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Abstract. Collectives are an important component of parallel programs,
and have a significant impact on performance and scalability of an appli-
cation. To obtain best performance, platform specific implementations of
various parallel programming frameworks, such as MPI and Charm++,
are done. As a result, when systems with new network topologies are
built, new topology aware algorithms for collectives are added to these
frameworks that also contain the topology oblivious algorithms. In this
paper, we propose topology aware algorithms for collectives performed
on two-tier direct networks such as IBM PERCS and Dragonfly. We ob-
serve that, for large message operations, significant performance gains
can be made by taking advantage of large number of links in a two-
tier direct network. We evaluate proposed algorithms using an analytical
model based on link utilization.
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1 Introduction

On the road to Exascale, there is a strong possibility that parallel machines of
the future will have a large number of fast cores on each node and a low network
bytes-to-flop ratio. Communication is becoming expensive whereas computation
continues to become cheaper. Hence, scalable, low-diameter and fast networks
will be desirable for building multi-Petaflop/s and Exaflop/s capability machines.
New designs have been proposed recently by IBM (the PERCS topology [2]), and
by the DARPA sponsored Exascale Computing Study on technical challenges in
hardware (the dragonfly topology [6]). Both these topologies are two-tier direct
networks with all-to-all connections at each level.

Many scientific applications use data movement collectives such as Broadcast,
Scatter, Gather, Allgather, All-to-all, and computation collectives such as Re-
duce, Reduce-scatter, and Allreduce [1]. The performance of these MPI collectives
is critical for improved scalability and efficiency of parallel scientific applications.
In recent years, there have been an increasing number of applications such as
web analytics, micro-scale weather simulation and computational nanotechnol-
ogy, that involve processing extremely large scale data requiring collective op-
erations with large messages. Performance of such large message collectives is
significantly affected by network bandwidth constraints.

Most of the existing networks such as torus and fat-trees are low radix,
and have constant number of links attached to a node. As such, transmitting



Fig. 1. The PERCS network – the right side shows first-level connections within a
supernode; the left side shows second-level connections across supernodes (we show
connections of only one node and one supernode respectively for clarity).

packets from a source to destination involve traversal through a large number of
nodes/switches. The multiplicity of hops makes these networks congestion prone,
especially when performing collectives on large data/messages. To counter the
effects of congestion, carefully designed topology aware algorithms have been
used for collectives on such networks [4, 5]. In addition, there is a set of topology
oblivious algorithms which perform reasonably well on most systems [7, 8, 3].
However, most of these algorithms do not seem to be a good fit for two-tier direct
networks as they may not be able to make full use of the all-to-all connectivity
in two-tier direct networks. In this paper, we propose a new set of topology
aware algorithms, which we refer to as two-tier algorithms, for collectives on
two-tier direct networks for large messages. These algorithms exploit the high
radix nodes and the multi-level structure of a two-tier direct network. Hence,
they are better suited for two-tier direct networks, and as we demonstrate later
should perform significantly better than other algorithms. A cost model based on
the link utilization is used to evaluate the effectiveness of proposed algorithms in
comparison to general topology oblivious algorithms. To best of our knowledge,
this is the first paper which deals with collectives on two-tier direct networks.

2 Two-tier Direct Networks

In this section, we provide an introduction to two-tier networks using IBM’s
PERCS network as an example. The elementary unit is called a node: a multi-
core chip with connection to and from the system network. Any communication
initiated by the cores is sent to the network manager of the node. In a two-
tier direct network, nodes at the first level are grouped logically to form cliques.
These cliques are further grouped to form larger clusters. In the PERCS topology,
these logical groups are called drawers and supernodes whereas in the dragonfly
topology they are called groups and racks (or cabinets). The supernodes are
connected at the second level to form a larger clique.



As a concrete example, in the right side of Figure 1, we show one supernode
of the PERCS topology. Within the supernode, a circle represents a node. Eight
nodes in each quadrant constitute a drawer. Every node has a hub/switch that
has three types of links originating from it - LL, LR and D links. LL and LR
links constitute the first tier connections that enable communication between any
two nodes in one hop. On the left side of Figure 1, the second tier connections
between supernodes are shown. Every supernode is connected to every other
supernode by a D or L2 link. These inter-supernode connections originate and
terminate at hub/switches connected to a node; a given hub/switch is directly
connected to only a fraction of the other supernodes. Any packet which is to be
sent from a node (N1) in a supernode( S1) to a node (N2) in another supernode
(S2) first need to be sent to that node in S1 which is connected to S2. Thereafter,
the packet is sent to S2 and forwarded to N2 if required using the first level links.

In this paper, we do not differentiate among first level links (LL and LR) and
denote them by L1 links. The links at second level are denoted as L2 links. We
also stick to core, node and supernode terminology of PERCS, but the same prin-
ciples apply to Dragonfly or any other two-tier direct network. We also assume
that a node is capable of sending data simultaneously on all links originating
from it.

3 Cost Model and Assumptions

We assume an inorder mapping of MPI ranks or cores onto the system. Consider
a system with sn supernodes, each consisting of nps (nodes per supernode) nodes
with cpn (cores per node) cores each. Hence, we have p = sn ∗ nps ∗ cps cores
whose inorder mapping is performed as following. Consider a global numbering
of supernodes from 0 to sn−1. Within a supernode and a node, nodes and cores
are locally numbered from 0 to (nps − 1) and from 0 to (cpn − 1) respectively.
In the global space, cores are numbered (by MPI) from 0 to (p − 1) using the
core’s supernode, node and position within the node as the key. For example,
cores in supernode 0 get ranks from 0 to (nps ∗ cpn− 1). Following which, cores
in supernode 1 get ranks from nps ∗ cpn to (2 ∗ nps ∗ cpn− 1) and so on.

Further, we assume a two-tier network with round robin connection for L2
links at node level. A connection from supernode S1 to supernode S2 origi-
nates at node (S2 modulo nps) in supernode S1. This link connects to node
(S1 modulo nps) in supernode S2. Therefore, each node is connected to spn =
sn
nps supernodes. We consider the case in which job allocation onto nodes and

supernodes happen in a uniform manner. To keep things simple, we assume the
cases where the entire machine is being used by an application. Algorithms and
results for the other case, where allocation is not uniform, can be derived with
minor variations and will be discussed in a future work.

As we focus on large message collectives, we use a bandwidth based model to
estimate the cost of a collective algorithm. The start up cost and latency effects
are ignored as the bandwidth term dominates for large messages. We assume
that the time taken to send a message between any two nodes is nβ, where β is
the transfer time per byte, if only 1 link is being used to send n bytes of data. In



case of a computation operation, we add a γ computation cost component per
byte. We also use a two step approach to find link utilization which provides a
more accurate estimate of performance of an algorithm. In the first step, given a
collective operation, the algorithm to use, number of MPI ranks or cores and the
data length information (required by the operation), pattern-generator generates
a list of communication exchange between every pair of MPI ranks. The data
generated by pattern-generator is fed to linkUsage. Given a list of communication
exchange, linkUsage generates the amount of traffic that will flow on each link
in the given two-tier network.

4 Topology Oblivious Algorithms

This section lists the algorithms which are generally used to perform various
collective operations in a topology oblivious manner for large message sizes.
Many of these algorithms, which are listed in Table 1, are used in MPICH as
the default option [8].

Operation Algorithm Cost (n bytes)

Scatter Binomial Tree p−1
p
nβ

Gather Binomial Tree p−1
p
nβ

Allgather Ring, Recursive Doubling p−1
p
nβ

Broadcast DeGeijn’s Scatter with Allgather [3] 2 p−1
p
nβ

Reduce-Scatter PairWise Exchange p−1
p

(nβ + nγ)

Reduce Rabenseifner’s Reduce-Scatter with Gather [7] p−1
p

(2nβ + nγ)

Table 1. Commonly used Algorithms

5 Two-tier Algorithms

Given the clique property and the multiple levels of connections, the two-tier
networks naturally leads to a new set of algorithm which we refer to as two-tier
algorithms. The common idea in any two-tier algorithm is stepwise dissemi-
nation, transfer or aggregation (SDTA) of data. SDTA refers to simultaneous
exchange of data within a level in order to optimize the over all data exchange.
Performing SDTA ensures that the algorithms use maximum possible links for
best bandwidth, and collate information to minimize the amount of data ex-
changed at higher levels. Without loss of generality let us assume that the root
of any operation is core 0 of node 0 of supernode 0. In our discussion, we use
core to refer to any entity which takes part in the collective operation. An MPI
Rank and Charm++ Chare are examples of such entities.

5.1 Scatter and Gather

Scatter is a collective operation used to disseminate core specific data from a
source core to every other core. The two-tier algorithm for Scatter using SDTA
is as follows:



1. Core 0 of node 0 of supernode 0 sends data to core 0 of every other node
in supernode 0. The data sent to a core is the data required by the cores
residing in the supernodes connected to the node of that core.

2. Core 0 of every node within supernode 0 sends data to core 0 of every node
outside supernode 0 that the node is connected to. The data sent to a node
is the data required by the cores in the supernode to which this destination
node belongs.

3. Core 0 of every node that has data (including node 0 of supernode 0) sends
data to core 0 of every other node within its supernode. This data is required
by the cores within the node that the data is being sent to.

4. Core 0 of every node shares data, required by the other cores, with all other
cores in their node.

The four step process described above implies that the source core first
spreads the data within its supernode. The data is then sent to exactly one
node of every other supernode by the nodes which received the data. Thereafter,
nodes which have data to be distributed within their supernode spreads the data
within their supernodes. Gather can be performed using this algorithm in the
reverse order.

For collectives with personalized data for each core such as Scatter, the dis-
semination of data can also be done using direct message send. The data will
take exactly the same path as described in the above scheme. We have described
our approach using Scatter because of its simplicity, and ease of understanding.

5.2 Broadcast

Broadcast can be performed using the approach used for Scatter if the entire
data, without personalization, is sent in the four steps. We refer to this type of
Broadcast as base broadcast. However, using the following scheme better perfor-
mance can be obtained.

1. Core 0 of node 0 of supernode 0 divides the data to be broadcasted into nps
chunks and sends chunk i to core 0 of node i of supernode 0.

2. Core 0 of every node within supernode 0 sends data to core 0 of exactly one
node outside supernode 0 that the node is connected to. Exactly one node
is chosen to avoid duplication of data delivery in following steps.

3. Core 0 of every node that received data in the previous step sends data to
core 0 of every other node within their supernode.

4. Core 0 of all the nodes that received data in Step 2 and Step 3 send data to
core 0 of all other nodes outside their supernode that they are connected to.

5. Now, these cores share data with core 0 of all other nodes in their supernode.
6. Core 0 of every node shares data with all other cores in their node.

This algorithm begins with the source core dividing the data into chunks,
and distributing it within its supernode (as if performing Scatter over a limited
set of cores). In the second step, every node in supernode 0 share the chunk with
exactly 1 node outside their supernode. Thereafter, the nodes which received the
chunk in the previous step share the data with other nodes in their supernode.



As a result, all nodes in some of the supernodes have a chunk of initially divided
data which needs to be sent to other supernodes. This is done in the next step,
following which all nodes, which have received a chunk so far, share these chunks
with other nodes in their supernode.

5.3 Allgather

An Allgather operation is equivalent to Broadcast being performed by all cores
simultaneously. The SDTA based algorithm begins with all cores within every
node exchanging data and collecting it at core 0 of the node. In the second step,
all nodes within a supernode exchange data in an all-to-all manner using L1
links, and thus every node in every supernode contains the data which a supern-
ode wants to broadcast to other supernodes. In the following step, supernodes
exchange data in an all-to-all manner in parallel. Finally the nodes which re-
ceive data in the previous step disseminate this data to other nodes within its
supernode. In addition, core 0 of every node has to share this data with all other
cores in its node. This algorithm can be seen as a base broadcast being done by
all nodes simultaneously (refer to §5.2).
Please note that many a times, multiple steps of SDTA can be performed by a
send from the source of one step to eventual destination of the following step.
An example case will be when core 0 of node 0 of supernode 0 has to send data
to core 0 of nodes that are connected to other nodes of supernode 0. We have
presented them as separate steps in which initially core 0 of node 0 sends the
data to core 0 of other nodes of supernode 0. These nodes then forward the
data to core 0 of nodes of other supernodes. This has been done only for ease of
understanding, and comparison results will not reflect them.

5.4 Computation Collectives

Although the same two-tier approach presented in the previous section can be
used to perform computation collectives such as Reduce, it may not result in
the best performance. The inefficiency in the previous approach derives from
the fact that computation collectives require some computation on the incoming
data, and therefore if some node receives a lot of data from multiple sources, the
computation it has to perform on the incoming data will become a bottleneck.
We assume that the multiple cores do not share memory, and hence will not be
able to assist in the computation to be performed on the incoming data. Also, the
presented algorithms assume commutative and associative reduction operation.

Let us define an owner core as the core that has been assigned a part of
the data that needs to be reduced. This core receives the corresponding part
of the data from all other cores and performs the reduction operation on them.
Consider a clique of k cores on which a data of size m needs to be reduced, and
be collected at core 0. The algorithm we propose for such a case is the following:

1. Each core is made owner of m
k data - assume a simple rank based ownership.

2. Every core sends the data corresponding to the owner cores (in their data)
to the owner cores.



3. The owner cores reduce the data they own using the corresponding part in
their data, and the data they receive.

4. Every owner core sends the reduced data to core 0.

Essentially, what we are doing is a divide and conquer strategy. The data is
divided among cores, and they are made responsible for reduction on that data.
Every core divides their data, and sends the corresponding portion to the owner
cores. The owner cores reduce the data, and eventually send it to core 0.
Reduce - The above strategy can be used in multiple stages to perform the
overall reduction in a two-tier network:

1. Perform reduction among cores of every node; collect the data at core 0.
2. Perform reduction among nodes of every supernode - owners among nodes

are decided such that instead of collecting data at node 0, the data can be
left with the owner nodes and directly exchanged in the next step. This may
require a node to be owner of scattered chunks in the data depending on the
supernode connections.

3. Perform reduction among supernodes and collect the data at supernode 0.

Reduce-Scatter - We can use the same algorithm as above to perform Reduce-
scatter with a minor modification. Since the Reduce-scatter requires the reduced
data to be scattered over all cores, in the last phase of reduction (i.e. reduction
among supernodes), we decide owners of data such that a supernode becomes
owner of the data which its cores are required to receive in a reduce-scatter.
Thereafter, instead of collecting all data at supernode 0 in the final step, the al-
gorithm scatters the data within every supernode as required by Reduce-scatter.

6 Experiments

This section presents the details and results of the experiments we have con-
ducted. The two-tier network that has been simulated for these experiments
consists of 64 supernodes. Each supernode consists of 16 nodes each of which
has 16 cores. The given configuration implies that there are 4032 L2 links and
15360 L1 links in the system. Note that we ignore the time spent in sharing data
within a node by the cores.

6.1 Cost Comparison

In Table 2, we present comparison of the two-tier algorithms with other algo-
rithms using the cost model mentioned in §3. Among the data collectives, for
Scatter and Gather, we observe that the two-tier algorithms which distributes
data using all L1 links simultaneously within a source supernode provides the-
oretical speedup of factor nps i.e. nodes per supernode. This speedup may be
affected by sn, i.e., the number of supernodes. If there are too few L2 links, they
may become the bottleneck, and the speedup hence is bounded by min{nps, sn}.
For Allgather, we find that the speedup provided by two-tier algorithms depends
on both sn and nps. For Broadcast, which happens in three phases, the theo-
retical speedup is nps

3 . Finally, for computation collectives, we observe that our



approach leads to more computation being performed. This is because the re-
duction happens in two phases and some computation, which could have been
avoided, is performed. However, as with data collectives, the speedup for data
transfer is substantial and should mask the effect of increase in computation.



Operation Base Cost Two Tier Cost

Scatter p−1
p nβ nβ ∗max{ 1

nps ,
1
sn}

Gather p−1
p nβ nβ ∗max{ 1

nps ,
1
sn}

Allgather p−1
p nβ nβ( 1

nps + 1
sn + 1

sn∗nps )

Broadcast 2p−1
p nβ nβ( 3

nps )

Reduce-Scatter p−1
p (nβ + nγ) nβ( 1

nps + 1
sn + 1

sn∗nps ) + 2nγ

Reduce p−1
p (2nβ + nγ) nβ( 1

nps + 2
sn ) + 2nγ

Table 2. Cost Model based Comparison



6.2 Scatter, Gather and Broadcast

We consider a Scatter operation in which the root sends 64 KB data to each
of the remaining cores. In Table 3, we present a comparison of binomial algo-
rithm link utilization with the two-tier algorithm. The important thing to note
in the comparison is the maximum load binomial algorithm puts on a link in
comparison to what two-tier algorithm puts. For L1 links, we find that two-tier
algorithm puts a maximum load of 64 MB whereas binomial algorithm performs
much worse, and puts a load of 141 MB. The difference is much more significant
when it comes to L2 links where binomial algorithm puts a factor 32 times more
load. Exactly same results are found for Gather operation due to its inverse
nature to Scatter.

Scatter Broadcast
Binomial Two-tier DeGeijn Two-tier

L1 Links Used 1036 960 1588 15360
L1 Links Min Traffic 1 MB 1 MB 2 MB 64 MB
L1 Links Max Traffic 141 MB 64 MB 1.1 GB 128 MB

L2 Links Used 56 63 95 3937
L2 Links Min Traffic 16.7 MB 1 MB 32 MB 64 MB
L2 Links Max Traffic 520 MB 16 MB 1.09 GB 64 MB

Table 3. Link Usage Comparison for Scatter and Broadcast

We also present the link utilization statistics for a 1 GB Broadcast in Table 3.
Link utilization improves substantially both in terms of number of links used and
the load which is put on links when two-tier algorithm is used. We expect an
order of magnitude improvement in the execution time as the worst case link
load goes down from 1.1 GB to 128 MB.

6.3 Allgather

As mentioned earlier, we study the performance of Allgather using two al-
gorithms - recursive doubling and ring. The amount of data that each MPI
rank/core wants to send is 64 KB. In Table 4, we present comparison of two-tier
algorithm with the recursive doubling and ring algorithm. It can be seen that
while two-tier algorithms uses all the available L1 and L2 links in the system, the
other two algorithms use a very small fraction of available links. Moreover, the
load which two-tier algorithm puts on the links is orders of magnitude smaller
in comparison to the other algorithms. It strongly suggests that the two-tier
algorithm will outperform the other two algorithms. These results also conforms
with the fact that for large messages, ring algorithm is better than recursive-
doubling [8].
6.4 Computation Collectives

In the Table 5, we present a comparison of link utilization for Reduce-scatter
and Reduce. For this experiment, the overall reduction size is 1 GB, and hence



Recursive Doubling Ring Two-tier Algorithm
L1 Links Used 10496 1080 15360

L1 Links Min Traffic 16 MB 1 GB 65 MB
L1 Links Max Traffic 15.1 GB 1 GB 65 MB

L2 Links Used 384 634 4032
L2 Links Min Traffic 4.2 GB 1 GB 16 MB
L2 Links Max Traffic 4.3 GB 1 GB 16 MB

Table 4. Link Usage Comparison for Allgather

each core receives 64 KB reduced data when Reduce-Scatter is performed. We
observe an order of magnitude difference in the load put on the links by two-tier
algorithms in comparison to other algorithms. This can be attributed to the step
wise manner in which two-tier algorithms perform reduction. Only the necessary
data go out of a node or a supernode, and hence two-tier algorithm reduces the
load put on the links significantly. Given this large difference in communication
load, two-tier algorithms should outperform most other algorithms despite the
additional computational load they put on the cores.

Reduce-Scatter Reduce
Pairwise Exchange Two-tier Rabenseifner Two-tier

L1 Links Used 15360 15360 15360 15360
L1 Links Min Traffic 2 GB 65 MB 2 GB 66 MB
L1 Links Max Traffic 2 GB 65 MB 3 GB 130 MB

L2 Links Used 4032 4032 4032 4032
L2 Links Min Traffic 4 GB 16 MB 4 GB 16 MB
L2 Links Max Traffic 4 GB 16 MB 5 GB 32 MB

Table 5. Link Usage Comparison for Reduce-scatter and Reduce

7 Conclusion and Future Work

In this paper, we presented a new set of algorithms for two-tier networks, which
takes advantage of the topology. A comparison, based on a cost model and
network utilization, has been done to assess the performance of these new al-
gorithms in comparison to well know algorithms. We focused on collectives for
large data sizes, and showed that the two-tier algorithms significantly outper-
form most other algorithms for a two-tier direct network. In future, we plan to
focus on collectives for small data sizes, and potentially improve the performance
for large data size. We also plan to look at cases in which only a (non uniform)
part of system is allocated to an application.
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