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Abstract. Current implementations of process groups (subcommuni-
cators) have non-scalable (O(group size)) memory footprints and even
worse time complexities for setting up communication. We propose system-
ranked process groups, where member ranks are picked by the runtime
system, as a cheaper and faster alternative for a subset of collective op-
erations (barrier, broadcast, reduction, allreduce).
This paper presents two distributed algorithms for balanced, k-ary span-
ning tree construction over system-ranked process groups obtained by
splitting a parent group. Our schemes have much smaller memory foot-
prints and also perform better, even at modest process counts. We demon-
strate performance results up to 131, 072 cores of BlueGene/P.
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1 Introduction

Process Groups are subsets of processes (ranks) in a parallel program that partic-
ipate in specific portions of the parallel execution and are addressable as a unified
entity. Most parallel programming models provide entities equivalent to process
groups (communicators in MPI) and mechanisms to create, store and manage
these entities. Several existing parallel runtime implementations require O(n)
storage and O(n log n) computation per process to create and manage a process
group with n members [5,6]. They will consume prohibitive amounts of memory
and reach scalability limits on current and future extreme-scale architectures.
Parallel programs typically compound this problem by creating and using many
such groups. Trends in high performance system architecture point to a slower
growth in the available memory than in the number of threads of execution [12].
Thus, it is imperative that runtime software adopt leaner, resource-conserving
algorithms and book-keeping mechanisms to manage process groups.

The work presented in this paper is motivated by these realizations, and
focuses on mechanisms for the creation of process groups. In order to remain
relevant to multiple parallel programming systems, we do not consider MPI-
specific solutions, nor do we bind ourselves to the current standard. We preface



our work by making a case for system-ranked process groups with a reduced
feature set that can be realized by simply constructing spanning trees over the
group (Section 2). We then explore distributed algorithms for the creation of
communication trees spanning new groups obtained by enrolling a subset of
members from a parent group. To ensure support for nested (or recursive) par-
titioning of a parent group, we assume that initial communication for spawning
a new process group will occur over the spanning tree of the parent. We base
our algorithms on the assumption that memory is a constrained resource, and
impose limits on its transient and final consumption.

Our efforts have resulted in two distributed tree construction algorithms: a
Shrink-and-Balance algorithm (Section 4), and a Rank-and-Hash algorithm (Sec-
tion 5). They consume just O(log n), O(1) memory per process and O(log2 n),
O(log n) time respectively. To corroborate our analysis with actual measure-
ments, we implement our algorithms and compare their performance (Section 6)
with a reference “centralized” implementation (Section 3) that exhibits O(m)
space and O(m+ log n) time complexity; and with a comm split from a vendor-
tuned MPI implementation. Our algorithms scale well to large supercomputers
and exhibit competitive performance at large process counts.

2 System-Ranked Process Groups

We propose that unranked or system-ranked process groups be supported in par-
allel programming systems as they will satisfy a portion of use-cases for process
groups at a much lower resource cost.

Motivations Our stance germinates from the observation that user-assigned
ranks within a process group are not always necessary to express parallel al-
gorithms. This is especially true of a subset of collective operations: barrier,
broadcast, reduce and allreduce. The results of these collectives are independent
of the ranks from which the individual data contributions arise (assuming com-
mutative operations). There is also evidence that a sizable fraction of collective
communication in applications involve these operations [1,13,15]. We enumerate
a few examples of algorithms and applications that use just these collectives:

Parallel Linear Algebra: Several algorithms for manipulating linear systems
of equations use block or compressed representations of matrices. The algorithms
are then expressed by collectively addressing processes that own a row or col-
umn of matrix elements/blocks. For eg, recent work has demonstrated a high

Terminology

– n Number of processes in parent process group
– m Number of processes participating in the new process group
– k Branching factor (degree) of the spanning tree
– di,k Depth of a rank i process in a balanced spanning tree of branching factor k
– f fraction of members of original process group participating in new group



performance dense LU factorization using only the aforementioned collectives on
non-trivially defined groups of processes, in a parallel programming paradigm
that supports unranked and system-ranked process groups [10].

Master-Worker Algorithms: A master-worker expression of several parallel
algorithms primarily use broadcasts and reductions during their execution. Many
of these have use for process groups in efficiently expressing parallel logic. Some
examples include: a) Map-Reduce b) Histogram sorting c) some Divide-and-
Conquer algorithms, and d) Monte Carlo computations

Ab-initio Quantum Chemistry : OpenAtom is a massively parallel quantum
chemistry application with several phases of computation in a step. A description
of the parallel structure [3] demonstrates the use of multiple process groups just
for performing broadcasts, reductions and allreduces among members.

Approach Since the collectives of interest can be expressed as operations over
a communication tree spanning the members of the group, we chose a tree-based
representation of groups and cast the problem of efficient group construction
into the efficient construction of trees spanning the members of a new group.

Possible Functionality System-ranked process groups are primarily for sup-
porting the aforementioned collectives. User-specified roots for the collectives
can be supported by: a) forwarding data from the tree root to the user-specified
root b) tolerating some imbalance by using any vertex in the tree as a broadcast
root c) constructing multiple (but a small number of) trees with different roots.
Point-to-point messaging can be supported by discovering and caching the ids
of the (typically) small number of frequent communication partners. Finally, in
keeping with a pay-only-for-use policy, user-supplied ranks can be supported
atop system-ranked groups by performing the sort as an additional step.

Benefits Letting the runtime system assign ranks to processes enrolling in
a group liberates it from having to sort user-supplied keys to identify ranks.
Avoiding thisO(m logm) computation can result in significant speedups of group
creation mechanisms. Tailoring the communicators (groups) to subsets of use-
cases will permit implementations that are less resource-intensive and faster. It
may also permit optimization of the communication operations themselves.

3 The Reference Centralized Algorithm

Group creation in MPI typically performs an allgather followed by a sort. Re-
moving support for user-assigned ranks eliminates the sorting, but still requires
an allgather which takes O(m) storage on each process. Our reference “central-
ized” implementation replaces this allgather with a gatherv-scatter that only
has an O(m+log n) time and O(m) transient memory footprint. We believe this
represents a conservative baseline for comparing our distributed algorithms.

The implementation performs an upward pass (gatherv) over the original
spanning tree in which only members of the new group contribute their process
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Fig. 1: Tree shrinking in the Shrink-and-Balance scheme using leaves as fillers.
Red: non-participating process (hole); Green: participating process.

ids. The resulting list is sent to the root process of the new group (picked from the
list). This is followed by a downward pass (scatter) over the spanning tree under
construction. A vertex’s immediate children are picked from the list of members
and the remaining list partitioned among them to populate their sub-trees.

4 The Shrink-and-Balance Algorithm

Upward Pass The Centralized scheme collects enrollment information, but
does not act on it until it reaches the root of the parent spanning tree. Because
we’d like to avoid gathering O(n) enrollment data, we base our first algorithm
on the idea of using information earlier. The Shrink-and-Balance scheme im-
mediately uses enrollment data during the upward pass to shrink the original
spanning tree by excluding non-participating processes. This results in holes at
the vertices of the original tree where processes choose to drop out of the new
group. In order to maintain a contiguous tree structure, these holes are “filled”
with processes that are members in the new group. Fillers are either a participat-
ing leaf process (Figure 1) or a participating immediate child process. Using leaf
vertices as fillers requires a process v with rank i to send min(subtree(v), di,k)
leaves as candidate fillers to its parent; to potentially fill holes at each of its
di,k (1) direct ancestors. Since at most log n vertices may be sent, the space
and time complexity of the upward pass is O(log n) and O(log2 n), respectively.
Space constraints prevent a description of using immediate children as fillers.

Downward Pass Although the upward pass yields a contiguous, participants-
only spanning tree, there are no guarantees on its quality. To obtain a balanced
tree with the desired branching factor, the algorithm continues into a downward
pass. All further communication now occurs over the newly constructed tree.

In the downward pass, the scheme balances the tree while minimizing the
number of vertex migrations. The size of the new group is used to compute the
ideal height h (dm−1,k + 1) of a perfectly balanced tree spanning tree (1). This
target height yields the maximum size of each of the subtrees of the root (2). If
the size of a subtree is greater than its maximum capacity, some vertices must
move out of it in order to limit its height to h − 1. All such subtrees (i.e. their
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(b) Ranks after the downward pass

Fig. 2: Assignment of ranks in the Rank-and-Hash scheme

roots) are marked as vertex suppliers. Similarly, child vertices whose subtrees are
smaller than their maximum permitted sizes, are marked as potential consumers.

di,k = blogk(i(k − 1) + 1)c (1)

max size =
kh − 1

k − 1
(2)

Each vertex V (starting with the root), performs a “matchmaking” step,
ensuring that each of its supplier subtrees is assigned one or more consumers
that can absorb the excess vertices of the supplier within their subtrees. If V
has missing children, it requests vertices from supplier(s) for itself. Once these
supplier vertices are assigned, each subtree is within its size limits. The vertex
V concludes its role by invoking a balancing step on each of its subtrees. The
downward pass thus recurses down the tree, ensuring a tree that is as shallow as
possible. By checking the current height of a subtree against its maximum per-
missible height, the algorithm avoids striving unnecessarily for perfect balance.

Our experiments show that the memory footprint of the downward pass is
very small, although a theoretical upper bound is yet to be established. For e.g,
on 128K cores of BG/P, there were at most 13 suppliers for process groups of
sizes ranging from 0.1% to 99% of the parent group. Identifying (and moving)
an excess vertex may take O(log n) time in the worst case. Since this can happen
at every level of the shrunk tree, the time complexity of the scheme is O(log2 n).

5 The Rank-and-Hash Algorithm

The Rank-and-Hash scheme works by assigning ranks to the participating pro-
cesses in the downward pass, and then enabling the discovery of the process ids
corresponding to any rank via a hash function.

Upward Pass The upward pass is a simple reduction up the original spanning
tree. Each vertex receives participation information from its children, stores this
information and passes a reduced count (including its participation decision) up
the spanning tree. This leaves each vertex with the size of each of its subtrees.



Downward Pass The size of the tree determines the available ranks [0,m).
This range is split among the subtrees based on their sizes. Splitting continues
down the original spanning tree until all the available ranks are divided among
all the participating processes. Non-participating processes are not assigned any
ranks. Figures 2a and 2b show the subtree size and rank information after the
upward and the downward passes respectively.

Identifying Tree Neighbors A process of rank i in the new group can compute
the ranks of its parent p (3), and children (4) in the tree. However, the process
ids of these ranks are still unknown. The discovery of ids is done via intermediary
processes that mediate an exchange of ids between a parent and its children. The
id of an intermediary process (Hi) representing rank i, is computed via a function
that hashes rank i to id Hi. Each rank i, sends its id to the intermediaries Hi and
Hp, representing the rank i and its parent p. In return, it receives two messages:
one each from Hp and Hi with the ids of its parent and children, respectively.

p =

{
0, i = 0

b i−1
k c, otherwise

(3)

Ci =


[k ∗ i+ 1, k ∗ (i+ 1)] k ∗ (i+ 1) < m

[k ∗ i+ 1,m) k ∗ i+ 1 < m ≤ k ∗ (i+ 1)

φ otherwise

(4)

Memory consumption for each of these phases is small and is independent of
group size (O(1)). The overall time complexity is O(log n) each for the upward
and downward phases, and O(1) for the hashing phase.

6 Results

Experimental Setup We bracket our algorithms between a broadcast on the
original spanning tree and a reduction on the newly constructed tree and time
the whole phase. The size of the new group is specified via a participation frac-
tion f . All processes sample from a uniform distribution u(0, 1) and use f to
determine their participation in the new group. For fair comparisons, we use
repeatable seeds to ensure identical groups across multiple runs. We also apply
the same sequential optimizations to all implementations. The runs were per-
formed on “Intrepid”, an IBM BlueGene/P supercomputer at Argonne National
Laboratory. These algorithms were implemented using the Charm++ [7] parallel
programming framework. We report results only for spanning trees with branch-
ing factor 3 but similar patterns were observed with other branching factors.

Performance Figure 3 compares the scalability of the two algorithms with the
baseline centralized scheme for process groups of different sizes. The results show
that except at very low participation fractions (e.g. at f = 0.01), the distributed
schemes outperform the baseline even at modest process counts. The Shrink-and-
Balance scheme is slower than the Rank-and-Hash scheme because of a longer
critical path. However, both attain the goal of reduced memory footprint.
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Fig. 3: Scaling behavior of the three algorithms on IBM BG/P at various partic-
ipation fractions (f) with n ranging from 4, 096 to 131, 072K processes

Message Counts The total number of messages for a reduce or gather over the
original spanning tree is n−1; for a broadcast or scatter over the new tree is m−1.
Hence, the centralized scheme sends O(n + m) messages. The Rank-and-Hash
scheme has an additional phase for id exchange. All m vertices send 2 messages
to intermediary processes and receive 1 message with parent information. The m

k
non-leaf vertices also receive a message with child information. The total message
count is hence n+4m+ m

k = O(n+m). The Shrink-and-Balance scheme requires
additional messages to fill holes during the upward pass, and to identify and move
excess vertices during the downward pass. An upper bound on message counts
is elusive because it depends on the location of the holes and the quality of the
shrunk tree. Our experiments show that counts are far fewer than the Rank-and-
Hash scheme. At 128K processes and f = 0.6 the number of messages sent by the
Centralized, Shrink-and-Balance and the Rank-and-Hash scheme were 2.1, 2.6
and 4.9× 105, respectively. Figure 4 compares message counts in both schemes
with the reference. We expect that at extreme scales, when multiple groups are
being formed simultaneously, or when group formation occurs concurrently with
other communication in the application, the Shrink-and-Balance scheme may
have an advantage over the Rank-and-Hash scheme.

Comparison with MPI Comm split In the two widely-used open-source
MPI implementations: MPICH and OpenMPI, MPI Comm split is implemented
as an O(n) allgather followed by O(n

c log n
c ) sort, where c is the number of colors

(assuming splits of equal size). To compare, we implemented a multi-color ver-



sion of the Rank-and-Hash scheme. During the upward-pass member counts of
each color are gathered at the root, which takes O(min(c log n, n)). If the original
tree is shrunk into c pieces, dissemination in the downward pass can be accom-
plished in O(log n), totaling to a time complexity of O(min(c log n, n)). As the
number of colors approaches n, time complexity of the Rank-and-Hash scheme
approaches that of MPI Comm split. In Table 1, we compare the performance
of MPI Comm split with Rank-and-Hash scheme on 32, 768 cores of BG/P.
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Fig. 4: Message counts, normalized
against centralized scheme at same
f, for n = 128K on IBM BG/P

splits
(c)

MPI
Comm-
split

Rank-
and-Hash

1 134.968 0.708
2 106.573 0.713
4 96.989 0.760
8 93.536 0.785

Table 1: Execution times (ms) of
the Rank-and-Hash scheme and
MPI Comm split from vendor’s im-
plementation on 32K cores of BG/P

7 Related Work

Balaji et al [2] discuss the memory overheads of subcommunicator storage in
MPI and note that memory usage increases with process count, significantly
affecting the number of subcommunicators that can be created. They report
that, on BlueGene/P, the number of new communicators that can be created at
128K processes drops to as low as 264 from 8189 at 1K processes. Their findings
strengthen the argument for cheap process groups.

Sack et al [14] propose a distributed algorithm for ordered subcommunicator
construction that uses O(n/p) memory and O(p log n + log2 n + n

p log p) time
where p is the number of processes used for parallel key sorting. They reduce
storage requirements to O(n/p) by using distributed tables for storing the ranks.

Recent work by Moody et al [11] mentions a generalized MPI Comm split
They propose creating and storing process groups as chains in O(1) memory and
O(log n) construction time. They perform collectives by exchanging appropriate
process ids during the operation. Our work exhibits several differences. First, we
avoid the extra O(n) messaging required to exchange process ids during every
collective call. This also results in lesser dependencies on remote information for
the progress of the collective, which should lead to lesser wait times and faster
completion of the operation. We believe this benefit will become more prominent
for implementations that exploit one-sided data transfer calls provided by some
network messaging APIs [4,9]. Second, our schemes can construct and use com-
munication trees of arbitrary branching factors. Achieving this using chains will



be difficult, and will effectively amount to constructing a spanning tree. This is
of practical consequence for collectives on many architectures as binary trees do
not always perform as well as other k-ary trees.

Other work [8,16] describes several techniques for the compact representation
of MPI groups. They are quite effective in the presence of exploitable patterns in
the member ranks. In contrast, we do not design specific data structures or com-
paction mechanisms, nor do we provide a complete solution for the current MPI
standard. We believe several use cases can be met by the altered functionality
we propose; and our work explicitly targets relevance beyond MPI.

8 Summary and Future Work

In this paper, we have motivated support for system-ranked process groups
and discussed how they are suited to a subset of collectives. We have developed
two algorithms, Shrink-and-Balance and Rank-and-Hash, for creating balanced,
k-ary tree based process groups while consuming small amounts of memory. We
discovered that our algorithms are also faster than a reference implementation
even on 128K processes of a terascale supercomputer 1; and significantly faster
than the comm split implementation of the native MPI library. We summarize
our analysis in Table 2.

There are several immediate extensions to the work described here. The
Shrink-and-Balance scheme sends fewer messages despite having a longer criti-
cal path than the Rank-and-Hash scheme. We intend to evaluate performance in
the presence of other communication and computation akin to real application
execution scenarios. We also plan further experiments with larger numbers of
splits. We believe these experiments will throw more light on the relative merits
of the two algorithms discussed here, and possibly lead to further improvements.

Another planned direction is to account for network-topology. The algorithms
described here can be executed hierarchically, such that each subtree is restricted
to a small neighborhood of the network. This can reduce the number of network
links traversed along the tree and improve performance of the targeted collec-
tives. The complexity will be very similar to the current schemes.

This work was supported in part by DOE DE-SC0001845 and NSF ITR-0833188.
1 ALCF compute resources were used under DOE contract DE-AC02-06CH11357.

Table 2: Space and time complexities for different group creation schemes

MPI(typical) Centralized Shrink-and-Balance Rank-and-Hash

Space O(n) O(m) O(logn) O(1)
Time O(n+m logm) O(m+ logn) O(log2 n) O(logn)
Msg Count n logn n+m Ω(n+m) n+ 4m+ m

k

Max Msg Size O(n) O(m) O(logn) O(1)
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