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Department of Computer Science

University of Illinois at Urbana-Champaign, Urbana, Illinois
Email: {gplkrsh2,nikhil,gzheng,kale}@illinois.edu

Abstract—Performance of applications executed on large
parallel systems suffer due to load imbalance. Load balancing is
required to scale such applications to large systems. However,
performing load balancing incurs a cost which may not be
known a priori. In addition, application characteristics may
change due to its dynamic nature and the parallel system used
for execution. As a result, deciding when to balance the load to
obtain the best performance is challenging. Existing approaches
put this burden on the users, who rely on educated guess
and extrapolation techniques to decide on a reasonable load
balancing period, which may not be feasible and efficient.

In this paper, we propose the Meta-Balancer framework
which relieves the application programmers of deciding when
to balance load. By continuously monitoring the application
characteristics and using a set of guiding principles, Meta-
Balancer invokes load balancing on its own without any prior
application knowledge. We demonstrate that Meta-Balancer
improves or matches the best performance that can be obtained
by fine tuning periodic load balancing. We also show that
in some cases Meta-Balancer improves performance by 18%
whereas periodic load balancing gives only a 1.5% benefit.
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I. INTRODUCTION

Modern parallel applications running on large clusters
often involve simulations of dynamic and complex sys-
tems [1, 2]. A significant amount of effort is spent on
writing these parallel applications in order to fully exploit
the processing power of large systems and show scalability.
For such applications, load balancing techniques are crucial
to achieve high performance on large scale systems [3],
because load imbalance among processors leads to signif-
icant drop in system utilization and hampers application’s
scalability. With ever-growing parallelism available in su-
percomputers of today, tackling the imbalance in an efficient
manner is a difficult problem.

In a large class of scientific applications such as
NAMD [1], FEM [4] and climate simulation, the problem
is broken into smaller data and work units that execute
on multiple processors. The computation being performed
consists of a number of time steps and/or iterations with
frequent interaction among data/work units via messages.
Independent of the programming paradigm being used (such
as MPI and Charm++ [5]), handling load imbalance in such
applications is a multi-faceted problem and involves the
following common tasks:

1) Identify movable work units and estimate their load

2) Make load balancing decisions, including how often
to balance load

3) Move the work units
One method to estimate the work load is using perfor-

mance modeling technique with a cost function that models
the work load based on the programmer’s a priori knowl-
edge of the application domain. Another method, which is
adopted in Charm++, is based on instrumenting the load
information from the recent past as a guideline for the
near future, using a heuristic known as the principle of
persistence [6]. It posits that, empirically, the computational
loads and communication patterns of the work units tend
to persist over time, even in dynamically evolving compu-
tations. Therefore, load balancer can use the instrumented
load information to make load balancing decisions. The
key advantage of this approach is that it is application
independent, and it has been shown to be effective for a
large class of applications, such as NAMD [7], ChaNGa [8]
and Fractography3D [9].

Performing load balancing entails overheads which in-
cludes the time spent in finding the new placement of work
units and the time spent in moving the work units. Due
to the cost of load balancing, it is important to determine
if invoking the load balancer is profitable, i.e., whether
the overhead due to load balancing is less than the gain
obtained after load balancing for a period of time. Typically,
application behavior depends on the size of system being
simulated and the parallel system being used for simulation.
As a result, finding the time steps (or iterations) at which
load balancing should be invoked to obtain best performance
is a difficult task. Most runtime systems (RTS) depend on the
application programmers to decide when to balance the load.
A common practice is to choose a fixed period to invoke
the load balancer; for example every 100 time steps. This,
however, prevents the load balancing from adapting to the
changing application behavior.

In this paper, we introduce the Meta-Balancer framework
which is a step towards automating load balancing related
decision making. Based on the application characteristics
observed at runtime and a set of guiding principles, Meta-
Balancer relieves the application programmer from the crit-
ical task of deciding when the load balancer should be
invoked. Unlike many existing models, which rely only on
the most recent data and do not make predictions based
on dynamic nature of applications [10, 11], Meta-Balancer



continuously monitors the application and predicts load
behavior. Using a linear prediction model on the collected
information, Meta-Balancer predicts the time steps (or it-
erations) at which load balancing should be performed for
optimal performance. In addition, Meta-Balancer monitors
for sudden changes in the application behavior and invokes
the load balancer if needed.

We have implemented Meta-Balancer on top of Charm++
load balancing framework in order to take advantage of
its support for load balancing. We demonstrate that Meta-
Balancer improves application performance by choosing the
correct time steps to invoke load balancer for iterative appli-
cations. We show that, using Meta-Balancer, performance of
LeanMD, a molecular dynamics simulation program, can be
improved by upto 18% in cases where a fine-tuned fixed load
balancing period provides marginal gains of 1.5%. For Frac-
tography3D, we demonstrate that Meta-Balancer identifies
the dynamic characteristics of the application without any
input from the user, and at least matches the performance of
periodic load balancing with a carefully chosen fixed period.
Note that working of Meta-Balancer is transparent to a user
and only a trivial change in application is required to use
Meta-Balancer. Moreover, the same concepts can be used
for any other parallel programming paradigm such as MPI.

The key contributions of this paper are as follows:
• We introduce a generic concept that can be used to

automatically decide when to invoke the load balancer
based on application characteristics.

• We present an implementation of our concept as Meta-
Balancer in Charm++ using asynchronous algorithms,
which executes in the background and is interleaved
with application’s execution.

• We demonstrate that Meta-Balancer takes correct deci-
sions regarding invocation of the load balancing without
any input from the user for two real world applications,
and improves performance in most cases.

In §II, we provide a background on the load balancing
framework in Charm++ which is followed by a description
of Meta-Balancer in §III. Thereafter, results on using Meta-
Balancer with two real world applications are presented in
§IV. Finally, previous work in presented in §V followed by
conclusion and future work in §VI.

II. BACKGROUND

In our design, we consider a large scale application as
a collection of migratable objects distributed on a large
number of processors, communicating via messages. Load
balancing framework can migrate these objects and the
associated work from an overloaded processor to an under-
loaded processor. Our implementation takes advantage of the
existing Charm++ load balancing framework that is based on
such an execution model [10].

A. Charm++ and its Load Balancing Framework
Charm++ is a parallel programming model which im-

plements message-driven parallel objects (chares), which

are migratable among processors. An application written in
Charm++ is comprised of a collection of chares, distributed
among the processors and communicating via messages.
When there is imbalance of work among the processors,
migrating the objects from an overloaded processor to an un-
derloaded processor helps in achieving balance and thereby
improves the performance of the application.

The load balancing framework in Charm++ is a mea-
surement based framework, and is responsible for two key
tasks. Firstly, it instruments the application code at a very
fine-grain level and provides the vital statistics for load
balancing. Secondly, it executes the load balancing strategy
to determine a mapping of objects onto processors and
performs the migration.

Charm++’s object model simplifies the task of application
instrumentation. The runtime system (RTS) instruments the
start and the end time of each method invocation on the
chares. The advantage of this method is that it provides
an automatic application-independent method to obtain load
information without user input or manual prediction of the
load. Further, the Charm++ RTS can record chare-to-chare
and collective communication patterns as every communi-
cation initiated by chares is eventually handled by the RTS.
The RTS also records the idle time and the background load
on a processor. However, the task of initiating load balancing
and selection of load balancing strategy is the responsibility
of the programmer. The load balancing strategies are plugins
in Charm++.

Algorithm 1 Application Code on every Chare
1: when ResumeWork invoked
2: perform work
3: if (curr iter % fixed period == 0) then
4: call AtSync
5: else
6: call ResumeWork
7: end if
8: curr iter ++

In Algorithm 1, we present the iterative component of
a typical Charm++ program. In Charm++, execution pro-
ceeds when functions are invoked for chares by RTS on
receiving messages for them. An application run begins
with RTS invoking appropriate functions (ResumeWork in
our example) for some chares. Most function calls (such
as call ResumeWork) results in a message send to RTS
which subsequently results in a function invocation. After
the message is sent, execution resumes assuming that the
function call returned. Each object calls AtSync, a blocking
collective, when it is ready for load balancing.

Once all chares on a processor call AtSync, the load
balancing framework takes control. Thereafter, the load
statistics associated with all the processors and chares are
sent either to a central processor (if using a centralized strat-
egy) or to a set of processors (if using a hybrid strategy) [12].
At these hub(s), the load balancing framework computes a
new mapping of chares to processors using the collected



statistics, and the strategy specified by the programmer either
as a run time argument or during code compilation. Once
the new mapping is computed, the load balancing decision
is broadcast to every processor involved and the migrations
are performed. Eventually, the chares resume their execution
on being invoked by the RTS.

III. META-BALANCER

Meta-Balancer is designed as a framework which, given
an application and a load balancer, automatically makes
decision at runtime on when to invoke the load balancer,
taking into account the application characteristics. It is
implemented on top of Charm++ load balancing framework
(§II-A). Meta-Balancer relies on a heuristic known as the
principle of persistence described in §I. The idea is to
let the runtime continuously monitor the application’s load
behavior, and based on the collected statistics, predict the
trend of the change of the load, and make decisions on
when to invoke load balancing. Meta-Balancer consists of
three major components, namely, asynchronous statistics
collection, decision making module for the ideal LB period
and consensus of LB period, which are described below.

A. Meta-Balancer Statistics Collection
Meta-Balancer collects load information about the running

application aggressively to determine if load balancing is
needed. Using the same AtSync interface as described in
§II-A, every chare informs its work load to the Meta-
Balancer and moves on to the next iteration. Once all the
chares residing on a processor have deposited their load for
an iteration, Meta-Balancer gathers these statistics via an
asynchronous reduction as shown in Figure 1. However, in-
stead of calling AtSync only when load balancing is actually
needed, AtSync is now called more frequently, for example
in every iteration, so that Meta-Balancer can examine the
overall load information continuously.

Since Meta-Balancer requires frequent aggregation of
statistics at a central location, this may incur significant com-
munication overhead on large systems. In order to reduce the
overhead, we select a minimal set of statistics to be collected
periodically by the Meta-Balancer. These statistics include
the maximum load, average load and the minimum utilization
on all processors in the system. We have found that these
vital statistics are sufficient for deciding the LB period for
optimal performance. Further, the overheads are mitigated
by the use of Charm++’s asynchronous reduction of the
minimal statistics that runs in the background and overlaps
with the normal execution of the application, thanks to
Charm++’s asynchronous message driven execution model.

B. Ideal Load Balancing Period Computation
Using the aggregated result of the load statistics, Meta-

Balancer determines whether there is load imbalance, which
can be calculated by

ζ =
Lmax
Lavg

− 1 (1)
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Figure 1. Periodic Statistics Collection

where Lmax is the load on the most loaded processor and
Lavg is the average load of all the processors. If there
is load imbalance in the system (ζ > 0), it will lead to
performance loss. However, presence of load imbalance does
not necessarily entail for load balancing as it may not be
profitable to do the load balancing due to the overhead in
load balancing step.

With load balancing, the total execution time of an appli-
cation is sum of the load balancing overhead and the time
spent in running the application which can be affected by the
load balancing. The goal is to minimize the total execution
time. This can be a challenging problem since we need to
model the effectiveness of load balancer on the application
and how the application load evolves over time after load
balancing. We present a simple mathematical analysis based
on an assumption that the maximum and average load can
be modeled linearly with time (i.e. iterations). A linear
model has been chosen because more complex models in
the proximity can be approximated to piecewise linear. The
mathematical analysis helps derive the ideal load balancing
period which can be used by Meta-Balancer to decide the
next iteration at which load balancing should be performed.
Let,

τ be the ideal LB period,
γ be the total iterations an application executes,
Γ be the total application execution time, and
∆ be the cost associated with load balancing

Let the average load be represented by the line equation:

Lavg = at+ la (2)

where a is the slope and la is the average load for the first
iteration.

Let the maximum time per iteration, approximately equal
to the maximum load on the most loaded processor, be
represented by the line equation:

Lmax = mt+ lm (3)



where m is the slope w.r.t. to the average load line, lm is
the difference of maximum load and average load for the
first iteration and t is the time steps (or iterations).

Application execution time, Γ, can be computed by an in-
tegral of maximum time per iteration over the total iterations
and load balancing cost as shown below:

Γ =
γ

τ
× (

∫ τ

0

(mt+ lm)dt+ ∆) +

∫ γ

0

(at+ la)dt

Γ =
γ

τ
× (

mτ2

2
+ lmτ + ∆) + γ × (

aγ

2
+ la)

Γ = γ × (
mτ

2
+ lm +

∆

τ
+
aγ

2
+ la)

Note that γ
τ represents the number of times the load

balancing is invoked during the execution of an application.
Also, for the purpose of this analysis, we have assumed that
the load balancing leads to a perfect balance. In order to
minimize Γ, we differentiate it with respect to τ , and obtain
the following value of τ used by Meta-Balancer as the ideal
load balancing period.

d

dτ
(Γ) = γ × (

m

2
− ∆

τ2
) = 0

τ =

√
2∆

m
(4)

Eq 4 effectively states that once the load balancer is
invoked, the next invocation should be performed only when
the cost for load balancing invocation has been covered.
The load balancing cost is estimated using the cost incurred
during the previous invocation. The cost for a load balancing
is covered by the gains which are obtained as load balancing
reduces the iteration time represented by the area of the
triangle in Figure 2. The ideal LB period is calculated and
continuously refined by Meta-Balancer, using Eq 4, as the
application executes. The simplifying assumption that the
load balancing leads to a perfect balance is handled by
shifting the average curve upwards, if a perfect balance is
not achieved, during the gain calculation.
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Figure 2. Ideal Load Balancing Period

C. Distributed Consensus

In the original case without using Meta-Balancer, to
perform load balancing, all chares enter the load balanc-
ing phase in the same iteration, controlled by the fixed
load balancing period. After the load balancing, the exe-
cution resumes on each chare. However, when using Meta-
Balancer, there may be a race condition scenario that causes
the program to hang. As an example, let Meta-Balancer’s
decision of the next load balancing time be iteration number
i. Consider a chare a, which receives the notification of
load balancing at iteration i before it reaches iteration i.
When this chare arrives at iteration i, it waits for the load
balancing to be done. Consider another chare b, which is
already at the iteration i + 1 when the notification of load
balancing at iteration i is delivered to it. As a result, it will
not join other chares waiting for the load balancing to be
done. This scenario is possible for applications that have
no explicit global synchronization at each iteration, because
chares perform the computation work at their own speed,
and the load balancing decisions are taken asynchronously
and communicated to the processors asynchronously. Since a
centralized load balancing strategy enforces a global barrier
which requires the participation of all chares, load balancing
will never happen in this scenario as chare b missed the
iteration i, causing the application to hang.

To avoid such a scenario, all the chares need to reach a
consensus on the iteration number that chares can reach to
enter the load balancing stage. Since the chares can be in
different iterations, we use the following scheme shown in
Figure 3 to obtain the consensus.
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Figure 3. Three Step Consensus Mechanism in Meta-Balancer

In the first step, the central processor (root) broadcasts
the calculated ideal LB period as a tentative decision for the
next load balancing time. Whenever a processor receives the



tentative LB period, it sets its own local tentative LB period
to be the maximum of the received tentative LB period and
the maximum iteration of any chare that resides on it and
prevents any chare from going beyond that. It contributes its
local iteration number via a reduction to find the maximum
iteration number any chare is executing. Recall that the
reductions in Charm++ are asynchronous. In the final step,
when the root receives the maximum iteration number, it sets
the final load balancing period to be the maximum of the
tentative load balancing period and the maximum iteration
number that was received. This final load balancing period
is then broadcast to every other processor. Note that it is
guaranteed that no chare would have moved beyond this
final load balancing period as RTS on each processor blocks
a chare which has reached its local tentative LB period.

D. Implementation
In this section, we describe the implementation of

Meta-Balancer and its interaction with the application and
Charm++ RTS. As mentioned earlier, a typical applica-
tion can be depicted using Algorithm 1. Periodically, the
application invokes AtSync which passes the control to
Charm++ RTS for potentially invoking the load balancer.
The functionality of Charm++ RTS for a chare is shown in
Algorithm 2. When AtSync is invoked, the Charm++ RTS
registers the chare load for the previous iteration with Meta-
Balancer. It also performs load balancing if the chare has
reached the LB period. In case the consensus mechanism
is active and the chare reaches the tentative LB period, it
blocks any further execution of the chare. If none of these
conditions are met, execution of next iteration is initiated
for the chare.

Meta-Balancer code on each processor is presented in
Algorithm 3. When the Charm++ RTS registers the load for
a chare, Meta-Balancer contributes to the minimal statistics
reduction if the load for all chares on that processor has been
registered. Thereafter, when the central processor receives
the result of this reduction, as shown in Algorithm 4, it finds
the ideal LB period and follows the consensus mechanism
described in §III-C to find the final load balancing period.
The root broadcasts this final load balancing period to all
processors. On receiving the final load balancing period,
the RTS on each processor either initiates load balancing
or invokes next iteration on the chares.

IV. EXPERIMENTAL RESULTS

In this section, we present a comparison of the per-
formance of Meta-Balancer with respect to periodic load
balancing using two real world applications LeanMD and
Fractography3D. We show that Meta-Balancer is able to
identify the ideal load balancing period which changes as the
application evolves and extracts the best performance for the
applications automatically at runtime. For the experiments,
we use two machines - Ranger and Jaguar. Ranger is a
SUN constellation cluster located at the Texas Advanced
Computing Center consisting of 3, 936 nodes connected via

Algorithm 2 Charm RTS on each Chare
1: when AtSync invoked
2: update chare load in Meta-Balancer
3: if (reached LB period) then
4: perform load balancing
5: else if (reached tentative LB period) then
6: wait for final LB period
7: else
8: call ResumeWork
9: end if

1: when received final LB period
2: if (curr iter == finalLBperiod) then
3: perform load balancing
4: else
5: call ResumeWork
6: end if

Algorithm 3 Meta-Balancer on every Processor
1: when received chare load
2: if (all chares have registered their load for an iteration) then
3: contribute to reduction for statistics collection
4: end if

1: when received tentative LB period
2: find maximum iteration number of chares
3: contribute to reduction for maximum iteration number

a full-CLOS Infiniband interconnect providing 1 GB/s of
peer-to-peer bandwidth. Jaguar is a Cray system at Oak
Ridge Leadership Computing Facility consisting equipped
with Cray’s new high performance Gemini network.

A. LeanMD

LeanMD is a molecular dynamics simulation program
written in Charm++. It simulates the behavior of atoms based
on the Lennard-Jones potential, which is an effective poten-
tial that describes the interaction between two uncharged
molecules or atoms. The computation performed in this
code mimics the short-range non-bonded force calculation
in NAMD [7], an application widely used by biophysicists,
that won the Gordon Bell award.

The force calculation in Lennard-Jones dynamics is
done within a cutoff-radius, rc for every atom. The three-
dimensional (3D) simulation space consisting of atoms is
divided into cells of dimensions that are equal to the sum of
the cutoff distance, rc and a margin. In each iteration, force
calculations are done for all pairs of atoms that are within
the cutoff distance. The force calculation for a pair of cells is
assigned to a different set of objects called computes. Based
on the forces sent by the computes, the cells perform the
force integration and update various properties of their atoms
– acceleration, velocity and positions. The load imbalance in
LeandMD is due to the variation in the number of atoms that
reside in a cell. The load on computes is directly proportional
to the product of the number of atoms in the cells for which
the force is being computed. LeanMD is a computation
intensive benchmark, in which load imbalance is high when
the application begins.



Algorithm 4 Meta-Balancer on Central Processor
1: when received result of statistics reduction
2: find tentative LB period
3: inform tentative LB period to all processors

1: when received result of maximum iteration reduction
2: set final LB period as max{tentative LB period, maximum iteration}
3: inform final LB period to all processors

(a) No Load Balancing

(b) Meta-Balancer

Figure 4. Processor Utilization of LeanMD on 256 cores

We use LeanMD to study the behavior of 1 million and
300,000 atom system for 2000 time steps on Jaguar and
Ranger respectively. First we describe the results of the
runs on Jaguar followed by the runs on Ranger. On Jaguar,
the base runs for LeanMD were made for a range of core
counts (128, 256, · · · , 4096) without any load balancing. The
processor utilization graph for running LeandMD on 256
cores without load balancing is shown in Figure 4(a). On
the y-axis, we have the average percentage utilization for
all the processors in the system, and the x-axis represents
time progression as the simulation proceeds. The key thing
to note is that, there is no significant variation in processor
loads as the simulation progress. However, the utilization is
as low as 60% for the entire run.

In the next step, we ran LeanMD with periodic load
balancing over a range of periods (10, 20, · · · , 700), result for
which is shown in Figure 5. There are two important points
to note in these results: 1) the LB period which gives the best
period varies with the system size, and 2) in some cases, such
as 4096 processors, periodic load balancing provides only
marginal improvement in performance. In such scenarios, it
is very difficult and time consuming for the user to find and
use a LB period which gives the best performance.

In Figure 4(b), we present processor utilization for the
case where LeandMD is run with Meta-Balancer on 256
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Figure 5. Variation in LB Period for LeanMD on Jaguar

Core No LB (s) Periodic LB (Period) (s) Meta-Balancer (s)
128 1945.16 1451.30 (200) 1388.29
256 1005.22 750.11 (200) 695.55
512 516.47 393.30 (400) 355.85
1024 264.15 209.64 (400) 190.52
2048 135.92 116.69 (400) 94.33
4096 70.68 69.6 (700) 57.83

Table I. LeanMD Application Time on Jaguar

cores. Note that to run Meta-Balancer, the only change
in the application was to change the frequency at which
AtSync was invoked. For our experiments, we invoke AtSync
every 5 iterations. The vertical notches in the plot indicate
the time when load balancing was performed. It can be
seen that Meta-Balancer invokes load balancing at the very
beginning due to the load imbalance. Thereafter, since the
processor utilization is very high (95%) with insignificant
variation, load balancing is invoked very infrequently. This
translates into performance improvement of 31% as shown
in Table I. For large core count of 4096, we observe that
while periodic load balancing provides marginal gains of
1.5%, Meta-Balancer improves the performance by 18%. For
smaller core counts, Meta-Balancer outperforms any fixed
LB period used.

We also ran LeanMD on Ranger cluster to simulate a
300, 000 atom system for 2000 time steps. Figure 6 presents
the performance of periodic load balancing when the period
is varied from 10 to 700 iterations. For runs on 128, 256
and 512 cores, we observe that the best performance is
obtained at different LB periods when compared with the
runs on Jaguar. This suggests that the LB period at which the
best performance is obtained also changes with the system
being simulated and the system being used to execute the
application. In Table II, a comparison of performance of
Meta-Balancer with other runs is shown. It can be seen
that Meta-Balancer consistently outperforms periodic load
balancing, and improves the performance over base runs
by upto 28%. These experiments on Ranger and Jaguar
highlight the utility of Meta-Balancer in identifying the
characteristics of an application and invoking load balancing
appropriately to obtain good performance without any input



from the user.
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Figure 6. Variation in LB Period for LeanMD on Ranger

Core No LB (s) Periodic LB (Period) (s) Meta-Balancer (s)
128 2169.85 1570.45 (100) 1545.9
256 1087.39 798.28 (100) 787.01
512 552.96 411.71 (200) 401.78
1024 285.8 230.39 (400) 228.55
2048 203.29 159.42 (400) 159.28

Table II. LeanMD Application Time on Ranger

B. Fractography3D

Fractography is used to study fracture surfaces of materi-
als. Fractographic methods are used to determine the cause
of failure in engineering structures and evaluate theoretical
models of crack growth behavior. Our simulation program,
called Fractography3D, is written using Charm++ FEM
framework [4].

In Fractography3D, the framework discretizes a 3-D vol-
ume into tetrahedras. Typically, the number of elements is
very large, and they are grouped into a number of chunks
distributed across processors. During the simulation, each
tetrahedral element is considered to have one of two material
properties: elastic or plastic. When an external force is
applied to the material under study, the initially elastic
response of the material may change to plastic as stress
increases, resulting in much more expensive computation in
that region. This in turn causes some of the mesh partitions
to spend more time on computation per timestep than other
partitions, resulting in load imbalance.

Using Fractography3D, we study the effect of application
of external force on a bar. The bar is represented using
88641 points in 3D space which are used to generate
tetrahedras. The simulation is performed for 3.6 ms of real
world time with a time step of 32 micro seconds. Therefore,
there are approximately 11,200 iterations executed during
the simulation. For the base runs, we ran Fractography3D
on Jaguar without any load balancing being performed for
core counts ranging 64, 128, · · · , 1024. Figure 7(a) shows the
processor utilization graph generated when Fractorgraphy3D
is run on 64 cores of Jaguar. On the y-axis, we have the
average percentage utilization for all the cores in the system,

and the x-axis represents time progression as the simulation
proceeds. It can be seen that Fractography3D has a large
variation in processor utilization during a simulation run.
Also, for a large portion of the execution, substantial amount
of processor resources are wasted. Similar trend was found
in processor utilization on other core counts as well.

(a) No Load Balancing

(b) Periodic Load Balancing (300 iterations)

(c) Meta-Balancer

Figure 7. Processor Utilization of Fractography3D on 64 cores

Following the base runs, we ran Fractography3D with load
balancing being performed periodically. We experimented
with a large range of LB periods (5, 10, 20, · · · , 7000) to find
the period which gives the best performance. Figure 8 shows
the application run time for Fractography3D using these
LB periods on various core counts. We find a significant
variation in application execution time as the LB period is
varied. If the load balancing is done very frequently, the
overheads of load balancing overshoots the gains of load
balancing, and results in bad performance. On the other
hand, if load balancing is done very infrequently, the load
imbalance in the system reduces the gains due to load
balancing. However, for intermediate periods, such as 300
iterations, best performance is obtained. In Figure 7(b), we
present the processor utilization graph for Fractography3D
on 64 cores when the load balancing is performed every
300 iterations. The key thing to note in Figure 7(b) is the
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substantial increase in the processor utilization due to peri-
odic load balancing that results in reduction in application
execution time by 28%.

Finally, we ran Fractography3D using Meta-Balancer on
the same range of core counts as used for the earlier
cases. As mentioned earlier, the only change in the user
code required for using Meta-Balancer is the invocation of
AtSync frequently (every 5 iterations). Figure 7(c) shows the
processor utilization graph generated when Fractography3D
is run on 64 cores with Meta-Balancer. It can been seen that
Meta-Balancer increases processor utilization which results
in a performance gain of 31% in comparison to the case
in which no load balancing is performed. An interesting
thing to note is the frequent invocation of load balancing
by Meta-Balancer in the first quarter of the execution as
seen by the vertical notches in the plot. This is because of
the fact that the load variation among processors changes
frequently in the first quarter. Thereafter, when the load
variation decreases in the second half of execution, the
frequency of load balancing also goes down.

In Table III, a comparison of total execution time of
Fractography3D for the following three cases is presented
- without load balancing, periodic load balancing every
300 iterations and Meta-Balancer. We observe that in most
cases Meta-Balancer either matches or improves the best
performance obtained by periodic load balancing. The only
exception is at 1024 cores which we believe is because of
very small run time of the application. Both Meta-Balancer
and periodic load balancing outperform the base case with
no load balancing by 28% to 31%. Thus, we have shown
that, for Fractography3D, Meta-Balancer is able to invoke
load balancing whenever required without any input from
the user, and at least match the performance of periodic
load balancing. This shows the utility of Meta-Balancer in
automating the load balancing decisions, and helping the
user avoid numerous runs to find the best LB period for an
application. Note that, unlike benchmark runs, the users do
not have the luxury of repeating the runs to find the best
load balancing period as their objective is to get their runs
as fast as possible.

In order to measure the overhead of using Meta-Balancer,

Core No LB (s) Periodic LB - 300 (s) Meta-Balancer (s)
64 654.5 468.35 448.76
128 375.51 244.9 231.36
256 200.78 131.4 127.25
512 109.45 74.6 74.03

1024 59.49 44.4 48.8

Table III. Fractography3D Application Time

LeanMD and Fractography3D were run using Meta-Balancer
with a constraint that irrespective of the load balancing
period determined by Meta-Balancer, load balancing was
not invoked. In comparison to the base case, negligible
performance drop was observed. The absence of significant
overhead can be attributed to the asynchronous manner in
which Meta-Balancer is run by the RTS and its overlap with
the application run.

V. PREVIOUS WORK

Dynamic load balancing strategies have been studied
extensively in the past [13, 14]. One important category of
load balancing scheme is the periodic load balancing for
iterative applications with persistent load patterns. Exemplar
runtime systems implementing this approach are Zoltan [3],
Chombo [15], and Charm++ [10]. Similar schemes have also
been proposed and used in MPI applications [16, 17]. This
paper proposes concepts which build upon these existing
frameworks in order to make decisions related to load
balancing to get good performance.

As described in [14], deciding when to invoke load
balancing is a critical step in a load balancing process.
This decision depends on determining if performing load
balancing at an instance will improve overall application
performance. A simple model based on load imbalance
factor φ(t) is proposed in [14], which is based on the
estimate of the potential gain through load balancing at
time t. However, this model does not consider the dynamic
behavior of the application. In contrast, the proposed work
uses a linearized extrapolation model for predicting load
based on recent past which is used to predict the time steps
at which load balancing should be performed.

A more complex scheme to decide a good load balancing
period is proposed by Siegell et.al. [18]. Several factors
such as interaction overhead, load balancing overhead and
application time quantum are measured at run time, and
are used to decide the time at which next load balancing
should be invoked. The main drawback of this approach is its
reliance on users for several inputs to decide the acceptable
granularity of each of these factors. The proposed work in
this paper requires no input from the user, and hence results
in complete automation. Moreover, the proposed work is
based on the concept of load balancing cost recovery which
has not been explored in any of the previous work.

Techniques for automation of load balancing related deci-
sions are also presented in a recent work by Pearce et.al. [11]
in press. The primary focus of this work is on selection



of load balancing strategy based on simulation of multiple
strategies. For load prediction, the dynamic nature of appli-
cation is not considered, and a synchronous global barrier
based scheme is used for making decisions. In contrast, our
work focuses on deciding when to invoke load balancing
based on prediction of application load characteristics. We
also avoid barriers by using asynchronous communication
which may be beneficial on large systems.

VI. CONCLUSION

Load imbalance is a key factor that affects performance
and scalability of an application. Leaving it to the ap-
plication programmer to manually handle the load imbal-
ance in a dynamic application, and to find an optimum
load distribution throughout the run of the application, is
unreasonable and inefficient. In this paper, we presented
techniques for deciding when to invoke load balancing
based on application characteristics and their embodiment in
the Meta-Balancer. Meta-Balancer represents an application
independent concept which is helpful in extracting the best
performance of an application without requiring the user
to make multiple benchmark runs or use domain specific
knowledge to estimate the load balancing period. We also
presented details related to a practical implementation of
Meta-Balancer on top of Charm++.

We demonstrated the adaptive nature of Meta-Balancer in
the context of two real world applications. We showed that
Meta-Balancer is able to identify the ideal load balancing
period which changes as the application evolves and extracts
the best performance automatically. In the process, we
presented scenarios in which Meta-Balancer is able to extract
substantial gains whereas periodic load balancing provides
only marginal gains.

In future, we plan to extend Meta-Balancer to auto-
mate the selection of load balancing strategy. This includes
strategy selection based on application characteristics, such
as computational load and communication volume, system
characteristics, such as centralized and distributed algorithms
etc. We plan to include higher order algorithms for pre-
dicting load. We also plan to work on newer methods to
better estimate the load imbalance and use them to take load
balancing decisions.
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