node need to read from SSD while
other nodes can recover from the checkpoints in memory
concurrently.

Instead of letting each core stall to writing to SSD, a
dedicated IO thread is used on each node for asynchronous
access to SSD. Each worker thread enqueues its IO requests
to the queue on the IO thread and gets a notification when the
IO request is completed by the IO thread. Access to SSD can
thus be adaptively overlapped with useful computation.

In section V we will show the performance differences of
using these two strategies for checkpoint and restart and the
performance gained with asynchronous access to SSD.

V. EXPERIMENTS AND ANALYSIS

This section presents an evaluation of the semi-blocking
checkpoint algorithm with different applications. We also
include some experiments of the performance of restarting
applications after a failure.

Two applications are used in the experiments. The first one
is wave2D, which uses a finite differencing scheme to calculate
pressure information over a discretized 2D grid. The second
application, ChaNGa, is for N-Body based parallel simulations
and is used in cosmology and astronomy [12].

The experiments were performed on Trestles supercomputer
at the San Diego Supercomputer Center. Trestles consists
of 324 nodes with 32 cores per node. The theoretical peak
performance of the system is 100 teraflops. Each compute
node contains four sockets, each with a 8-core 2.4 GHZ AMD
Magny-Cores processor. Each node has 64GB of DDR3 RAM
and 120GB of flash memory(SSD).

A. Scalability

Figure 8(a) shows the overhead of one checkpoint based
on a weak scaling test with wave2D using blocking and semi-
blocking checkpoint protocol from 128 cores to 1K cores. The
checkpoint size is 4GB per node. Semi-blocking algorithm
reduces the checkpoint overhead from 52s to 10s. The optimal
checkpoint interval of the blocking algorithm is 372s given
an M value of 1800s (M is the MTBF of the system) and
δblocking of 52s. This requires the wave2D application to
checkpoint every 960 iterations. In Figure 8(b), we show the
checkpoint overhead to the execution of the applications using
the two algorithms. The checkpoint overhead is reduced from
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Fig. 8. Weak scaling results - wave2D.
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Fig. 9. Strong scaling results - ChaNGa.

14% to 3% by using the semi-blocking algorithm. With the
decreasing checkpoint overhead, the semi-blocking algorithm
can afford to checkpoint more frequently to reduce the amount
of rework time. So, the optimum checkpoint interval of the
semi-blocking algorithm is different from that of the blocking
algorithm.

Then, we compare the actual benefit of the semi-blocking
algorithm compared to the blocking algorithm using our model
and considering both the checkpoint and rollback-recover over-
head. As seen in Figure 8(c), for different M values, the benefit
of the semi-blocking checkpoint protocol is mostly constant
from 128 cores to 1K cores. With the decrease of M , the
checkpoint and restart overhead for the blocking checkpoint
protocol will keep increasing, while on the other hand the
semi-blocking protocol shows more benefit. So benefit of the
semi-blocking protocol goes from 10% for M of 1800s to
22% for M of 300s for checkpoint size of 4GB/node.

ChaNGa is used to demonstrate the strong scalability of the
semi-blocking checkpoint algorithm. We use a 100 million
particle system. In one big step of ChaNGa, it first does
domain decomposition of the particle space, then builds the
Barnes-Hut trees, computes the gravitational forces, and finally
updates the particles. Checkpoint is taken periodically after
a certain number of steps. Figure 10 displays the view of
communication bytes sent over time from our PROJECTIONS
performance analysis tool. There is less amount of commu-
nication data in the first two phases of one big step: domain
decomposition and tree building as seen in the figure. Sending
more checkpoint messages in these phases can help us incur
less interference to the application. With the opportunistic
sending of the checkpoint message, our scheme can identify

Domain 
Decomposition

Tree Build Calculation and Update

Fig. 10. Bytes sent in one step of ChaNGa.

such phases without application knowledge.
Figure 9(a) shows the checkpoint overhead of one check-

point based on a strong scaling test of ChaNGa application
using the blocking and semi-blocking algorithms separately.
Checkpoint size per node is decreasing for a strong scaling
test, so the blocking checkpoint time is reduced from 33s on
128 cores to 5s on 1K cores. The semi-blocking checkpoint
time decreases from 2.6s to 0.27s, almost hiding the check-
point overhead.

In Figure 9(b), we display the checkpoint overhead of
the execution of ChaNGa. The optimum checkpoint interval
is adjusted to the blocking checkpoint time. The blocking
checkpoint overhead decreases from 12% on 128 cores to
5% on 1K cores because of the decreased checkpoint size
per node. With the semi-blocking algorithm, the checkpoint
overhead is below 1%. Of course with such low checkpoint
overhead of the semi-blocking algorithm, applications can
benefit more from frequent checkpoints so as not to lose lots
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Fig. 11. Effect of virtualization.

of wall clock cycles when failure happens.
Figure 9(c) depicts the percentage benefit of the semi-

blocking algorithm to the blocking algorithm at their own op-
timal checkpoint intervals. Semi-blocking algorithm achieves
the largest benefit on 128 cores where the blocking checkpoint
overhead is at its maximum in a strong scaling experiment.
Even running on 1K cores with M of 1800s, the semi-blocking
algorithm still has over 6% benefit compared to the blocking
algorithm. Given that the memory consumption is only 763MB
per node when running on 1K cores, which is 1% of the total
memory, we can expect more benefit of the semi-blocking
algorithm for applications with larger memory consumption.

B. Virtualization analysis

Over-decomposition and asynchronous communication in
CHARM++ can greatly help overlap communication and com-
putation of applications. In CHARM++, programs are broken
up into objects called chares. Usually, there are more chares
than the number of processors. The number of chares divided
by the number of processors is called virtualization ratio. With
high virtualization ratio, the communication of the checkpoint
or application message of one chare can be overlapped with
the computation of other chares on the same core which can
further hide the checkpoint overhead, so we can expect more
benefits.

We use the wave2D benchmark to illustrate the benefit of
high virtualization ratio for the semi-blocking algorithm. The
checkpoint size is 0.9GB per node. The interference of remote
checkpoint per checkpoint interval decreases from 1.4s with
1 chare per core to 0.3s with 4 chares per core in Figure 11.
Correspondingly, the benefit of the semi-blocking protocol to
the blocking version calculated from the model is increased
from 12.3% to 15.9% when M is 300s as expected. However,
when the virtualization ratio increases to 8 and beyond, there
is extra overhead to schedule the work of multiple chares, so
there is more interference.

C. Checkpoint and restart with SSD

As discussed in section IV, half SSD and full SSD schemes
can be used depending on the memory consumption of appli-
cations.

Figure 12 shows the checkpoint timing penalty using SSD
with checkpoint data size ranging from 0.45GB to 2.23GB

per node for the wave2D benchmarks. We compare the perfor-
mance of half and full SSD scheme with asynchronous (half-
aio, full-aio) and synchronous IO access (half-sio, full-sio)
respectively. Using full SSD scheme with asynchronous IO
access saves us more than half the time of writing checkpoint
data to SSD with synchronous IO. In Figure 13, we show
the restart time of in-memory checkpointing, half and full
SSD checkpointing with asynchronous IO access. Half SSD
scheme has almost negligible overhead compared to the in-
memory checkpointing, while full SSD scheme has around
1s overhead. During restart, objects first need to get their
checkpoints either from their own or their buddy node’s local
disk or memory, and then restore the application and process
data from the checkpoints. With asynchronous IO access and
high virtualization ratio, the restoring of one object can be
overlapped with the process of getting checkpoints for another
object. Thus we see the restart time is not much affected by
checkpointing to SSD.

VI. RELATED WORK

There are two main checkpointing methods in HPC: unco-
ordinated checkpointing and coordinated checkpointing.

In uncoordinated checkpointing, each process independently
saves its state. The benefit is that a checkpoint can take
place when it is most convenient and thus no synchroniza-
tion is required to initiate checkpointing. However, uncoor-
dinated checkpointing is susceptible to rollback propagation,
the domino effect which could cause systems to rollback to
the beginning of the computation, resulting in the waste of a
large amount of useful work. Guermouche et al. [13] proposed
an uncoordinated checkpointing without domino effect by
logging useful application messages, which is applicable to
send-deterministic MPI applications.

Coordinated checkpointing requires processes to coordinate
their checkpoints in order to form a consistent global state.
Coordinated checkpointing simplifies recovering from failures
because it does not suffer from rollback propagations. BLCR
[14] implements kernel-level checkpointing, but incurs exces-
sive overhead for application at production level. Some multi-
level approaches have been proposed recently to deal with
failures at different frequencies of occurrence. FTI [2] is a
multi-level coordinated checkpoint scheme using topology-
aware RS encoding with about 8% checkpoint overhead.
Moody et al. [1] propose a multi-level checkpoint scheme
that is able to store the checkpoint in different places. Each
place represents a different level and uses a Markov probability
model to decide the checkpoint frequency of each level. The
semi-blocking algorithm can be used instead of the blocking
algorithm in any of the levels of the multi-level approach.

Kai Li et al. implemented the concurrent checkpointing [15]
for shared-memory multiprocessors using a forked process
and buffers to overlap the writing of checkpoints to disk
with the copying of checkpoints from memory. Our approach
differentiates from theirs in that we provide techniques to
reduce the interference of checkpoint for distributed memory
clusters.
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Dong et al. leverage PCRAM [7] for checkpointing and
propose the hybrid local/global checkpointing mechanism.
Their approach can be incorporated with the semi-blocking
algorithm by relaxing the stall of computation when taking
global checkpoint. Ouyang et al. [16] enhance the performance
of checkpointing to SSD with aggregation of checkpoint buffer
and staging IO. Our approach is different from theirs in that
checkpoints are distributed among the SSD disks rather than
stored in a central checkpoint server.

VII. CONCLUSION AND FUTURE WORK

This paper presents a semi-blocking checkpoint algorithm
to provide low-overhead resilience for HPC applications.
Our algorithm succeeds in hiding checkpoint overhead by
overlapping checkpoint transmission with execution of the
application. We provide a model for the algorithm to find out
the optimum checkpoint interval and to compute the expected
benefit of the algorithm under various scenarios.

The experimental results are very encouraging. Both the
strong and weak scalability of the semi-blocking algorithm
are demonstrated with different applications. On 1024 cores,
the semi-blocking algorithm reduces the checkpoint overhead
from 50s to 10s for a stencil computation. A strong scaling
test using a cosmology application shows the checkpoint
overhead is almost negligible. Using our model and a range of
different failure rates predicted at Exascale, we show the semi-
blocking checkpoint algorithm may reduce 22% of the total
execution time compared to the traditional blocking checkpoint
algorithm.

For future work, we plan to use direct memory access
(RDMA) to transmit checkpoint messages to further reduce
the interference of our algorithm.
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