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Abstract—As we move to exascale machines, both peak power
and total energy consumption have become prominent major
challenges. There has been a lot of research on saving machine
energy consumption for HPC data centers. However, a significant
part of energy consumption for HPC data centers can be
attributed to cooling the machine room. We have already shown
significant reduction in cooling energy consumption by constrain-
ing core temperatures in our previous work. In this work, we
strive to save machine energy consumption while constraining
core temperatures in order to provide a total energy solution
for HPC data centers that saves both machine and cooling
energy consumption. Our approach uses Dynamic Voltage and
Frequency Scaling (DVFS) to constrain core temperatures and is
particularly designed to reduce the timing penalty associated with
DVFS. Using a heuristic that exploits the difference in frequency
sensitivity for different parts of an application, we present results
that show 17% reduction in machine energy consumption with
as little as 0.9% increase in execution time while constraining
core temperatures below 60◦ C.

I. INTRODUCTION

Energy consumption has emerged as a major issue for
modern High Performance Computing (HPC) machines. Some
of the largest supercomputers draw close to 10 megawatts [1],
leading to millions of dollars per annum in energy bills. What
is perhaps less well known is the fact that 40% to 50% of
the energy consumed by a data center is spent in cooling [2]–
[4], to keep the computer room running at a safe temperature.
In the past few years, we have seen some low power HPC
clusters emerge, such as Green Destiny [5]. Although the
energy efficiency for such machines is considerably greater
than conventional supercomputers, their processing power is
also much inferior to them. A per node comparison of Green
Destiny with the Q supercomputer at Los Alamos National
Laboratory (LANL) shows that the latter is 15 times faster [5].

Given that the bulk of existing energy optimization research
for HPC data centers only considers reducing machine energy
consumption, we plan to tackle the bigger problem of reducing
the total energy consumption i.e. both cooling and machine
energy consumptions. A large part of this cooling energy
consumption can be attributed to formation of hot spots which
force data center operators to over-cool the machine room just
to keep machines in the hot spot at an acceptable temperature.
System operators can avoid increasing the cooling, provided
that core temperatures for all the machines are kept in safe
limits because even a small increase in core temperatures e.g.
10-15C◦ C, can cause a 2X increase in the fault rate [6].

Current day microprocessors contain on-chip temperature
sensors which can be accessed by software with minimal
overhead. Further, they also provide means to change the fre-
quency and voltage at which the chip runs, known as Dynamic
Voltage and Frequency Scaling (DVFS). Running processor
cores at a lower frequency (and correspondingly lower voltage)
reduces their thermal energy dissipation, leading to a cool-
down. This suggests a method for keeping processors cool
while decreasing the cooling requirement for the machine
room. In our earlier work [7], we show that significant amount
of cooling energy consumption can be saved by constraining
core temperatures using DVFS combined with dynamic load
balancing. Although more radical liquid-cooling designs are
expected to mitigate some of the hot spot concerns, they are
not a panacea. Equipment must be specifically designed to
be liquid-cooled, and data centers must be built or retrofit to
supply the coolant throughout the machine room. The present
lack of commodity liquid-cooled systems and data centers
means that techniques to address the challenges of air-cooled
computers will continue to be relevant for the foreseeable
future. In addition to avoiding hot spots, constraining core
temperatures can also reduce cooling energy consumption by
simply reducing thermal energy dissipation in the machine
room which the cooling unit has to remove. Our earlier
work [7] shows that we were able to reduce cooling energy
consumption by as much as 63% by constraining core temper-
atures and lowering the cooling level for the machine room.
However, as reducing machine energy consumption was not
the aim of our earlier study, we did not end up reducing it
significantly. In this work, we try to tackle this other part
of energy consumption i.e. machine energy consumption. Our
scheme allows the application user to specify a maximum tem-
perature threshold and the runtime system ensures that these
thresholds are honored while attempting to minimize execution
time penalty. We exploit the fact that different parts of the same
application could have different sensitivities to frequency due
to communication stalls and memory bandwidth requirements,
and hence are better off running at different frequency levels.
In order to ensure that no processor overheats, a component of
the application software periodically checks core temperatures.
When it exceeds a pre-set threshold, the software can reduce
the frequency and voltage of a part of the application that
is least sensitive to frequency. If the temperature is lower
than the threshold, the software can correspondingly increase
the frequency of the most frequency-sensitive part of the



application currently working below the maximum frequency
level due to temperature constraints.

The novelty of our work lies in the fact that we re-
duce machine energy consumption alongside constraining core
temperatures and this leads to reduction in cooling energy
consumption. In our work, we use the newly introduced on-
chip energy consumption counters supported by Intel’s Sandy
Bridge processor [8] that have a refresh rate of 1 millisecond.
These counters empower the runtime system by allowing
it to make more intelligent decisions regarding DVFS in
order to constrain core temperatures. Use of these energy
counters also allows us to expedite the learning (profiling)
process and use our novel heuristic that makes decisions about
which part of the application should run at a lower/higher
frequency. However, since this microprocessor is very recent,
we were unable to find a cluster that had multiple Sandy
Bridge nodes and so we resorted to using a single node for
all our experiments. As we will show later, the results from
our single node experiments suffice to profoundly increase our
understanding of application reaction to temperature control.
The contributions of this paper can be summarized as follows:
• Decreases the learning (profiling) period to as low as few

milliseconds for profiling all parts of the application
• Minimize the timing penalty associated with DVFS to

constrain core temperatures and reduce machine energy
consumption by using our novel heuristic.

• Using a combination of hardware performance counters
and Sandy Bridge energy counters, we present an in depth
analysis of how the characteristics of different parts of an
application impact CPU core power, core temperatures,
and execution time penalty.

• Devise an index that captures how much benefits our
scheme can bring for a given application

II. RELATED WORK

Cooling energy optimization and hot spot avoidance have
been addressed extensively in the literature of non-HPC data
centers [9]–[12], which shows the importance of the topic. As
an example, job placement and server shut down have shown
savings of up to 33% in cooling costs [9]. Many of these
techniques rely on placing jobs that are expected to generate
more heat in the cooler areas of the data center. This does not
apply to HPC applications where different nodes are running
parts of the same application with similar power draw.

Energy optimization work for HPC data centers is broadly
divided into two categories: Reducing energy consumption
without any performance impact and reduce energy consump-
tion by trading it off with execution time. The former is mostly
possible in applications which are load imbalanced and have
some slack time available in their Directed Acyclic Graph
(DAG) [13]. However, the latter can be applied to load bal-
anced applications as well, where researchers mainly exploit
memory bandwidth limitations to reduce machine energy con-
sumption. There are two high level categories to which such
techniques belong i.e. techniques based on profiling runs [14]
and techniques based on performance counters prediction [15].

The closest work to ours are CPU MISER from Ge et al.
[15] and the work from Freeh et al. [14]. CPU MISER builds
a model to estimate the load and execution time for each
execution phase under different frequency/voltage pairs. It uses
performance counters to come up with a frequency/voltage
schedule that keeps the execution time delay below a limit
while minimizing machine energy consumption. Freeh et al.
[14], on the other hand, use profiling in order to obtain the
best possible schedule for different application phases. Their
technique does not offer any constraint on the execution time
delay and strives to achieve maximum energy savings possible
for a given application. All the works cited for HPC data
centers so far focus on reducing machine energy consump-
tion, ignoring cooling energy consumption. In this paper we
address the question of reducing cooling energy consump-
tion by incorporating core temperature constraints. Although
researchers have done work at thermal profiling for parallel
applications [16], HPC community still lacks research efforts
in reducing cooling energy consumption. Our work is different
because we use specialized energy counters provided by Sandy
Bridge processor to profile core power and timing penalty for
each part of the application to obtain an optimal frequency
schedule that constrains core temperatures efficiently. More
importantly, we present an in depth anaylsis of the relation
between core power, core temperature, operating frequency
and Although we do not report results showing reduction in
cooling energy consumption in this work, according to our
previous work [7], this reduction can be as large as 63%.

III. CONSTRAINING CORE TEMPERATURES

Modern day systems do not directly respond to high core
temperatures. Where they do react, that reaction can cause
severe slow down of the application. Simple measures like
increasing fan speed have limited effect. Allowing the more
extreme response of auto throttling at the core’s maximum
thermal limits could be disastrous to performance. Right
now the only mechanism available to system operators is
energy intensive machine room level cooling. According to
studies [17], data center operators can save 7% of the total
cooling cost by increasing the machine room temperature by
1◦ C. In order to increase the machine room temperature,
data center operators need to be sure that core temperatures
would not reach very high values and there will be no hot spot
formation.

To see the behavior of core temperatures for different
applications, we ran four applications from the NPB parallel
benchmark suite [18] on a single node having a quad core
Intel core i7-2600 processor. Figure 1 shows the average core
temperature across all 4 cores plotted against execution time.
Depending on application characteristics, core temperatures
settle at different steady state temperatures. This difference
in steady state temperatures makes temperature control even
more important as some applications can add a significant
amount of thermal energy to the machine room due to their
higher steady state core temperatures. Core temperatures can
be reduced given that core power is reduced. Researchers
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Fig. 1. Temperature profiles without temperature control

have widely used the technique of DVFS to reduce core
power. This technique allows the runtime system to change
frequency/voltage pair in order to reduce power. However,
these savings come at the cost of delay in execution time i.e.
timing penalty. Figure 2 shows the results of running NPB-FT
in parallel for four different frequency levels using the same
machine used in the earlier experiment. We plot the execution
time along with the core power for all 4 cores. Looking at this
figure, we can see that the increase in execution time is not
significant compared to the reduction in the core power for this
application. Hence, reducing frequency would help reduce core
power which would consequently reduce core temperatures,
with a small timing penalty. Since energy is power integrated
over time, whether this saves energy or not depends on the
execution time penalty.

To demonstrate the impact of DVFS, we ran a set of
experiments using NPB-FT. During these experiments, the
runtime sampled core temperatures periodically, and when
the average core temperature was greater than the maximum
threshold, its frequency/voltage pair was lowered by one step.
On the other hand, if the average core temperature was
lower than the maximum threshold, the frequency/voltage pair
was increased by one step. We repeated this experiment for
a range of different maximum temperature thresholds and
calculated the timing penalty i.e. the percentage delay in
execution time, as well as the reduction in machine energy
consumption relative to a run where all cores were working at
the maximum frequency without any temperature control. As
shown in Figure 3, DVFS alone in this setting reduces machine
energy consumption but sacrifices execution time considerably.
Nevertheless, we were able to constrain core temperatures and
save machine energy consumption using DVFS.

IV. REDUCING TIMING PENALTY FOR DVFS

Having seen the importance of constraining core tempera-
ture using DVFS we now investigate the possibility of reducing
DVFS-associated timing penalty. It turns out that by dividing
the application into smaller execution blocks (EBs), we can
reduce the timing penalty and machine energy consumption.
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Fig. 2. Execution time and core power for NPB-FT for four frequency levels
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Fig. 3. Timing penalty and savings in energy consumption for NPB-FT using
different temperature thresholds (temperature sampling at every iteration)

This reduction is possible because different sections of code
might have different memory access patterns and hence might
not need a very high frequency to run at. For most cases,
where there is a lot of memory traffic, the highest levels of
frequency consume a lot of energy and consequently dissipate
a large amount of heat that increases core temperatures without
making any significant difference to execution time.

In order to see the potential of constraining core temperature
by executing different parts of an application at different
frequencies, we manually divided NPB-IS in two parts, EB1
and EB2, which repeat in each iteration of its execution. We
then profiled their execution times and core power using all
possible frequency levels on the same quad core machine used
in earlier experiments. As seen from Figure 4, EB2 is very
insensitive to frequency as compared to EB1 i.e. the execution
time for EB2 doesn’t increase much as we go on decreasing
the frequency for it. However, irrespective of being insensitive
to frequency, EB2’s core power keeps on increasing with an
increase in frequency. Hence, if we reduce the frequency
of EB2 from maximum to minimum, it would result in a
substantial decrease in the core power (50W to 18W) and
hence would cause a reduction in core temperatures without



a significant increase in the execution time. However, the
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Fig. 4. Execution time and core power for NPB-IS for different frequency
levels

impact of changing the frequency for individual EBs on core
power depends on the proportion of execution time each EB
represents in the total execution time. Figure 4 shows that
EB2 accounts for a higher proportion of total execution time
as compared to EB1 when working at maximum frequency.
Hence we should expect a sizable reduction in the core power
after shifting EB2 to the lowest frequency level i.e. 1.6GHz.

V. EB TUNER

In this section we use the insight gained in Section IV to
devise a novel technique that constrains core temperatures and
saves energy consumption while minimizing timing penalty.
This section is divided into two subsections. Section V-A
outlines the profiling mechanism which is a pre-requisite for
our scheme. In Section V-B we formulate the problem of
constraining core temperatures efficiently and describe our
scheme, which we refer to as EBTuner.

A. Profiling technique

The majority of researchers use standalone power meters
having refresh rates in the order of seconds for profiling energy
statistics of applications. This implies that if the execution time
for an EB is less than the refresh rate, the power meter won’t be
able to profile the EB straighforwardly. In order to determine
the energy-time tradeoffs under these constraints, researchers
usually fix the frequency for all the EBs and vary the frequency
of one EB at a time in order to profile EBs for all possible
frequency levels. Although this scheme works well in terms of
coming up with the trade-offs, it leads to very long profiling
periods that require several runs of the entire application [14].

Our goal is to constrain core temperatures that are dependent
on power of the cores rather than the total power of the
machine. Because of that, our profiling scheme uses core
energy consumption information recorded in the Machine
Specific Registers (MSRs) on Sandy Bridge processor which
is refreshed every 1 millisecond. Using them, we can profile
all the EBs an application is divided into at the same time for

a given frequency level. This helps us profiling the application
in order of milliseconds.

In order to profile an application we manually identify
portions of code having high memory pressure by looking
at hardware performance counters. The goal of profiling is
to come up with execution time and core power vectors for
each EB at the beginning of the application. These vectors,
L = t1i , t

2
i , ..., t

m
i and P = p1i , p

2
i , ..., p

m
i , give the execution

time per iteration and the core power for EBi at each of the
m frequency levels supported by the CPU.

Since there is already much work done for dividing a
program into blocks based on memory pressure [19], we leave
out that part from our strategy. We are planning to incorporate
our strategy with our earlier work [7] that focuses on reducing
cooling energy consumption by using CHARM++ [20] which
is based on asynchronous message driven execution. Since
CHARM++ already divides computation into smaller sequen-
tial chunks i.e. entry methods, our technique does not need to
divide the application itself. Instead, it would just profile the
entry methods of CHARM++ and use it to determine optimal
frequencies.

B. Temperature Aware EB Tuner

Our scheme is based on selectively running different parts
of the applications i.e. EBs, at different frequency levels. This
idea has already been used by other researchers to reduce
machine energy consumption [14], [15]. However, we use it
to reduce the DVFS-associated timing penalty for constraining
core temperatures. Our scheme currently uses MPI and is
limited to a single multi-core node. However, in our future
work, we plan to combine it with our multi-node temperature
constraining scheme [7] using CHARM++ as it provides effi-
cient task migration infrastructure which is imperative for a
multi-node scheme.

Our temperature control scheme is periodically triggered
after equally spaced intervals in time, referred to as steps.
At present, any iterative MPI application can add a call to
our utility which then constrains core temperatures effectively.
Our control strategy for DVFS is to let the cores work at their
maximum frequency as long as their temperature is below a
user-specified temperature threshold. If a core’s temperature
crosses the threshold, it is controlled by lowering the frequency
of one of the EBs. At this time, our scheme needs to identify
an EB such that a frequency reduction for it would result in the
minimum possible timing penalty. The selection of the best EB
should be such that we minimize application execution time
(tapp):

tapp =
Nprocs

max
p=1

(

NEBs∑
i=1

tfii ) (1)

where NEBs is the number of EBs the application is divided
into, tfii is the execution time for EBi running at frequency
fi, subject to:

T ≤ Tmax (2)



where T is the average core temperature at each step, and
Tmax is the user specified maximum temperature threshold.
Reducing frequency of the best EB would cause the core power
to reduce which will consequently cause a drop in the core
temperature. We adopt a heuristic to select the best EB. We
define it in a way that considers change in both core power and
timing penalty for making a change in frequency of an EB.
Our heuristic for finding the EB with the best power gradient
when core temperatures go above the threshold is defined as:

gbest =
NEBs
max
i=1

(
pfi↓avg − pavg
tfi↓avg − tavg

) (3)

where NEBs is the number of EBs the application is divided
into, pavg and tavg are the average core power and the average
execution time per iteration during the last step, pfi↓avg and tfi↓avg

are the predicted average core power and average execution
time per iteration after decreasing the frequency for EBi one
level lower from what it was during the last step i.e. fi. Our
scheme predicts execution time and core power after using
the profiled data. Specifically, it uses the profiled execution
time and core power vectors obtained at the beginning of the
application (explained in Section V-A) for each EB in order
to do predictions. In case the cores overheat we select the EB
having the maximum power gradient (gbest) from amongst all
the EBs. This is because we want to maximize the reduction
in core power (numerator) while trying to minimize the timing
penalty (denominator). However, in case when average core
temperature is below the threshold value, we select the EB
with the smallest power gradient after checking each EB
at an increased frequency. Hence, instead of decreasing the
frequency by one level (fi ↓) in Equation 3, we increase it by
one level (fi ↑).

After conducting experiments with various applications, we
determined that sampling temperatures after a period of 1
second (step size of 1 sec) is well-suited for constraining core
temperatures for reasonable thresholds (Figure 5). After each
step, the application calls a method exposed by our utility
which passes control to the functionality listed in Algorithm 1.
This algorithm along with Table I describes the functionality
of our scheme at the start of step k. If the current average
core temperature (ck) is greater than the threshold (Tmax), we
call the method decreaseFreqEBTuner() which is responsible
for identifying the best EB for which the frequency is to be
reduced. On the other hand, if current average core temperature
is less than the threshold, the method increaseFreqEBTuner()
is called which in turn identifies the best EB for which to
increase the frequency (lines 1-5).

The method decreaseFreqEBTuner() iterates over all the
EBs (lines 8-30) and identifies the best EB for which the
frequency should be reduced by one step. For each EBi, (line
8), it first predicts the time per iteration for the application by
using profiled information (lines 10-16). While calculating the
predicted time per iteration i.e. tnew, it uses the execution time
corresponding to the frequency level fi ↓ which is one level
lower than EBi’s current frequency. For all remaining EBs,

TABLE I
DESCRIPTION FOR VARIABLES USED IN ALGORITHM 1

Variable Description

NEBs number of EBs the application is divided into
tnew predicted time per iteration for step k + 1
pnew predicted core power for step k + 1
fi current frequency level for EBi

tki time per iteration for EBi at frequency level k
told time per iteration for step k − 1
pki core power of EBi at frequency level k
bbest best EB to change frequency
gi power gradient for EBi for step k
gbest best power gradient of selected EB for step k

its uses execution time corresponding to the same frequency
level at which they operated in step k− 1 i.e. fi. It next uses
the predicted time per iteration (tnew) to predict core power
assuming that we reduce the frequency for EBi. In order to
do that, it weighs each EB according to the proportion of
execution time it takes and accumulates the contribution by
each EB in pnew (lines 18-24).

We next calculate the power gradient (gi) for EBi (line
25) by dividing the difference in the current power (pcur) and
the predicted power (pnew) by the timing penalty associated
with reducing the frequency for EBi one level lower from
its current level (fi). Lines 26-29 are just keeping track
of the best EB which has the maximum power gradient
(gbest). We only provide details for decreaseFreqEBTuner()
method as the method increaseFreqEBTuner() is similar to
it. Since increaseFreqEBTuner() method is a reaction to core
temperatures getting cooler than the threshold, we predict core
power assuming an increase in frequency by one level. Hence,
instead of using fi ↓ on lines 12 and 20, we use fi ↑. Since we
want to minimize timing penalty, we would want to increase
the frequency of an EB which results in maximum decrease in
execution time and causes the smallest increase in core power.
In terms of our heuristic, we want an EB that has the smallest
power gradient instead of one that had the maximum.

VI. PERFORMANCE RESULTS

Obtaining the core power for an application is vital for our
scheme as it affects core temperatures. Intel’s Sandy Bridge
chip, is a relatively new product that deploys on chip coun-
ters to supply core energy consumption data to applications
through Machine Specific Registers (MSRs). We use a quad-
core machine for all our experiments. It has a quad-core Intel
core i7-2600 processor with a maximum frequency of 3.4 GHz
that can go up to 3.8GHz with Intel’s Turboboost. We used
a Watts Up Pro power meter to measure the machine energy
consumption for all our experiments. The operating system
on the node is Ubuntu 10.04 with lm-sensors and coretemp
module installed to provide core temperature readings, and the
cpufreq module installed to enable software-controlled DVFS.
We investigate the effectiveness of our scheme by considering
Class A datasets of four different parallel applications from
the NAS parallel benchmark [18] suite. These applications
have a range of power profiles and vary in the intensity with



Algorithm 1 EBTUNER: START OF STEP k

1: if ck > Tmax then
2: decreaseFreqEBTuner()
3: else
4: increaseFreqEBTuner()
5: end if

6: procedure DECREASEFREQEBTUNER()
7: bbest = 0 , gbest = 0
8: for i = 1, N
9: tnew = 0

10: for s = 1, N
11: if s = i
12: tnew = tnew + tfi↓i

13: else
14: tnew = tnew + tfss
15: end if
16: end for
17: pnew = 0
18: for s = 1, N
19: if s = i
20: pnew = pnew + (tfi↓i ∗ pfi↓i )/tnew
21: else
22: pnew = pnew + (tfss ∗ pfss )/tnew
23: end if
24: end for
25: gi = (pcur − pnew)/(tnew − told)
26: if gi > gbest
27: gbest = gi
28: bbest = i
29: end if
30: end for
31: end procedure

which they use the CPU. We divided the applications so that
all the EBs have an execution time at least on the order of
tens of milliseconds to make sure that the DVFS overhead
of 100µs [21] becomes negligible (e.g. with 10 ms EBs, the
overhead is 1%). All results reported in this work are averages
of two similar runs with each run taking more than 10 minutes
to ensure that each application settles to its steady state. It is
important to note that all the experiments were run on real
hardware with actual energy consumption measurements (not
models), and there are no simulation results in this paper.

A. Constraining core temperature and its impact on frequency
and core power

A primary objective of our scheme is to constrain core
temperatures below the user defined maximum temperature
threshold. Figure 5 shows the average core temperature across
all 4 cores plotted against execution time with a maximum
temperature threshold of 54◦ C. Our scheme was effectively
able to constrain core temperature below 54◦ C throughout
the 10 minute runs. However, Figure 5 presents the first 150
seconds of these runs in order to analyze some key differences
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Fig. 5. Temperature profiles with a temperature threshold of 54C using
EBTuner

TABLE II
STEADY STATE APPLICATION CHARACTERISTICS FOR 54◦ C THRESHOLD

Description NPB-FT NPB-LU NPB-SP NPB-IS

MFLOP/s 640 1032 200 0
Frequency 2.24 2.59 2.79 2.88
Timing penalty (%) 6 6 1 1
L1-L2 Traffic (MB/sec) 2416 2114 850 1288
L2-L3 Traffic (MB/sec) 6806 3365 1755 4832
Core Power (W) 35 42 41 40
L3-DRAM Traffic 372 142 174 668
(MB/sec)

amongst the applications.
Before analyzing differences in timing penalties amongst

applications, we need to analyze temperature gradients shown
in Figure 5 as they determine the frequency at which each
application runs. NPB-FT has the steepest temperature gra-
dient amongst the four applications and is the quickest to
reach the temperature threshold of 54◦ C. On the other
hand, NPB-IS has the lowest temperature gradient and is the
last to reach the temperature threshold of 54◦ C. The other
two applications lie in between these two applications. After
looking at the temperature profiles, we now try to relate them
with the average frequency for each application plotted against
execution time (shown in Figure 6). The average frequency
refers to the average of the frequency level used for all EBs
during each iteration weighted according to the execution time
they take.

All applications start at the maximum frequency and as
the cores get hotter, DVFS comes into action decreasing their
frequencies. We can notice that the average frequencies for all
the applications start to decrease in the order in which they
reach the threshold temperature (54◦ C) i.e. NPB-FT is the
first, followed by NPB-LU, NPB-SP and NPB-IS respectively.
Besides that, all applications settle to a different steady state
frequency. Table II shows steady-state characteristics for all
four applications when running using EBTuner with a tem-
perature threshold of 54◦ C. Both NPB-FT and NPB-LU end
with the same percentage of timing penalty but with average
frequencies which are nearly 400 MHz apart. This can be
understood if we look at the MFLOPs/sec from Table II. NPB-



LU has much higher MFLOPs/sec rate than NPB-FT which
means that for the same percentage decrease in average fre-
quency, NPB-LU should expect a greater timing penalty than
NPB-FT as the former is more computation bound. Hence,
NPB-LU, irrespective of suffering a smaller degradation in
average frequency, ends up having timing penalty equal to
what NPB-FT suffers (6%) despite going to an even lower
average frequency level. This raises another question: What
causes NPB-FT to heat much quickly than NPB-LU as shown
by its higher temperature gradient in Figure 5 despite NPB-
LU’s much higher MFLOPs/sec rate? This difference is likely
caused by the high amount of data transfer going inside the
processor (between caches) and to the memory as shown in
Table II.
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Fig. 6. Average frequency with a temperature threshold of 54◦ C using
EBTuner

Since Figure 5 shows all applications settling to the same
average core temperature, the laws of thermodynamics dictate
that a CPU running at a fixed temperature will transfer a
particular amount of heat energy per unit of time to the
environment through its heatsink and fan assembly. Thus,
each application should end up having the same core power.
However the steady-state core power values for all applications
from Table II tell a different story. NPB-LU, the most compute
intensive application considered (Table II), ends up with the
highest steady state core power followed by NPB-SP, NPB-
IS, and NPB-FT respectively. The most interesting observation
is the steady-state core power value (Table II) for NPB-FT
that is 5W lower than the other three applications. Although
core power largely determines core temperatures, we can say
it is secondarily dependent on what happens at places nearby
i.e. caches and memory controller. NPB-FT’s second highest
FLOPs/sec rate (only lower than NPB-LU) coupled with its
high data transfer rate (only lower than NPB-IS for main
memory access) make it the ‘hottest’ application.

B. Timing penalty

Now that we have established how core temperatures affect
average frequency, let us gain some insights into how the
frequency influences the timing penalty. Figure 8 shows timing
penalty incurred by each application under DVFS, contrasting
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threshold of 54◦ C

TABLE III
COMPARISON OF EBTuner AND NaiveDVFS USING NPB-IS (Tmax=54◦ C)

Description MIPs pcore (W) f (GHz) Time Penalty(%)

NaiveDVFS 1202 38.51 3.00 5.6
EBTuner 1252 39.49 2.88 0.5

its effect between our scheme, EBTuner and NaiveDVFS (the
strategy mentioned in Section III). Our scheme was able to
reduce timing penalty for all temperature thresholds across all
four applications. In case of NPB-IS, our scheme was able
to reduce the timing penalty by more than 50% compared to
NaiveDVFS for all temperature thresholds. In order to under-
stand the reasons for the improved performance of EBTuner,
we need to understand the frequency it uses for each EB.
Figure 7 shows the frequency selected by EBTuner for both
EB1 and EB2 when running with a threshold of 54◦ C. It also
plots the average of both the EBs for each iteration i.e. Average
- EBTuner, and compares it to the frequency selected by the
NaiveDVFS scheme. In Section IV (Figure 4) we discussed the
insensitivity of EB2 to frequency. Combining that knowledge
with our heuristic, we can see that as soon as the temperature
for NPB-IS hits the threshold value i.e. 54◦ C (Figure 5),
EBTuner starts decreasing the frequency of EB2 owing to its
large power gradient (due to increase in execution time being
very small in Equation 3) . Reducing frequency for EB2 only,
constrains core temperatures without significantly increasing
execution time (Table III). However, in case of NaiveDVFS,
the timing penalty is much larger. Looking at Figure 7 the
question arises: Why does NaiveDVFS settle at a higher
frequency than the average frequency for EBTuner and still
ends up with a greater timing penalty? Closer analysis reveals
that because EBTuner keeps EB1 at maximum frequency and
reduce frequency for EB2 only, it ends up reducing the Million
Instructions per second (MIPS) rate only marginally. On the
other hand, since NaiveDVFS reduces the frequency for the
entire application i.e. both EBs, it ends up reducing the MIPs
rate significantly as EB1 (the computation intensive) is also
run at a lower frequency level. This decrease in MIPs results
in a much higher timing penalty (5.6%) compared to EBTuner
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Fig. 8. Timing penalty for different temperature thresholds using Naive DVFS and EB Tuner

as shown in Table III. Irrespective of the different steady state
frequencies, Table III shows that for both the cases, the core
power is almost the same. We can say that in the case of
NaiveDVFS, some of the core energy consumption is wasted
while executing EB2 at a higher frequency. On the other hand,
EBTuner removes that inefficiency and consumes the same
amount of energy in doing work that increases the MIPS for
the application.

To analyze the benefits of our scheme to minimize timing
penalty, we define an index that measures the variance of sen-
sitivity to frequency amongst different EBs of an application.
We denote it by σfreq and define it as:

σfreq =

√√√√∑NEBs

i=1 (
tmin
i

tmax
i
− Tmin

Tmax )2

NEBs
(4)

where NEBs is the number of EBs the application is divided
into, tmin

i is the average execution time per iteration for EBi

(only) running at the minimum frequency level, tmax
i is the

average execution time per iteration for EBi (only) running
at the maximum frequency level, and Tmax is the average
execution time per iteration for all EBs when running them
at the maximum frequency level, and Tmin is the average
execution time per iteration for all EBs when running them at
the minimum frequency level. Table IV shows these numbers
separately along with the ’Average reduction in penalty’ for

TABLE IV
VARIANCE IN FREQUENCY SENSITIVITY AMONGST EBs FOR ALL

APPLICATIONS

Description NPB-FT NPB-LU NPB-SP NPB-IS

tmax
1 /tmin

1 1.01 2.08 1.58 2.16
tmax
2 /tmin

2 2.1 2.19 1.25 1.07
tmax
3 /tmin

3 1.99 1.20 1.14 X

Tmax/Tmin 1.49 1.68 1.32 1.6
σfreq 0.53 0.47 0.19 0.55
Average reduction 5.1 4.9 3.0 7.7
in penalty(%)

all applications. The ‘Average reduction in timing penalty’ is
the average difference between timing penalties of NaiveDVFS
and EBTuner for all temperature thresholds of each application
shown in Figure 8. Table IV suggests a strong correlation
between σfreq and ‘Average reduction timing penalty’. NPB-
IS has the highest value for σfreq , and consequlently, gets
the highest benefits from our scheme i.e. highest ‘Average
reduction in timing penalty’ value in Table IV. However,
despite having very close σfreq to that of NPB-IS, the fact that
NPB-FT has a much smaller ’Average reduction in penalty’
value needs further investigation. Compared to NaiveDVFS,
EBTuner reduces timing penalty for NPB-SP by 1.6% because
of all the EBs having very similar frequency sensitivities
(σfreq=0.19).



C. Reducing energy consumption and its tradeoff

In our earlier work [7] we have shown that constraining
core temperatures can reduce cooling energy consumption by
a considerable amount. The focus of this work is to save
the other major part of energy consumption i.e. machine
energy. Figure 9 compares the reduction in machine energy
consumption of EBTuner and NaiveDVFS for all applications
using different temperature thresholds. EBTuner generally
saves more energy consumption for all the applications other
than NPB-SP because of its smaller timing penalties.

Reduction in energy consumption for load balanced ap-
plications generally comes at the cost of execution time.
Figure 10 summarizes the essence of our results by plotting the
normalized execution time against normalized machine energy
consumption for representative applications using different
temperature thresholds. Normalization for each application
was done with respect to runs where all cores were working
at maximum frequency without any temperature control.

These curves give important information: the slope of each
curve represents the execution time penalty one must pay
in order to save each joule of energy. A movement to the
left (reducing the energy consumption) or down (reducing the
timing penalty) is desirable. It is clear that for all tempera-
ture thresholds across all applications (except for NPB-SP),
EBTuner takes its corresponding point from the Naive DVFS
scheme at the same temperature threshold down (saving timing
penalty) and to the left (saving energy consumption). For
NPB-IS and NPB-SP, the relatively flat curves show that our
scheme does well at saving energy consumption. However, in
case of NPB-SP, since its σfreq is smaller, EBTuner performs
almost the same as NaiveDVFS. On the other hand, NPB-
FT and NPB-LU (not shown in Figure 10 due to space
limitations) have similar, but much steeper curves that imply a
high cost for saving energy consumption. However, EBTuner
brings significant benefits for them compared to NaiveDVFS.
Figure 9(a) and Figure 8(a) show that EBTuner can reduce
machine energy by 17% with less than 1% timing penalty
while constraining core temperatures below 60◦ C. On the
other hand, Naive DVFS can save the same amount of machine
energy consumption by paying more than 11% in timing
penalty!

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an approach to constrain core
temperature to save both machine and cooling energy con-
sumption with minimum timing penalty. Our scheme uses a
combination of DVFS and fine-grain power and performance
profiling to achieve this objective. We experimented on four
of the NAS parallel benchmarks to demonstrate its substantial
benefits in minimizing execution time penalty and reducing
machine energy consumption. Furthermore, through detailed
analysis, we relate EB characteristics to timing penalty for
constraining core temperatures, and expressed it mathemat-
ically (σfreq) to provide a guide on what to expect from
various applications. According to our findings, applications
having high σfreq values would maximize the benefits of using

EBTuner over using the NaiveDVFS approach. Our scheme
was able to outperform NaiveDVFS for all applications in
reducing timing penalty. It was also able to reduce machine
energy consumption by a greater percentage than NaiveDVFS
for 3 out of 4 applications. In case of NPB-FT, our scheme
was able to reduce machine energy consumption by 17% with
a timing penalty of less than 1% while constraining core
temperatures below 60◦ C.

In our earlier work [7], we showed that constraining core
temperatures can result in significant reduction in cooling
energy consumption. In this work, we exploited different
frequency sensitivities for different parts of the application
(EBs) in order to minimize timing penalty and maximize
reduction in machine energy consumption. In future we plan
to combine both of these techniques for multi-node clusters
in order to come up with a load balancer that will place
tasks insensitive to frequency on hotter processors in order
to minimize execution time penalty and consequently reduce
total energy consumption.
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Fig. 9. Machine energy savings for different temperature thresholds using Naive DVFS and EB Tuner
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