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Abstract—Cloud computing is increasingly being explored
as a cost effective alternative and addition to supercomputers
for some High Performance Computing (HPC) applications.
However, dynamic environment and interference by other
virtual machines are some of the factors which prevent efficient
execution of HPC applications in cloud.

Through this research, we leverage a message driven adap-
tive runtime system to develop techniques that reduce the
gap between application performance on cloud and super-
computers. Our scheme uses object migration to achieve load
balance for tightly coupled parallel applications executing in
virtualized environments that suffer from interfering jobs.
While restoring load balance, it not only reduces the timing
penalty caused by interfering jobs, but also reduces energy
consumption significantly. With experimental evaluation using
benchmarks and a real HPC application, we demonstrate that
our scheme reduces the timing penalty and energy overhead
associated with interfering jobs by at least 50%.

I. INTRODUCTION

Cloud computing has emerged as a promising solution
to the needs of High Performance Computing (HPC) ap-
plication users. Cloud benefits from economy of scale and
hence has the potential for being a cost-effective and timely
solution to academic and commercial HPC users. Further,
cloud offers the advantages of elasticity, eliminates risks
caused by under-provisioning as well as avoids under uti-
lization of resources resulting from over- provisioning. Also,
virtualization support in cloud can provide better flexibility,
customization, security, isolation, migration and resource
control to HPC community.

However, clouds have not been adopted by HPC com-
munity to a large extent. A primary reason for this is that
clouds have been traditionally designed to be used in a multi-
tenant environment, where multiple virtual machines share
physical cores, while maintaining job isolation. However,
virtualization is shown to adversely impact HPC applications
by degrading network performance and acting as a source
of interference to tightly coupled parallel processes [1], [2].

Past research [1]–[3] on HPC in cloud has primarily
focused on evaluation of MPI applications and have been
mostly pessimistic. To the best of our knowledge, there have
been no efforts to improve HPC application performance
using a parallel runtime adapted to cloud. With this as
motivation, the primary question that we address through

this research is the following: Can we customize a parallel
adaptive runtime system to improve application performance
in a virtualized environment?

Our hypothesis is that techniques leveraging an adap-
tive parallel runtime system can help in mitigating some
problems caused by virtualized environment in cloud. To
validate this, we explore the adaptation of Charm++ [4],
[5] parallel runtime system to virtualized environment and
show the extent to which the performance gap induced by
virtualization is reduced. Load balancing schemes that use
CHARM++ runtime system have proved to be beneficial
in reducing execution time and energy consumption [6].
In this paper, we present a cloud friendly load balancing
scheme for HPC applications to improve application perfor-
mance. Existing MPI applications can leverage the benefits
of our approach using Adaptive MPI (AMPI) [5]. Our
work not only improves the execution time for virtualized
environments running interfering jobs, but also results in
considerable reduction in energy consumption. Given the
expansion of modern day data centers, reducing energy
consumption has become one of the most coveted goals for
data centers. Our results look promising as we were able to
reduce the execution time penalty and energy overhead by
at least 50% for all the applications.

The remainder of this paper is organized as follows:
Related work is discussed in section II. Section III provides
background on Charm++ and the concept of periodic load
balancing. Section IV discusses our approach. We present
the results in Section V and give concluding remarks along
with an outline of future work in Section VI.

II. RELATED WORK

The first study on benchmarking the performance of
HPC applications in cloud was conducted by Walker [1]
who used NPB benchmarks on Amazon EC2 [7]. Many
others [8] performed similar evaluation of Amazon EC2
for HPC applications using benchmarks. He et al. [9] and
Ekanayake et al. [10] used real applications in addition to
running classical benchmarks and compared the results with
that from dedicated HPC systems.

A comprehensive evaluation was performed under the US
Department of Energy’s (DoE) Magellan project [2], [11],
where the researchers compared conventional HPC platforms



to Amazon EC2 using real applications representative of the
workload at a typical DoE supercomputing center. One of
the findings of that study was that HPC applications achieve
poor performance and suffer from significant variability
when run on commercial clouds. Brunner et al. [12] pro-
posed a load balancing scheme to deal with interfering jobs
in the context of workstations. Our scheme differs from them
as it uses a refined load balancing algorithm that achieves
load balance while minimizing task migrations. Moreover,
we present detail analysis of three different applications
along with experimental results to show how our scheme
reduces energy consumption.

III. CHARM++ AND LOAD BALANCING

Charm++ [4], [5] is an object oriented parallel pro-
gramming system, which is used by many scientific and
engineering applications such as NAMD [13]. Here, the
programmer decomposes the application into large number
of medium grained pieces, which we call charm++ objects
or chares. Each object has a state and a set of functions
for dealing with incoming messages. Typically the number
of objects needs to be more than the number of available
processors for efficient execution. These objects are mapped
by the runtime system onto available processors. Objects
have methods associated with them, called entry methods,
which execute only when invoked from a local or remote
processors through messages. This message driven execution
and overdecomposition results in automatic overlap of com-
putation and communication and helps in hiding the network
latency.

MPI programs can leverage the capabilities of Charm++
runtime system using the adaptive implementation of MPI
(AMPI [5]) where user specifies large number of MPI
processes implemented as user-level threads by the runtime.

The object (or thread) based overdecompositon facilitates
dynamic load balancing, a concept central to our work. The
load balancing system automatically instruments the runtime
system and monitors the computation time spent in each
function (task). Using this data, it then periodically remaps
objects to processors as the application execution progresses
using an existing load balancing strategy while assuming
that future loads will be almost the same as measured loads
(principle of persistence). Programmers can add their own
application or platform specific strategy to the load balancing
framework. These capabilities of the load balancing system
offered by Charm++ facilitate the implementation of our
techniques presented in the next section.

IV. APPROACH

In the context of cloud, where a HPC application is
executed in a virtualized environment and the execution
environment varies from run to run based on extraneous
factors such as VM to physical machine mapping and
interference by co-located VMs, a static load allocation to

(a) No BG task (b) Core#4 overloaded

Figure 1: BG task on Core#4 disturbing load balance

parallel processes cannot achieve good performance. More-
over, existing load balancing strategies consider only the
load imbalance internal to application and not the imbalance
introduced by extraneous factors, which can occur even
if all the processes are allocated equal work as if they
were executing in a homogeneous and isolated environment.
We explore the problem of restoring load balance taking
into account external factors such as other applications that
interfere because they are running on co-located VMs i.e.
VMs on the same CPU.

In such cases, application performance can severely de-
grade, especially for tightly coupled iterative applications
where a single overloaded processor can delay the entire
application. To demonstrate it, we conducted a simple ex-
periment where we ran Wave2D, a tightly coupled 5-point
stencil application, on 4-cores of a single node machine.
To study the impact of interference, we ran a single-core
job of the same application on Core#4 after the 4-core
run has executed for a few iterations. Figure 1 shows two
iterations of that run with each horizontal line representing
the timeline for a core. Different colors represent time spent
while executing tasks of the 4-core run whereas the grayish-
white parts (towards the right side of Figure 1(b)) represent
idle time. The first iteration is considerably faster (smaller)
than the other iteration as there is no interference from
the single core job. After the first iteration, the single core
run starts and results in Core#4 dividing its time between
the 1-core interfering task and the tasks of the 4-core run.
The Projections timelines [14] tool we used includes the
time spent executing the 1-core run in the time spent for
executing tasks of 4-core run because it cannot identify when
the operating system switches context. This gets reflected
in the fact that some of the tasks hosted on Core#4 take
significantly longer time to execute than others (longer bars
in Figure 1(b)). Due to this CPU sharing, it takes longer
for Core#4 to now finish the same amount of work for the
4-core run that was equally distributed amongst all 4 cores
at the start. The tightly coupled nature of the application
means that no other core can start the next iteration unless all
cores are done executing the current iteration which results
in cores 1-3 waiting for Core#4 to complete its iteration.
The length of timelines for both the iterations in Figure 1
represent the execution time for each iteration which is much
larger for the later iteration which has interference. Since the
distribution of such interference is fairly random on a shared-



resource based platform, we need a dynamic load balancing
scheme which continuously monitors the loads for each core
and reacts to any imbalance.

Keeping in view these requirements, we now propose
a load balancing scheme with the objective of reducing
the execution time for parallel iterative applications that
encounter interfering tasks in a cloud setting. Our scheme
achieves its objective by using task migration which enables
the runtime to balance loads on all the cores. It is based on
measuring the time spent on each task and predicting future
load for a task based on the time it took in the recently
completed iteration. However, to incorporate the interference
from different VMs on the same node, we need to instrument
the load external to the application under consideration. We
will refer to that load as the background load for rest of
the paper. To keep the application in load balanced stage,
we need to ensure that all the cores have load close to the
average load (Tavg) defined as:

Tavg =

P∑
p=1

(

Np∑
i=1

tpi +Op)/P (1)

where P is the total number of cores the application is using,
Np is the total number of tasks assigned to core p, tpi is the
CPU time consumed by task i hosted on core p, and Op is
the total background load for core p. The task CPU time are
fetched from CHARM++ load balancing database whereas
the Op is calculated as:

Op = Tlb −
Np∑
i=1

tpi − t
p
idle (2)

where Tlb is the wall clock time between two load balancing
steps, tpi is the CPU time consumed by task i hosted on core
p and tpidle is the idle time spent by core p since the last load
balancing step. We are currently extracting tpidle from the
/proc/stat file. The objective of our scheme is to keep
the load for each core close to the average load after taking
into account the background load. Hence, we can formulate
the problem as:

∀p ∈ P, (
Np∑
i=1

tpi +Op)− Tavg < ε (3)

where P is the set of all cores, tpi is the CPU time consumed
by task i hosted on core p, Op is the total background time
for core p, and ε is the deviation from the average load that
the cloud operator is willing to allow.

In order to achieve the above mentioned objective, we use
Charm++ dynamic load balancing framework which in turn
uses object migration. The broad level idea is to do periodic
checks on the state of load balance and migrate objects from
overloaded cores to underloaded cores such that Equation 3
is satisfied. Algorithm 1 summarizes our approach with the
definition for each variable given in Table I. Our approach

Table I: Description for variables used in Algorithm 1

Variable Description

p number of cores
Tavg average execution time per core
tpi CPU time of task i assigned to core p
mk

i core number to which task i
is assigned during step k

overHeap heap of overloaded cores
Op background load for core p
underSet set of underloaded cores

starts with categorizing each core as overloaded/underloaded
(lines 2-7). In order to categorize a core it compares the sum
of CPU time of tasks assigned to it and the background
load to the average load for the entire application i.e. Tavg
(lines 17-27). If current core load is greater than Tavg by
a value greater than ε, we mark that core as an overloaded
core and add it to the overHeap (line 4). Similarly, if the
core load is less than Tavg by a value greater than ε (line
34), we categorize it as an underloaded core and add it to
the underSet (line 6). Once we have built the underloaded
set and overloaded heap of cores, we have to transfer tasks
from cores in the overloaded heap i.e. overHeap, to the
underloaded cores i.e. underSet, such that there are no
cores left in the overHeap (lines 10-15).

In order to decide the new task mapping to achieve load
balance, our scheme starts by popping the most overloaded
core from overHeap i.e. donor (line 11). It then tries
to find an underloaded core from underSet such that we
can transfer the biggest task from donor (line 11) to that
underloaded core. While doing so our approach ensures
that we only pick an underloaded core that does not get
overloaded after the task transfer has taken place (lines 12).
After the bestTask and bestCore are determined, we update
the mapping of the task (line 13). Once it is done we update
the loads of both the donor and bestCore and update the
overHeap and underSet with these new load values (line
14). This process is repeated until the overHeap is empty
i.e. no overloaded cores are left.

V. PERFORMANCE RESULTS

We expect our load balancing scheme to help in narrowing
the performance gap between a supercomputer and cloud for
iterative applications. To evaluate the performance of our
scheme, we use 8 nodes (32 cores) of a testbed located at
Department of Computer Science at the University of Illinois
Urbana Champaign. Each node is a single socket machine
equipped with a quad core Intel Xeon X3430 processor.
This testbed can report power consumption readings for each
node on a per second basis. We investigate the effectiveness
of our scheme, using three different CHARM++ applications.
The first one is Wave2D described earlier in Section IV. The
second one is Jacobi2D, which is a canonical benchmark that
iteratively applies a 5-point stencil over a 2D grid of points.



Algorithm 1 Refinement Load Balancing for VM Interfer-
ence

1: On Master core on each load balance step
2: for p ∈ [1, P ] do
3: if isHeavy(p) then
4: overHeap.add(p)
5: else if isLight(p) then
6: underSet.add(p)
7: end if
8: end for
9: createOverHeapAndUnderSet()

10: while overHeap NOT NULL do
11: donor = deleteMaxHeap(overHeap)
12: (bestTask, bestCore) =

getBestCoreAndTask(donor, underSet)
13: mk

bestTask = bestCore
14: updateHeapAndSet()
15: end while
16:
17: procedure isHeavy(p)
18: for i ∈ [1, Np]
19: totalT ime+ = tpi
20: end for
21: totalT ime+ = Op

22: if totalT ime− Tavg > ε
23: return true
24: else
25: return false
26: end if
27: end procedure
28:
29: procedure isLight(p)
30: for i ∈ [1, Np]
31: totalT ime+ = tpi
32: end for
33: totalT ime+ = Op

34: if Tavg − totalT ime > ε
35: return true
36: else
37: return false
38: end if
39: end procedure

The third application is a classical molecular dynamics code
called Mol3D.

We now compare application performance with (referred
as LB) and without (referred as noLB) load balancing on
the basis of execution time and energy consumption. In our
analysis we also consider the degradation (increase in execu-
tion time) in background load. In order to create interference
with our parallel runs we run a 2-core job of Wave2D as the
background load on two of the cores allocated to application

under test. In our analysis, we mainly want to optimize
larger parallel run with secondary importance to the 2-core
background job. For each experiment, we start the parallel
run along with the background load. In order to make it
a fair comparison, we kept the background load exactly the
same for all our experiments i.e. running wave2D application
on 2 cores. We report execution time measurements using
the wall clock times which includes the time taken for
object migration. We also collect total power consumption
for the run using actual power meters. All the results shown
are averages over three similar runs and represent actual
measurements without any simulation or estimation. In the
remaining part of this section, we look at the effects of our
load balancing on execution time and energy consumption.

A. Impact on execution time

Figure 2 shows the reduction in execution time achieved
by our load balancing scheme. It shows the timing penalty
for both the parallel job and the background load (referred
as BG in figures) for each application after running the
applications on different number of cores. Timing penalty
for the parallel job expresses the additional time it takes
to run the parallel job with interference from the 2-core
job as a percentage of time taken by the same run without
any interference. Similarly, in case of the background load,
timing penalty refers to the additional time it takes to run the
same background load when there is nothing else interfering
with it i.e. no other job running on those cores. It is evident
from Figure 2 that our load balancing scheme reduces the
timing penalty significantly as compared to equivalent run
without load balancing for all applications.

The tight coupling in all three applications results in very
high timing penalties for the cases where we do not use
load balancing (noLB bars in Figure 2). Although CPU was
almost equally shared for most cases, we saw a significant
preference to the background load in the case of Mol3D.
Hence, the timing penalty for Mol3D for the noLB case was
very high (up to 400%). But our load balancing scheme
reduces the timing penalty significantly (Figure 2(c)) to less
than 25% for any number of cores.

Our results show that our load balancing scheme helps
reducing the timing penalty as we increase the number of
cores for all applications. It is due to the fact that an increase
in the number of cores results in more cores to which the
work of the overloaded core can be distributed. Since our
background load is only running on two cores, running on
larger number of cores implies distributing the work of the 2
overloaded cores to an increasing number of under utilized
cores.

Other than showing significant reduction in the timing
penalty for the three CHARM++ applications, Figure 2 also
shows its effectiveness in reducing the timing penalty for
the interfering 2-core job. Our scheme significantly reduces
the timing penalty for the background load (referred as BG
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Figure 2: Effect of load balancing in execution time
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Figure 3: Cores timeline showing effect of load balancing for a 4 core run with background load on Core1 and then Core3
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Figure 4: Effect of load balancing in energy and power consumption

LB) in case of Jacobi2D and Wave2D. However, in case
of Mol3D, the runs without load balancing end up having
a lower timing penalty for background load. This is due
to the large proportion of CPU time that the operating
system is allocating to the background load, resulting in
small timing penalties for the background load. However,
the same preference to the background load results in very
high timing penalty for the application under consideration.

Considering the nature of cloud data centers, a successful
load balancing mechanism should be robust to dynamic
changes in interfering tasks as they might come and go
randomly. Figure 3 demonstrates core timelines for a 4-
core run of Wave2D where we experimented by putting
background load on two different cores at different times.
To start with, Core#1 had an interfering job running on
it (Figure 3(a)) which caused load imbalance and hence
a greater time per iteration. Once the application hits the
load balancing mark, it redistributes the loads according to

Algorithm 1 and restores load balance (smaller length for
timeline in Figure 3(b)) by migrating tasks from Core1 to
other cores. The iteration shown in Figure 3(c) represents
a period where the interfering task ended and our load
balancer migrated some tasks back to Core1 as it now can
handle load equal to other cores. But after that another in-
terfering task started at Core3 which caused load imbalance
again (Figure 3(d)). Once again, when the application comes
to the load balancing step, our load balancer detects the load
imbalance and migrates the tasks away from Core3 to the
other 3 cores which restores load balance (Figure 3(e)).

B. Impact on power and energy consumption

After establishing the benefits of our load balancing
scheme to save execution time, we now analyze its impact
on power and energy consumptions. Figure 4 shows the
average power consumption for both cases i.e. with and
without load balancer. For all three cases, load balanced
runs end up consuming more power as compared to the



runs where we do not use load balancing. It is because load
balancing removes the idle time for most cores and increases
their CPU utilization. Since dynamic power consumption
of a processor forms a significant part of machine power
consumption, and the fact that it is directly related to the
amount of computation the processor is doing, we see much
higher power consumption for the load balanced run. But
does this mean we end up increasing energy consumption
as well?

Energy consumption is the product of execution time and
power draw. Although power increases for load balanced
runs as compared to the same runs without load balancing,
the decrease in execution time resulting from load balancing
is far greater than it. Moreover, even when the cores are
sitting idle waiting for the overloaded core to finish their
tasks in case of no load balancing, their power consumption
is not zero. Although the processor cores are consuming
very little power when idle, the rest of the machine does
consume some power usually referred to as base power. Base
power can be a significant proportion of the total machine
power consumption. For our testbed, the base power is 40W
per node which is significant considering the maximum
power consumption of 107W per node when running a
highly computation intensive workload. The high base power
coupled with significant reduction in execution time, enables
our scheme to reduce energy consumption (in comparison to
noLB runs) as shown by Figure 4 which plots the normalized
energy consumption for each application. The normalization
was done with respect to a base run where the application
ran without any interference from the background load. This
interference results in additional energy consumption i.e.
energy overhead. However, as Figure 4 shows, our scheme
successfully minimizes this overhead.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a load balancing technique
which accounts for background loads and uses object mi-
gration to restore load balance. Experimental results showed
that we were able to reduce timing penalty and energy
consumption by more than 50% compared to the case
where there is no load balancing. In future, we plan to
evaluate our technique on a public cloud where multiple
VMs share CPU resources. Due to the inferior performance
of network, we also plan to explore a strategy where load
balancing decisions are performed every time a load balancer
is invoked, however, data migration is performed only if we
expect gains that can offset the cost of migration.
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