
1

‘Cool’ Load Balancing for High Performance
Computing Data Centers

Osman Sarood, Phil Miller, Ehsan Totoni, and Laxmikant V. Kalé, Fellow, IEEE

Abstract—As we move to exascale machines, both peak power demand and total energy consumption have become prominent
challenges. A significant portion of that power and energy consumption is devoted to cooling, which we strive to minimize in this
work. We propose a scheme based on a combination of limiting processor temperatures using Dynamic Voltage and Frequency
Scaling (DVFS) and frequency-aware load balancing that reduces cooling energy consumption and prevents hot spot formation.
Our approach is particularly designed for parallel applications, which are typically tightly coupled, and tries to minimize the timing
penalty associated with temperature control. This paper describes results from experiments using five different CHARM++ and
MPI applications with a range of power and utilization profiles. They were run on a 32-node (128-core) cluster with a dedicated
air conditioning unit. The scheme is assessed based on three metrics: the ability to control processors’ temperature and hence
avoid hot spots, minimization of timing penalty, and cooling energy savings. Our results show cooling energy savings of up to
63%, with a timing penalty of only 2–23%.

Index Terms—Green IT, Temperature aware, Load balancing, Cooling energy, DVFS

F

1 INTRODUCTION

ENERGY consumption has emerged as a significant
issue in modern high-performance computing

systems. Some of the largest supercomputers draw
more than 10 megawatts, leading to millions of dollars
per year in energy bills. What is perhaps less well
known is the fact that 40% to 50% of the energy con-
sumed by a data center is spent in cooling [1], [2], [3],
to keep the computer room running at a lower tem-
perature. How can we reduce this cooling energy?

Increasing the thermostat setting on the computer
room air-conditioner (CRAC) will reduce the cooling
power. But this will increase the ambient tempera-
ture in the computer room. The reason the ambient
temperature is kept cool is to keep processor cores
from overheating. If they run at a high temperature
for a long time, the processor cores may be damaged.
Additionally, cores consume more energy per unit of
work when run at higher temperatures [4]. Further,
due to variations in the air flow in the computer room,
some chips may not be cooled as effectively as the
rest. Semiconductor process variation will also likely
contribute to variability in heating, especially in future
processor chips. So, to handle such ‘hot spots’, the
ambient air temperature is kept at a low temperature
to ensure that no individual chip overheats.

Modern microprocessors contain on-chip tempera-
ture sensors which can be accessed by software with
minimal overhead. Further, they also provide means
to change the frequency and voltage at which the chip
runs, known as dynamic voltage and frequency scaling, or
DVFS. Running processor cores at a lower frequency

The authors are members of the Parallel Programming Laboratory in the
Department of Computer Science at the University of Illinois at Urbana-
Champaign, Urbana, IL, 61801. For contact information and software, see
http://charm.cs.illinois.edu/

(and correspondingly lower voltage) reduces the ther-
mal energy they dissipate, leading to a cool-down.

This suggests a method for keeping processors cool
while increasing the CRAC set-point (i.e. the thermo-
stat setting). A component of the application software
can periodically check the temperature of the chip.
When it exceeds a pre-set threshold, the software can
reduce the frequency and voltage of that particular
chip. If the temperature is lower than a threshold, the
software can correspondingly increase the frequency.

This technique will ensure that no processors over-
heat. However, in HPC computations, and specifically
in tightly-coupled science and engineering simula-
tions, this creates a new problem. Generally, compu-
tations on one processor are dependent on the data
produced by the other processors. As a result, if one
processor slows down to half its original speed, the
entire computation can slow substantially, in spite of
the fact that the remaining processors are running at
full speed. Thus, such an approach will reduce the
cooling power, but increase the execution time of the
application. Running the cooling system for a longer
time can also increase the cooling energy.

We aim to reduce cooling power without substan-
tially increasing execution time, and thus reduce cool-
ing energy. We first describe the temperature sensor
and frequency control mechanisms, and quantify their
impact on execution time mentioned above (§ 3).
Our solution leverages the adaptive runtime system
underlying the Charm++ parallel programming sys-
tem (§ 4). In order to minimize total system energy
consumption, we study an approach of limiting CPU
temperatures via DVFS and mitigating the resultant
timing penalties with a load balancing strategy that is
conscious of these effects (§ 5). We show the impact of

2

this combined technique on application performance
(§ 7) and total energy consumption (§ 8).

This paper is a substantially revised version of
a conference paper presented at Supercomputing
2011 [5]. The new material includes performance data
on MPI benchmarks, in contrast to just the Charm++
applications presented previously, refinements of the
earlier techniques, performance data on the new
Sandy Bridge processor, including power sensors not
available on the older hardware in our cluster, and
substantially expanded experimental data.

2 RELATED WORK
Cooling energy optimization and hot spot avoidance
have been addressed extensively in the literature of
non-HPC data centers [6], [7], [8], [9], which shows
the importance of the topic. As an example, job place-
ment and server shut down have shown savings of up
to 33% in cooling costs [6]. Many of these techniques
rely on placing jobs that are expected to generate more
heat in the cooler areas of the data center. This does
not apply to HPC applications because different nodes
are running parts of the same application with similar
power consumption. As an example, Rajan et al [10]
use system throttling for temperature-aware schedul-
ing in the context of operating systems. Given their
assumptions, they show that keeping temperature
constant is beneficial with their theoretical models.
However, their assumption of non-migratability of
tasks is not true in HPC applications, especially with
an adaptive runtime system. Le et al. [11] constrain
core temperatures by turning the machines on and off
and consequently reduce total energy consumption by
18%. However, most of these techniques, can not be
applied to HPC applications as they are not practical
for tightly-coupled applications.

Minimizing energy consumption has also been an
important topic for HPC researchers. However, most
of the work has focused on machine energy consump-
tion rather than cooling energy. Freeh et al. [12] show
machine energy savings of up to 15% by exploiting
the communication slack present in the computational
graph of a parallel application. Lim et al [13] demon-
strate a median energy savings of 15% by dynamically
adjusting the CPU frequency/voltage pair during the
communication phases in MPI applications. Springer
et al. [14] generate a frequency schedule for a DVFS-
enabled cluster that runs the target application. This
schedule tries to minimize the execution time while
staying within the power constraints. The major dif-
ference of our approach to the ones mentioned is
that our DVFS decisions are based on saving cooling
energy consumption by constraining core tempera-
tures. The total energy consumption savings that we
report represent both machine and cooling energy
consumption.

Huang and Feng describe a kernel-level DVFS gov-
ernor that tries to determine the power-optimal fre-

quency for the expected workload over a short time
interval that reduces machine energy consumption
upto 11% [15]. Hanson et al. [16] devise a runtime
system named PET for performance, power, energy
and thermal management. They consider a more gen-
eral case of multiple and dynamic constraints. How-
ever, they just consider a serial setting without the
difficulties of parallel machines and HPC applications.
Extending our approach for constraints other than
temperature is an interesting future work.

Banerjee et al. [17] try to improve the cooling cost in
HPC data centers by an intelligent job placement al-
gorithm yielding up to 15% energy savings. However,
they do not consider the temperature variations inside
a job, so there is no control over the applications.
Thus, their approach can be less effective for data
centers with a few large-scale jobs rather than many
small jobs. They also depend on job pre-runs to get
information about the jobs. In addition, their results
are based on simulations and not experiments on a
real testbed. Tang et al. [18] reduce 30% of cooling
energy consumption by scheduling tasks in a data
center. However, large-scale parallel jobs’ considera-
tions is an issue there too.

Merkel et al. [19] discuss the scheduling of tasks
in a multiprocessor to avoid hot cores. However, they
do not deal with complications of parallel applications
and large-scale data centers. Freeh et al. [20] exploit
the varying sensitivity of different phases in the appli-
cation to core frequency in order to reduce machine
energy consumption for load balanced applications.
This work is similar to ours, as it deals with load
balanced applications. They reduce machine energy
consumption by a maximum of 16%. However, our
work is different as we achieve much higher savings
in total energy consumption primarily by reducing
cooling energy consumption.

3 LIMITING TEMPERATURES
The design of a machine room or data center must en-
sure that all equipment stays within its safe operating
temperature range while keeping costs down. Com-
modity servers and switches draw cold air from their
environment, pass it over processor heatsinks and
other hot components, and then expel it at a higher
temperature. To satisfy these systems’ specifications
and keep them operating reliably, cooling systems in
the data center must supply a high enough volume
of sufficiently cold air to every piece of equipment.

Traditional data center designs treated the air in
the machine room as a single mass, to be kept at
an acceptable aggregate temperature. If the air en-
tering some device was too hot, it meant that the
CRAC’s thermostat should be adjusted to a lower
set-point. That adjustment would cause the CRAC to
run more frequently or intensely, increasing its energy
consumption. More modern designs, such as alter-
nating hot/cold aisles [1] or in-aisle coolers, provide

3

Fig. 1. Average core temperatures and maximum
difference of any core from the average for Wave2D

greater separation between cold and hot air flows and
more localized cooling, easing appropriate supply to
computing equipment and increasing efficiency.

However, even with this tighter air management,
variations in air flow, system design, manufacturing
and assembly, and workload may still leave some de-
vices significantly hotter than others. To illustrate this
sensitivity, we run an intensive parallel application on
a cluster with a dedicated CRAC unit whose set-point
we can manipulate. Details of this setup are described
in Section 6. Figure 1 shows two runs of the applica-
tion with different CRAC set-point temperatures. For
each run, we plot both the average core temperature
across the entire cluster, and the maximum deviation
of any core from that average.

Unsurprisingly, observed core temperatures corre-
late with the temperature of the air provided to cool
them. With a set-point increase of 2.3◦ C, the average
temperature across the system increases by 6◦ C. More
noteworthy is that this small shift creates a substantial
hot spot, that worsens progressively over the course
of the run. At the higher 25.6◦ C set-point, the tem-
perature difference from the average to the maximum
rises from 9◦ C to 20◦ C. In normal operations, this
would be an unacceptable result, and the CRAC set-
point must be kept low enough to avoid it.

An alternative approach, based on DVFS, shows
promise in addressing the issue of overcooling and
hot spots. DVFS is already widely used in laptops,
desktops, and servers in non-HPC data centers as a
means to limit CPU power consumption. However
applying DVFS naı̈vely to HPC workloads entails an
unacceptable performance degradation. Many HPC
applications are tightly-coupled, such that one or a
few slow cores would effectively slow down an entire
job. This timing penalty implies decreased throughput
and increased time-to-solution.

To demonstrate the impact of DVFS, we repeat the
earlier experiment with a temperature constraint. We
fix a threshold temperature of 44◦ C that we wish
to keep all CPUs below. We sample temperatures
periodically, and when a CPU’s average temperature
is over this threshold, its frequency is lowered by

 0

 100

 200

 300

 400

 500

NoLB 14.4 17.8 21.1 24.4
 0

 200

 400

 600

 800

 1000

 1200

 1400

T
im

e
 (

s
e
c
)

E
n
e
rg

y
 (

K
J
)

CRAC Set Point (C)

Time
Machine Energy
Cooling Energy

Fig. 2. Execution time and energy consumption for
Wave2D running at different CRAC set-points using
DVFS

one step i.e. increase P-state by a level. If it is more
than a degree below the threshold, its frequency is
increased by one step i.e. decrease P-state by a level.
We repeat this experiment over a range of CRAC
settings, and compute their performance in time and
energy consumption relative to a run with all cores
working at their maximum frequency and the CRAC
set to 12.2◦ C. As shown in Figure 2, DVFS alone in
this setting hurts performance and provides minimal
savings in total energy consumption. Most of the
savings from cooling energy consumption are offset
by an increase in machine energy consumption. Nev-
ertheless, our results in Figure 3 (described in detail
in Section 7) show that DVFS effectively limits both
overall temperatures and hot spots.

More radical liquid-cooling designs mitigate some
of the hot spot concerns, but they are not a panacea.
Equipment must be specifically designed to be liquid-
cooled, and data centers must be built or retrofit to
supply the coolant throughout the machine room. The
present lack of commodity liquid-cooled systems and
data centers means that techniques to address the
challenges of air-cooled computers will continue to
be relevant for the foreseeable future. Moreover, our
techniques for limiting core temperatures can actually
reduce the overall thermal load of an HPC system,
leading to energy savings even for installations using
liquid cooling.

4 CHARM++ AND LOAD BALANCING

CHARM++ is a general-purpose C++-based parallel
programming system designed for productive HPC
programming [21]. It is supported by an adaptive
runtime system that automates resource management.
It relies on techniques such as processor virtualization
and over-decomposition (having more work units
than the number of cores) to improve performance
via adaptive overlap of computation and communi-
cation and data-driven execution. This means that
the developer does not need to program in terms

4

of the physical cores, but instead divides the work
into pieces with a suitable grain size to let the system
manage them easily.

A key feature of CHARM++ is that the units of
work decomposition are migratable objects. The adap-
tive runtime system can assign these objects to any
processor and move them around during program ex-
ecution, for purposes including load balancing, com-
munication optimization, and fault tolerance. To en-
able effective load balancing, it tracks statistics of each
object’s execution, including its computation time and
communication volume [22].

The runtime system provides a variety of plug-in
load balancing strategies that can account for different
application characteristics. Through a simple API,
these strategies take the execution statistics from the
runtime and generate a set of migration instructions,
describing which objects to move between which pro-
cessors. Application developers and users can provide
their own strategy implementations as desired. Load
balancing strategies can be chosen at compilation or
run-time. The majority of these strategies are based
on the heuristic ‘principle of persistence’, which states
that each object’s computation and communication
loads tend to persist over time. The principle of
persistence holds for a large class of iterative HPC
applications. In this study, we have developed a new
load balancing strategy that accounts for the per-
formance effects of DVFS-induced heterogeneity. The
new strategy is described in detail in Section 5.

At small scales, the cost of the entire load balancing
process, from instrumentation through migration, is
generally a small portion of the total execution time,
and less than the improvement it provides. Where this
is not immediately the case, a strategy must be chosen
or adapted to match the application’s needs [23]. Our
approach can be easily adapted to available hierarchi-
cal schemes, which have been shown to scale to the
largest machines available [24]. By limiting the cost
of decision-making and scope of migration, we expect
these schemes to offer similar energy benefits.

4.1 AMPI
The Message Passing Interface (MPI) is a standard-
ized communication library for distributed-memory
parallel programming. MPI has become the dominant
paradigm for large-scale parallel computing. Thus,
techniques for addressing the energy consumption
of large parallel systems must be applicable to MPI
applications.

CHARM++ provides an implementation of MPI
known as Adaptive MPI (AMPI). AMPI makes the
features of the CHARM++ runtime system available
to MPI programs. Common MPI implementations
implement each unit of parallel execution, or rank, as a
separate process. Pure MPI applications run one rank
per CPU core, while others use fewer ranks and gain
additional shared-memory parallelism via threading.

In contrast, AMPI encourages running applications
with several ranks per core. AMPI implements these
ranks as light-weight user-level threads, many of
which can run in each process. The runtime schedules
these threads non-preemptively, and switches them
when they make blocking communication calls. In-
ternally, these threads are implemented as migratable
objects, enabling the same benefits for MPI programs
as for native CHARM++. In particular, AMPI allows
us to apply the CHARM++ load balancing strategies
without intrusive modifications to application logic.

5 TEMPERATURE-AWARE LOAD BALANC-
ING APPROACH

In this section, we introduce a novel approach that
reduces energy consumption of the system with min-
imal timing penalty. It is based on limiting core tem-
peratures using DVFS and task migration. Because
our scheme is tightly coupled to task migration, we
chose CHARM++ and AMPI as our parallel program-
ming frameworks as they allow easy task (object) mi-
gration with low overhead. All the implementations
and experiments were done using CHARM++ and
AMPI. However, our techniques can be applied to any
parallel programming system that provides efficient
task migration.

The steps of our temperature-control scheme can
be summarized as applying the following process
periodically:

1) Check the temperatures of all cores
2) Apply DVFS to cores that are hotter or colder

than desired
3) Address the load imbalance caused by DVFS

using our load balancer, TempLDB:
a) Normalize task and core load statistics to

reflect old and new frequencies
b) Identify overloaded or underloaded cores
c) Move work from overloaded cores to un-

derloaded cores
The remainder of this section describes this process in
detail.

Our temperature control scheme is periodically trig-
gered after equally spaced intervals in time, referred
to as steps. Other DVFS schemes [15] try to react
directly to the demands of the application workload,
and thus must sample conditions and make adjust-
ments at intervals on the order of milliseconds. In
contrast, our strategy only needs to react to much
slower shifts in chip temperature, which occur over
intervals of seconds. At present, DVFS is triggered as
part of the runtime’s load balancing infrastructure at
a user-specified period.

Our control strategy for DVFS is to let the cores
work at their maximum frequency as long as their
temperature is below a threshold parameter. If a core’s
temperature crosses above the threshold, it is con-
trolled by decreasing the voltage and frequency using

5

TABLE 1
Description for variables used in Algorithm 1

Variable Description

n number of tasks in application
p number of cores
Tmax maximum temperature allowed
k current load balancing step
Ci set of cores on same chip as core i
taskT imeki execution time of task i during

step k (in ms)
coreT imeki time spent by core i executing tasks

during step k
fk
i frequency of core i during step k (in Hz)

mk
i core number assigned to task i

during step k
{task, core}T ickski num. of clock ticks taken by ith task/core

during step k
tki average temperature of chip i at start of

step k (in ◦C)
overHeap heap of overloaded cores
underSet set of underloaded cores

DVFS. When the voltage and frequency are reduced,
power consumption will drop and hence the core’s
temperature will fall. Our earlier approach [5] raised
the voltage and frequency as soon as temperatures
fell below the threshold, causing frequent changes and
requiring effort to load balance in every interval. To
reduce overhead, our strategy now waits until a chip’s
temperature is a few degrees below the threshold
before increasing its frequency.

The hardware in today’s cluster computers does not
allow reducing the frequency of each core individu-
ally and so we must apply DVFS to the whole chip.
This raises the question: what heuristic should we
use to trigger DVFS and modulate frequency? In our
earlier work [4], we conducted DVFS when any of the
cores on a chip were considered too hot. However, our
more recent results [5] show that basing the decision
on average temperature of the cores in a chip results
in better temperature control.

Another important decision is how much a chip’s
frequency should be reduced (respectively, raised)
when it gets too hot (is safe to warm up). Present
hardware only offers discrete frequency and voltage
levels built into the hardware, the ‘P-states’. Using
this hardware, we observed that reducing the chip’s
frequency by one level at a time is a reasonable
heuristic because it effectively constrains the core
temperatures in the desired range (Figure 3). Lines 1–6
of Algorithm 1 apply DVFS as we have just described.
The description of the variables and functions used in
the algorithm is given in Table 1.

When DVFS adjusts frequencies differently across
the cores in a cluster, the workloads on those cores
change relative to one another. Because this potential
for load imbalance occurs all at once, at an easily
identified point in the execution, it makes sense to
react to it immediately. The system responds by re-
balancing the assignment of work to cores according

Algorithm 1 Temperature Aware Refinement Load
Balancing

1: On every node i at start of step k
2: if tki > Tmax then
3: decreaseOneLevel(Ci) {increase P-state}
4: else if tki < Tmax − 2 then
5: increaseOneLevel(Ci) {decrease P-state}
6: end if
7: On Master core
8: for i ∈ [1, n] do
9: taskT icksk−1

i = taskT imek−1
i × fk−1

mk−1
i

10: totalT icks += taskT icksk−1
i

11: end for
12: for i ∈ [1, p] do
13: coreT icksk−1

i = coreT imek−1
i × fk−1

i

14: freqSum += fk
i

15: end for
16: createOverHeapAndUnderSet()
17: while overHeap NOT NULL do
18: donor = deleteMaxHeap(overHeap)
19: (bestTask, bestCore) =

getBestCoreAndTask(donor, underSet)
20: mk

bestTask = bestCore
21: coreT icksk−1

donor− = taskT icksk−1
bestTask

22: coreT icksk−1
bestCore+ = taskT icksk−1

bestTask

23: updateHeapAndSet()
24: end while
25:
26: procedure isHeavy(i)
27: return coreT icksk−1

i > (1+ tolerance) ∗ totalT icks
∗(fk

i /freqSum)
28:
29: procedure isLight(i)
30: return coreT icksk−1

i < totalT icks ∗ fk
i /freqSum

to the strategy described by lines 7–30 of Algorithm 1.
The key principle in how a load balancer must

respond to DVFS actuation is that the load statistics
must be adjusted to reflect the various different fre-
quencies at which load measurements were recorded
and future work will run. At the start of step k,
our load balancer retrieves load information for step
k − 1 from CHARM++’s database. This data gives
the total duration of work executed for each task
in the previous interval (taskT imek−1

i) and the core
that executed it (mk−1

i). Here i refers to task id and
k − 1 represents last step. We normalize the task
workloads by multiplying their execution times by the
old frequency values of the core they executed on, and
sum them to compute the total load, as seen in lines
8–11. This normalization is an approximation to the
performance impact of different frequencies, whose
validity can be seen in Figure 8. However, different
applications might have different characteristics (e.g.
cache hit rates at various levels, instructions per cycle)
that determine the sensitivity of their execution time

6

to core frequency. We plan to incorporate more de-
tailed load estimators in our future work. The scheme
also calculates the work assigned to each core and
sum of frequencies for all the cores to be used later
(lines 12-15).

Once the load normalization is done, we create
a max heap for overloaded cores (overHeap) and a
set for the underloaded cores (underSet) on line 16.
The cores are classified as overloaded and under-
loaded by procedures isHeavy() and isLight() (lines
26–30), based on how their normalized loads from
the previous step, k − 1, compare to the frequency-
weighted average load for the coming step k. We use
a tolerance in identifying overloaded cores to focus
our efforts on the worst instances of overload and
minimize migration costs. In our experiments, we set
the tolerance to 0.07, empirically chosen for the slight
improvement it provided over the lower values used
in our previous work.

Using these data structures, the load balancer iter-
atively moves work away from the most overloaded
core (donor, line 18) until none are left (line 17). The
moved task and recipient are chosen as the heaviest
task that the donor could transfer to any underloaded
core such that the underloaded core doesn’t become
overloaded (line 19, implementation not shown). Once
the chosen task is reassigned (line 20), the load statis-
tics are updated and the data structures are updated
accordingly (lines 21–23).

6 EXPERIMENTAL SETUP

To evaluate our approach to reducing energy con-
sumption, we must be able to measure and control
core frequencies and temperatures, air temperature,
and energy consumed by computer and cooling hard-
ware. It is important to note that all the experiments
were run on real hardware, and there are no simula-
tion results in this paper.

We tested our scheme on a cluster of 32 nodes (128
cores). Each node has a single socket with a four-core
Intel Xeon X3430 processor chip. Each chip can be set
to 10 different frequency levels (‘P-states’) between
1.2 GHz and 2.4 GHz. It also supports Intel’s Turbo-
Boost [25], allowing some cores to overclock up to 2.8
GHz. The operating system on the nodes is CentOS
5.7 with lm-sensors and the coretemp module
installed to provide core temperature readings, and
the cpufreq module installed to enable software-
controlled DVFS. The cluster nodes are connected by
a 48-port gigabit ethernet switch. We use a Liebert
power distribution unit installed on the rack contain-
ing the cluster to measure the machine power after a
1 second interval on a per-node basis. We gather these
readings for each experiment and integrate them over
the execution time to come up with the total machine
energy consumption.

The machine and CRAC are hosted in a dedi-
cated machine room by the Department of Com-
puter Science at the University of Illinois at Urbana-
Champaign. This CRAC is an air cooler fed by chilled
water from a campus plant. It achieves the tempera-
ture set-point prescribed by the operator by manipu-
lating the flow of the chilled water. The exhaust air
coming from the machine room with temperature Thot

is compared to the set-point and the water flow is
adjusted accordingly. This cooling design is similar to
the cooling systems of most large data centers. We
were able to vary the CRAC set-point across a broad
range as shown in our results (following sections).

Because the CRAC unit exchanges machine room
heat with chilled water supplied by a campus-wide
plant, measuring its direct energy consumption (i.e.
with an electrical meter) would only include the
mechanical components driving air and water flow,
and would miss the much larger energy expenditure
used to actually cool the water. To more realistically
capture the machine room’s cooling energy, we use a
model [11] based on measurements of how much heat
the CRAC actually expels. The instantaneous power
consumed by the CRAC to cool the temperature of
the exhaust air from Thot down to the cool inlet air
temperature Tac can be approximated by:

Pac = cair ∗ fac ∗ (Thot − Tac) (1)

In this equation, cair is the heat capacity constant
and fac is the constant rate of air flow through the
cooling system. We use temperature sensors on the
CRAC’s vents to measure Thot and Tac. During our
experiments, we recorded a series of measurements
from each of these sensors, and then integrated the
calculated power to produce total energy figures.

We believe that by working in a dedicated space,
the present work removes a potential source of error
from previous data center cooling results. Most data
centers have many different jobs running at any given
time. Those jobs dissipate heat, interfering with cool-
ing energy measurements and increasing the ambient
temperature in which the experimental nodes run. In
contrast, our cluster is the only heat source in the
space, and the CRAC is the primary sink for that heat.

We investigate the effectiveness of our scheme,
using five different applications, of which three are
CHARM++ applications and two are written in MPI.
These applications have a range of CPU utilizations
and power profiles. The first one is Jacobi2D, which
is a canonical benchmark that iteratively applies a
five-point stencil over a 2D grid of points. At the
end of each iteration, instead of a reduction to test
for convergence, all the processors send a message
to processor zero, which causes more idle time. We
used this version of Jacobi to have some slack in the
computation of each processor and investigate our
scheme’s behavior in this case. The second application
is Wave2D, which uses a finite difference scheme

7

over a 2D discretized grid to calculate the pressure
resulting from an initial set of perturbations. The third
application is a classical molecular dynamics code
called Mol3D. Our MPI applications are MG and FT
from the NAS parallel benchmarks suite [26].

Most of our experiments were run for 300 seconds
as it provided ample time for all the applications
to settle to their steady state frequencies. All the
results we show are averaged over three identically
configured runs, with a cool-down period before each.
All normalized results are reported with respect to a
run where all 128 cores were running at the maximum
possible frequency with Intel Turbo Boost in operation
and the CRAC set to 12.2◦ C. To validate the ability of
our scheme to reduce energy consumption for longer
execution times, we ran Wave2D (the most power-
hungry of the five applications we consider) for two
and a half hours. The longer run was consistent with
our findings, with the temperature being constrained
well within the specified range and we were able to
reduce cooling energy consumption for the entire two
and half hour period.

7 CONSTRAINING CORE TEMPERATURES
AND TIMING PENALTY

The approach we have described in Section 5 con-
strains processor temperatures with DVFS while at-
tempting to minimize the resulting timing penalty.
Figure 3 shows that all of our applications when using
DVFS and TempLDB, settle to an average temperature
that lies in the desired range (the two horizontal
lines at 47 ◦C and 49 ◦C on Figure 3). As the average
temperature increases to its steady-state value, the
hottest single core ends up no more than 6◦ C above
the average (lower part of Figure 3) as compared to
20◦ C above average for the run where we are not
using temperature control (Figure 1).

Figure 4 shows the timing penalty incurred by each
application under DVFS, contrasting its effect with
and without load balancing. The effects of DVFS on
the various applications are quite varied. The worst
affected, Wave2D and NAS MG, see penalties of over
50%, which load balancing reduces to below 25%.
Jacobi2D was least affected, with a maximum penalty
of 12%, brought down to 3% by load balancing. In
all cases, the timing penalty sharply decreases when
load balancing is activated, generally by greater than
50%. Before analyzing timing penalty for individual
applications let us first see how load balancing helps
in saving timing penalty compared to naive DVFS.

To illustrate the benefits of load balancing, we
use Projections, which is a multipurpose performance
visualization tool for CHARM++ applications. Here,
we use processor timelines to see the utilization of
the processors in different time intervals. For ease
of comprehension, we show a representative 16-core
subset of the 128-core cluster. The top part of Figure 5

 30

 35

 40

 45

 50

 50 100 150 200

Te
m

pe
ra

tu
re

 (C
)

Cluster Average Temperature

Wave2D
NPB-FT

NPB-MG
Mol3D

Jacobi2D
Allowed range

 0
 2
 4
 6
 8

 10

 50 100 150 200

Te
m

pe
ra

tu
re

 d
ev

ia
tio

n
(C

)

Time (s)

Highest Single-core Deviation from Cluster Average Temperature

Fig. 3. Our DVFS and load balancing scheme success-
fully keeps all processors within the target temperature
range of 47◦–49◦ C, with a CRAC set-point of 24.4◦ C.

shows the timelines for execution of Wave2D with
the naive DVFS scheme. Each timeline (horizontal
line) corresponds to the course of execution of one
core visualizing its utilization. The green and pink
colored pieces show different computation but white
ones represent idle time. The boxed area in Figure 5
shows some of the cores have significant idle time.
The top 4 cores in the boxed area take much longer
to execute their computation than the bottom 12 cores
and this is why the pink and green parts are longer for
the top 4 cores. However, the other 12 cores execute
their computation quickly and stay idle waiting for
the rest of cores. This is because DVFS decreased the
first four cores’ frequencies and so they are slower in
their computation. This shows that the timing penalty
of naive DVFS is dictated by the slowest cores. The
bottom part of Figure 5 shows the same temperature
control but using our TempLDB. In this case, there is
no significant idle time because the scheme balances
the load between slow and fast processors by taking
their frequencies into account. Consequently, the latter
approach results in much shorter total execution time,
as reflected by shorter timelines (and figure width) in
the bottom part of Figure 5.

Now let us try to understand the timing penalty
differences amongst different applications by exam-
ining more detailed data. Jacobi2D experiences the
lowest impact of DVFS, regardless of load balancing
(Figure 4(a)). This occurs for several interconnected
reasons. From the high level, Figure 3 shows that it
takes the longest of any application to increase tem-
peratures to the upper bound of the acceptable range,
where DVFS activates. This slow ramp-up in temper-
ature means that its frequency does not drop until
later in the run, and then falls relatively slowly, as
seen in Figure 6 which plots the minimum frequency
at which any core was running (Figure 6(a)) and
the average frequency (Figure 6(b)) for all 128 cores.
Even when some processors reach their minimum fre-

8

 0

 10

 20

 30

 40

 50

 60

 70

14.4 17.8 21.1 24.4

Ti
m

in
g

P
en

al
ty

 (%
)

CRAC Set Point (C)

Naive DVFS
TempLDB

(a) Jacobi2D

 0

 10

 20

 30

 40

 50

 60

 70

14.4 17.8 21.1 24.4

Ti
m

in
g

P
en

al
ty

 (%
)

CRAC Set Point (C)

Naive DVFS
TempLDB

(b) Wave2D

 0

 10

 20

 30

 40

 50

 60

 70

14.4 17.8 21.1 24.4

Ti
m

in
g

P
en

al
ty

 (%
)

CRAC Set Point (C)

Naive DVFS
TempLDB

(c) Mol3D

 0

 10

 20

 30

 40

 50

 60

 70

14.4 17.8 21.1 24.4

Ti
m

in
g

P
en

al
ty

 (%
)

CRAC Set Point (C)

Naive DVFS
TempLDB

(d) NPB-MG

 0

 10

 20

 30

 40

 50

 60

 70

14.4 17.8 21.1 24.4

Ti
m

in
g

P
en

al
ty

 (%
)

CRAC Set Point (C)

Naive DVFS
TempLDB

(e) NPB-FT

Fig. 4. Execution timing penalty with and without Temperature Aware Load Balancing

Fig. 5. Execution timelines before and after Tempera-
ture Aware Load Balancing for Wave2D

quency, Figure 6(b) shows that its average frequency
decreases more slowly than any other application, and
does not fall as far. The difference in the average
frequency and the minimum frequency explains the
difference between TempLDB and naive DVFS, as the
execution time for TempLDB is dependent on average
frequency whereas the execution time for naive DVFS
depends on the minimum frequency at which any
core is running.

Another way to understand the relatively small
timing penalty of Jacobi2D is to compare its utiliza-
tion and frequency profiles. Figure 7(a) depicts each
core’s average frequency over the course of the run.
Figure 7(b) shows the utilization of each core while
running Jacobi2D. In both figures, each bar represents
the measurement of a single core. The green part

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 50 100 150 200 250 300

M
in

im
um

 F
re

qu
en

cy
 (G

H
z)

Time (s)

Mol3D
MG

Wave2D
FT

Jacobi2D

(a) Minimum Core Frequency

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 50 100 150 200 250 300

A
ve

ra
ge

 F
re

qu
en

cy
 (G

H
z)

Time (s)

Mol3D
MG

Wave2D
FT

Jacobi2D

(b) Average Core Frequency

Fig. 6. Minimum and average core frequencies pro-
duced by DVFS for different applications at 24.4◦ C

of the utilization bars represents computation and
the white part represents idle time. As can be seen,
utilizations of the right half cores are roughly higher
than the left half. Furthermore, the average frequency
of the right half processors is roughly lower than
the other half. Thus, lower frequency has resulted in
higher utilization of those processors without much

9

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100 120

A
v
e

ra
g

e
 F

re
q

u
e

n
c
y

Core Number

(a) Average frequency of processors for
Jacobi2D

(b) Utilization of processors for Jacobi2D

Fig. 7. Overall execution behavior of Jacobi2D using
TempLDB

TABLE 2
Performance counters for Charm++ applications on

one core

Counter Type Jacobi2D Mol3D Wave2D

MFLOP/s 373 666 832
Traffic L1-L2 (MB/s) 762 1017 601
Cache misses to DRAM 663 75 402
(millions)

timing penalty. The reason this variation can occur is
that the application naturally has some slack time in
each iteration, which the slower processors dip into
to keep pace with faster ones.

To examine the differences among applications at
another level, Figure 8 shows the performance im-
pact of running each application with the processor
frequencies fixed at a particular value (the marking
2.4+ refers to the top frequency plus Turbo Boost). All
applications slow down as CPU frequency decreases,
but Jacobi2D feels this effect very lightly compared
to the others. This marked difference can be better
understood in light of the performance counter-based
measurements shown in Table 2. These measurements
were taken in equal-length runs of the three Charm++
applications using the PerfSuite toolkit [27]. Jacobi2D
has a much lower computational intensity, in terms of
FLOP/s, than the other applications. It also retrieves
much more data from main memory, explaining its
lower sensitivity to frequency shifts. Its lower in-
tensity also means that it consumes less power and
dissipates less heat in the CPU cores than the other

 0.8

 0.9

 1

 1.1

1.21.41.61.822.22.42.4+

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Frequency (GHz)

NPB-MG
Mol3D

NPB-FT
Wave2D

Jacobi2D

Fig. 8. Frequency sensitivity of the various applications

applications, explaining its slower ramp-up in tem-
perature, slower ramp-down in frequency, and higher
steady-state average frequency. In contrast, the higher
FLOP counts and cache access rates of Wave2D and
Mol3D explain their high frequency sensitivity, rapid
core heating, lower steady-state frequency, and hence
the large impact DVFS has on their performance.

8 ENERGY SAVINGS
In this section, we evaluate the ability of our scheme
to reduce total energy consumption. Our current load
balancing scheme with the allowed temperature range
strategy resulted in less than 1% time overhead for
applying DVFS and load balancing (including the cost
of object migration). Due to that change, we now get
savings in both cooling energy consumption as well
as machine energy consumption, although savings in
cooling energy consumption constitute the main part
of the reduction in total energy consumption. In order
to understand the contribution for both cooling en-
ergy consumption and machine energy consumption,
we will look at them separately.

8.1 Cooling energy consumption
The essence of our work is to reduce cooling energy
consumption by constraining core temperatures and
avoiding hot spots. As outlined in Equation 1, the
cooling power consumed by the air conditioning unit
is proportional to the difference between the hot air
and cold air temperatures going in and out of the
CRAC respectively. As mentioned in [1], [2], [3],
cooling cost can be as high as 50% of the total energy
budget of the data center. However, in our calculation,
we take it to be 40% of the total energy consumption
of a baseline run with the CRAC at its lowest set-
point, which is equivalent to 66.6% of the measured
machine energy during that run. Hence, we use the
following formula to estimate the cooling power by
feeding in actual experimental results for hot and cold
air temperatures:

PLB
cool =

2 ∗ (TLB
hot − TLB

ac) ∗ P base
machine

3 ∗ (T base
hot − T base

ac)
(2)

10

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

No DVFS 14.4°C 17.8°C 21.1°C 24.4°C

M
ac

hi
ne

 P
ow

er
 (W

)

CRAC Temperature

Mol3D
Jacobi

NPB-MG
NPB-FT
Wave2D

(a) Machine power consumption

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

No DVFS 14.4°C 17.8°C 21.1°C 24.4°C

C
oo

lin
g

P
ow

er
 (W

)

CRAC Temperature

Mol3D
Jacobi

NPB-MG
NPB-FT
Wave2D

(b) Cooling power consumption

Fig. 9. Machine and cooling power consumption for no-
DVFS runs at a 12.2 ◦C set-point and various TempLDB
runs

TLB
hot represents the temperature of hot air leaving

the machine room (entering the CRAC) and TLB
ac

represents the temperature of the cold air entering the
machine room. T base

hot and T base
ac represent the hot and

cold air temperatures with the largest difference while
running Wave2D at the coolest CRAC set-point (i.e.
12.2◦ C), and P base

machine is the power consumption of
the machine for the same experiment.

Figure 9 shows the machine power consumption
and the cooling power consumption for each appli-
cation using TempLDB. In Figure 9(b) we note that
the cooling power consumption falls as we increase
the CRAC set-point for all the applications. A higher
CRAC set-point means the cores heat up more rapidly,
leading DVFS to set lower frequencies. Thus, machine
power consumption falls as a result of the CPUs draw-
ing less power (Figure 9(a)). The machine’s decreased
power draw and subsequent heat dissipation means
that less energy is added to the machine room air.
The lower heat flux to the ambient air means that
the CRAC requires less power to expel that heat
and maintain the set-point temperature, as seen in
Figure 9(b).

Wave2D consumes the highest cooling power for
three out of the four CRAC set-points we used, which
is consistent with its high machine power consump-
tion. Figure 10 shows the savings in cooling energy in
comparison to the baseline run where all the cores are
working at the maximum frequency without any tem-
perature control. These figures include the extra time

 0.8

 0.9

 1

 1.1

 1.2

1.21.41.61.822.22.42.4+

N
or

m
al

iz
ed

 E
ne

rg
y

Frequency (GHz)

Wave2D
NPB-FT

NPB-MG
Mol3D

Jacobi2D

Fig. 12. Normalized machine energy consumption for
different frequencies using 128 cores

the cooling needs to run corresponding to the timing
penalty introduced because of applying DVFS. Due to
the large reduction in cooling power (Figure 9(b)) our
scheme was able to save as much as 63% of the cooling
energy in the case of Mol3D running at a CRAC set-
point of 24.4 ◦C. We can see that the savings in cooling
energy consumption are better with our technique
than naive DVFS for most of the applications and
the corresponding set-points. This is mainly due to
the higher timing penalty for naive DVFS runs, which
causes the CRAC to work for much longer than the
corresponding TempLDB run.

8.2 Machine energy consumption
Although TempLDB does not optimize for reduced
machine energy consumption, we still end up show-
ing savings for some applications. Figure 11 shows
the change in machine energy consumption. A neg-
ative number represents a saving in machine energy
consumption whereas a positive number points to an
increase.

It is interesting to see that NPB-FT and Wave2D
end up saving machine energy consumption when
using TempLDB. For Wave2D, we end up saving 6%
of machine energy consumption when the CRAC is
set to 14.4 ◦C whereas the maximum machine energy
savings of NPB-FT, 4%, occurs when the CRAC is set
to 14.4 ◦C or 24.4 ◦C. To find the reasons for these sav-
ings in machine energy consumption, we performed
a set of experiments where we ran the applications
with the 128 cores of our cluster fixed at each of
the available frequencies. Figure 12 plots the normal-
ized machine energy for each application against the
frequency at which it was run. Power consumption
models dictate that CPU power consumption can
be regarded as being proportional to the cube of
frequency which would imply that we should expect
the power to fall as a cubic of frequency whereas the
execution time increases only linearly in the worst
case. This would imply that we should always reduce
energy consumption by moving to a lower frequency.
This proposition does not hold because of the high
base power drawn by everything other than the CPU
and memory subsystem, which is 40W per node for

11

 0

 10

 20

 30

 40

 50

 60

 70

14.4 17.8 21.1 24.4

S
a
v
in

g
s
 i
n
 C

o
o
lin

g
 E

n
e
rg

y
 (

%
)

CRAC Set Point (C)

Naive DVFS
TempLDB

(a) Jacobi2D

 0

 10

 20

 30

 40

 50

 60

 70

14.4 17.8 21.1 24.4

S
a
v
in

g
s
 i
n
 C

o
o
lin

g
 E

n
e
rg

y
 (

%
)

CRAC Set Point (C)

Naive DVFS
TempLDB

(b) Wave2D

 0

 10

 20

 30

 40

 50

 60

 70

14.4 17.8 21.1 24.4

S
a
v
in

g
s
 i
n
 C

o
o
lin

g
 E

n
e
rg

y
 (

%
)

CRAC Set Point (C)

Naive DVFS
TempLDB

(c) Mol3D

 0

 10

 20

 30

 40

 50

 60

 70

14.4 17.8 21.1 24.4

S
a
v
in

g
s
 i
n
 C

o
o
lin

g
 E

n
e
rg

y
 (

%
)

CRAC Set Point (C)

Naive DVFS
TempLDB

(d) NPB-MG

 0

 10

 20

 30

 40

 50

 60

 70

14.4 17.8 21.1 24.4
S

a
v
in

g
s
 i
n
 C

o
o
lin

g
 E

n
e
rg

y
 (

%
)

CRAC Set Point (C)

Naive DVFS
TempLDB

(e) NPB-FT

Fig. 10. Savings in cooling energy consumption with and without Temperature Aware Load Balancing (higher is
better)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

14.4 17.8 21.1 24.4

N
o
rm

a
liz

e
d
 M

a
c
h
in

e
 E

n
e
rg

y

CRAC Set Point (C)

Naive DVFS
TempLDB

(a) Jacobi2D

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

14.4 17.8 21.1 24.4

N
o
rm

a
liz

e
d
 M

a
c
h
in

e
 E

n
e
rg

y

CRAC Set Point (C)

Naive DVFS
TempLDB

(b) Wave2D

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

14.4 17.8 21.1 24.4

N
o
rm

a
liz

e
d
 M

a
c
h
in

e
 E

n
e
rg

y

CRAC Set Point (C)

Naive DVFS
TempLDB

(c) Mol3D

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

14.4 17.8 21.1 24.4

N
o
rm

a
liz

e
d
 M

a
c
h
in

e
 E

n
e
rg

y

CRAC Set Point (C)

Naive DVFS
TempLDB

(d) NPB-MG

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

14.4 17.8 21.1 24.4

N
o
rm

a
liz

e
d
 M

a
c
h
in

e
 E

n
e
rg

y

CRAC Set Point (C)

Naive DVFS
TempLDB

(e) NPB-FT

Fig. 11. Change in machine energy consumption with and without Temperature Aware Load Balancing (negative
values represent savings)

12

 4000

 8000

 12000

 16000

2
.4

0
+

2
.4

0

2
.2

6

2
.1

3

2
.0

0

1
.8

6

1
.7

3

1
.6

0

1
.4

6

1
.3

3

1
.2

0

Ti
m

e
(s

)

Frequency (GHz)

Fig. 13. The time Wave2D spent in different frequency
levels

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 50 100 150 200 250 300 350 400

C
lu

st
er

 P
ow

er
 (W

)

Time (sec)

Jacobi2D
Wave2D
NPB-FT

Mol3D
NPB-MG

Fig. 14. Total power draw for the cluster using Temp-
LDB at CRAC set-point of 24.4 ◦C

our cluster. We can say that while moving to each
successive lower frequency we reach a point where
the savings in the CPU energy consumption are offset
by an increase in base energy consumption due to
the timing penalty incurred, leading to the U-shaped
energy curves. When our scheme lowers frequency as
a result of core temperature crossing the maximum
temperature value, we move into the more desirable
range of machine energy consumption i.e. closer to
the minimum of the U-shape energy curves.

To see that this is the case, Figure 13 shows the
cumulative time spent by all 128 cores at different
frequency levels for Wave2D using TempLDB at a
CRAC set-point of 24.4 ◦C. We can see that most of the
time is spent at frequency levels between 1.73GHz–
2.0GHz, which corresponds to the lowest point for
normalized energy for Wave2D in Figure 12.

In order to study the relationship between machine
power consumption and average frequency we plot-
ted the power consumption for each application over
the course of a run using TempLDB in Figure 14. It
was surprising for us to notice that despite starting
at the same level of machine power consumption
as NPB-FT and NPB-MG, Jacobi2D ended up having
a much higher average frequency (Figure 6(b)). The
other interesting observation we can make from this
graph is the wide variation in steady state power
consumption among the applications.

Since all the applications are settling to the same
average core temperature, the laws of thermodynam-

ics dictate that a CPU running at a fixed temperature
will transfer a particular amount of heat energy per
unit of time to the environment through its heatsink
and fan assembly. Thus, each application should end
up having the same CPU power consumption. This
would mean that the difference in power draw among
the applications in Figure 14 is caused by something
other than CPU power consumption. Table 2 shows
Jacobi2D and Wave2D have many more cache misses
than Mol3D and thus end up with a higher power
consumption in the memory controller and DRAM,
which do not contribute to increased core tempera-
tures but do increase the total power draw for the
machine.

In order to verify our hypothesis, we ran two of
our applications, Jacobi2D and Wave2D, on a single
node containing a 4-core Intel Core i7-2600K, with a
temperature threshold of 50◦C. Using our load bal-
ancing infrastructure and the newly added hardware
energy counters in Intel’s recent Sandy Bridge tech-
nology present in this chip, we can measure the chip’s
power consumption directly from machine specific
registers. Both applications begin execution with the
CPU at its maximum frequency, which our system
decreases as temperatures rise. As expected, both
applications settled near a common steady state of
power consumption for the CPU package (cores and
memory combined). When Sandy Bridge-EP proces-
sors become available, with energy counters for the
memory subsystem, it should be possible to observe
the separate contributions of the cores and memory
hierarchy.

Before highlighting the key findings of our study,
we compare our load balancer i.e. TempLDB, with a
generic CHARM++ load balancer i.e. RefineLDB. Re-
fineLDB’s load balancing strategy relies on execution
time data for each task without taking into account the
frequency at which each core is working at. Similar
to TempLDB, RefineLDB also migrates extra tasks from
the overloaded cores to the underloaded cores. We
implemented our temperature control scheme using
DVFS into this load balancer but kept the load bal-
ancing part the same. Because RefineLDB relies only
on task execution time data to predict future load
without taking into account the transitions in core fre-
quencies, it ends up taking longer and consumes more
energy to restore load balance. The improvement that
TempLDB makes can be seen from Figure 16 which
shows a comparison between both load balancers for
all the applications with the CRAC set-point at 22.2◦C.

9 TRADEOFF IN EXECUTION TIME AND EN-
ERGY CONSUMPTION

The essence of our results can be seen in Figure 15,
which summarizes the tradeoffs between execution
time and total energy consumption for a representa-
tive trio of our applications. Each application has two

13

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

N
o
rm

a
liz

e
d
 T

im
e

Normalized Energy

14.4°C

17.8°C

21.1°C

14.4°C

17.8°C
21.1°C

24.4°C

TempLDB
Naive DVFS

(a) Wave2D

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

N
o
rm

a
liz

e
d
 T

im
e

Normalized Energy

14.4°C

17.8°C

21.1°C

24.4°C 14.4°C

17.8°C

21.1°C

24.4°C

TempLDB
Naive DVFS

(b) Mol3D

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

N
o
rm

a
liz

e
d
 T

im
e

Normalized Energy

14.4°C
17.8°C

21.1°C

24.4°C

14.4°C
17.8°C

21.1°C

TempLDB
Naive DVFS

(c) NPB-MG

Fig. 15. Normalized time against normalized total energy for a representative subset of applications

 0

 5

 10

 15

 20

 25

 30

 35

Wave2D MG Mol3D FT Jacobi2DTi
m

in
g

P
en

al
ty

 /
E

ne
rg

y
S

av
in

gs
 (%

)

RefineLDB Time
TempLDB Time

RefineLB Total Energy
TempLDB Total Energy

Fig. 16. Timing penalty and energy consumption im-
provement of TempLDB over RefineLDB

curves, one for each of the Naive DVFS and TempLDB
runs. These curves give important information: the
slope of each curve represents the execution time
penalty one must pay in order to save each joule of
energy. A movement to the left (reducing the energy
consumption) or down (reducing the timing penalty)
is desirable. It is clear that for all CRAC set-points
across all applications, TempLDB takes its correspond-
ing point from the Naive DVFS scheme at the same
CRAC set-point down (saving timing penalty) and to
the left (saving energy consumption).

From Figure 15(a), we can see that Wave2D is only
conducive to saving energy with the CRAC set below
21.1◦ C, as the curve becomes vertical with higher
set-points. However we should note that the tem-
perature range of 47 ◦C–49 ◦C was much lower than
the average temperature Wave2D reached with the
CRAC set at the coolest set-point of 12.2◦ C without
any temperature control. Thus, a higher CRAC set-
point imposes too much timing penalty to provide
any total energy savings beyond the 21.1◦ C set-point.
It is worth noting that even at 14.4◦ C we are able to
reduce its total energy consumption by 12%.

For Mol3D, the nearly flat curve shows that our
scheme does well at saving energy, since we do not
have to pay a large execution time penalty in order
to reduce energy consumption. The same effect holds
true for Jacobi2D. NPB-MG’s sloped curve places it
in between these two extremes. It and NPB-FT truly
present a tradeoff, and users can optimize according
to their preferences.

10 CONCLUSION AND FUTURE WORK
In this paper, we proposed an approach to sav-
ing cooling energy by constraining core temperature
while minimizing the associated timing penalty using
task migration. Our scheme uses DVFS and TempLDB
to meet these requirements. We experimented (us-
ing dedicated hardware) on five different CHARM++
and MPI applications to demonstrate its substantial
benefits in energy savings. While saving energy, our
scheme was also able to neutralize hot spots in our
testbed. Furthermore, through detailed analysis, we
characterized the relationship between application
characteristics and the timing penalty we observed
when constraining core temperature. According to
our findings, applications with a high FLOP/s rate,
e.g. Wave2D, can reduce total energy consumption by
12% by paying a timing penalty of 7%. On the other
hand, Jacobi2D had a lower FLOP/s rate and some
slack available, enabling our scheme to reduce total
energy consumption by 18% with as little as 3% tim-
ing penalty. In case of Mol3D,which falls in between
Wave2D and Jacobi2D in terms of FLOP/s, our scheme
was able to reduce total energy consumption by 28%
by paying a timing penalty of 11%.

Load balancing based on overdecomposition is the
novel technique we bring to the broader problem
of power, energy and thermal optimization. We plan
to combine existing work such as incorporating the
computation DAG of an application in our scheme so
that we can place critical tasks on ‘cooler’ cores in
order to further reduce timing penalty. The ultimate
objective is to combine our technique with schemes
that minimize machine energy consumption so that
we can provide a total energy solution for HPC data
centers i.e. reduce both machine and cooling energy
consumption. To achieve this objective, we plan to
exploit the varying sensitivities of different parts of
code to core frequency [20] and combine it with our
TempLDB. We also plan to apply similar principles and
techniques to limit power consumption of the data
center to allow operation within a fixed power budget.

REFERENCES
[1] R. F. Sullivan, “Alternating cold and hot aisles provides more

reliable cooling for server farms,” White Paper, Uptime Insti-
tute, 2000.

14

[2] C. D. Patel, C. E. Bash, R. Sharma, M. Beitelmal, and
R. Friedrich, “Smart cooling of data centers,” ASME Conference
Proceedings, vol. 2003, no. 36908b, pp. 129–137, 2003.

[3] R. Sawyer, “Calculating total power requirements for data
centers,” White Paper, American Power Conversion, 2004.

[4] O. Sarood, A. Gupta, and L. V. Kale, “Temperature aware load
balancing for parallel applications: Preliminary work,” in The
Seventh Workshop on High-Performance, Power-Aware Computing
(HPPAC’11), Anchorage, Alaska, USA, 5 2011.

[5] O. Sarood and L. V. Kalé, “A ‘cool’ load balancer for parallel
applications,” in Proceedings of the 2011 ACM/IEEE conference
on Supercomputing, Seattle, WA, November 2011.

[6] C. Bash and G. Forman, “Cool job allocation: measuring the
power savings of placing jobs at cooling-efficient locations in
the data center,” in Proceedings of the USENIX Annual Technical
Conference. Berkeley, CA, USA: USENIX Association, 2007,
pp. 29:1–29:6.

[7] L. Wang, G. von Laszewski, J. Dayal, and T. Furlani, “Thermal
aware workload scheduling with backfilling for green data
centers,” in Proceedings of the 2009 IEEE 28th International
Performance Computing and Communications Conference (IPCCC),
December 2009.

[8] L. Wang, G. von Laszewski, J. Dayal, X. He, A. Younge, and
T. Furlani, “Towards thermal aware workload scheduling in a
data center,” in International Symposium on Pervasive Systems,
Algorithms, and Networks (ISPAN), December 2009.

[9] Q. Tang, S. Gupta, D. Stanzione, and P. Cayton, “Thermal-
aware task scheduling to minimize energy usage of blade
server based datacenters,” in 2nd IEEE International Symposium
on Dependable, Autonomic and Secure Computing, 2006.

[10] D. Rajan and P. Yu, “Temperature-aware scheduling: When
is system-throttling good enough?” in Web-Age Information
Management, 2008. WAIM ’08. The Ninth International Conference
on, July 2008, pp. 397–404.

[11] H. Le, S. Li, N. Pham, J. Heo, and T. Abdelzaher, “Joint op-
timization of computing and cooling energy: Analytic model
and a machine room case study,” in IEEE International Confer-
ence on Distributed Computing Systems (ICDCS) (to appear), June
2012.

[12] B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B. R.
de Supinski, and M. Schulz, “Bounding energy consumption
in large-scale MPI programs,” in Proceedings of the ACM/IEEE
conference on Supercomputing, 2007, pp. 49:1–49:9.

[13] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal, “Adaptive,
transparent CPU scaling algorithms leveraging inter-node MPI
communication regions,” Parallel Computing, vol. 37, no. 10-11,
pp. 667–683, 2011.

[14] R. Springer, D. K. Lowenthal, B. Rountree, and V. W. Freeh,
“Minimizing execution time in MPI programs on an energy-
constrained, power-scalable cluster,” in Proceedings of the
eleventh ACM SIGPLAN symposium on Principles and practice
of parallel programming, ser. PPoPP ’06. New York, NY, USA:
ACM, 2006, pp. 230–238.

[15] S. Huang and W. Feng, “Energy-efficient cluster computing via
accurate workload characterization,” in Proceedings of the 2009
9th IEEE/ACM International Symposium on Cluster Computing
and the Grid, ser. CCGRID ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 68–75.

[16] H. Hanson, S. Keckler, R. K, S. Ghiasi, F. Rawson, and
J. Rubio, “Power, performance, and thermal management for
high-performance systems,” in IEEE International Parallel and
Distributed Processing Symposium (IPDPS), March 2007.

[17] A. Banerjee, T. Mukherjee, G. Varsamopoulos, and S. Gupta,
“Cooling-aware and thermal-aware workload placement for
green HPC data centers,” in 2010 International Green Computing
Conference, August 2010, pp. 245–256.

[18] Q. Tang, S. Gupta, and G. Varsamopoulos, “Energy-efficient
thermal-aware task scheduling for homogeneous high-
performance computing data centers: A cyber-physical ap-
proach,” IEEE Transactions on Parallel and Distributed Systems,
no. 11, pp. 1458–1472, November 2008.

[19] A. Merkel and F. Bellosa, “Balancing power consumption
in multiprocessor systems,” in Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer Systems, ser.
EuroSys ’06. New York, NY, USA: ACM, 2006, pp. 403–414.

[20] V. W. Freeh and D. K. Lowenthal, “Using multiple energy
gears in MPI programs on a power-scalable cluster,” in

Proceedings of the tenth ACM SIGPLAN symposium on Principles
and practice of parallel programming, ser. PPoPP ’05. New
York, NY, USA: ACM, 2005, pp. 164–173. [Online]. Available:
http://doi.acm.org/10.1145/1065944.1065967

[21] L. Kalé and S. Krishnan, “CHARM++: A Portable Concurrent
Object Oriented System Based on C++,” in Proceedings of
OOPSLA’93, A. Paepcke, Ed. ACM Press, September 1993.

[22] R. K. Brunner and L. V. Kalé, “Handling application-induced
load imbalance using parallel objects,” in Parallel and Dis-
tributed Computing for Symbolic and Irregular Applications.
World Scientific Publishing, 2000, pp. 167–181.

[23] P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and T. R. Quinn,
“Massively parallel cosmological simulations with ChaNGa,”
in Proceedings of IEEE International Parallel and Distributed
Processing Symposium 2008, 2008.

[24] G. Zheng, A. Bhatele, E. Meneses, and L. V. Kale, “Periodic
Hierarchical Load Balancing for Large Supercomputers,” In-
ternational Journal of High Performance Computing Applications
(IJHPCA), March 2011.

[25] “Intel turbo boost technology,”
http://www.intel.com/technology/turboboost/.

[26] D. B. E. B. J. Barton, D. Browning, R. Carter, L. Dagum, R. Fa-
toohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber,
H. Simon, V. Venkatakrishnan, and S. Weeratunga, “The NAS
parallel benchmarks,” NASA Ames Research Center, Tech.
Rep. RNR-04-077, 1994.

[27] R. Kufrin, “Perfsuite: An accessible, open source performance
analysis environment for linux,” in In Proc. of the Linux Cluster
Conference, Chapel, 2005.

Osman Sarood received his B.S. in Com-
puter Science from Lahore University of Man-
agement Sciences in 2004. He is cuurently a
Ph.D. candidate in Computer Science at the
University of Illinois at Urbana-Champaign,
supported by a fellowship from the Fulbright
Program. His research areas include parallel
programming and energy efficiency for HPC
data centers.

Phil Miller received his B.S. in Computer
Science from Harvey Mudd College in 2008.
He is currently a Ph.D. candidate in Com-
puter Science at the University of Illinois at
Urbana-Champaign. He is supported by NSF
grant OCI-0725070.

Ehsan Totoni received the B.S. degree in
Computer Engineering from Sharif Univer-
sity of Technology. He received an MS de-
gree from University of Illinois at Urbana-
Champaign and is pursuing his PhD. His re-
search areas include parallel programming,
simulation and performance analysis, scien-
tific computing and energy efficiency. He is
supported by DOE grant DE-SC006706.

Laxmikant Kalé received his BTech de-
gree in electronics engineering from Benares
Hindu University, India, in 1977, and a ME
degree in computer science from Indian Insti-
tute of Science in Bangalore, India, in 1979.
He received his PhD in computer science
from State University of New York, Stony
Brook, in 1985. He joined the faculty of the
University of Illinois at Urbana-Champaign as
an Assistant Professor in 1985, where he is
currently employed as a full Professor. His

research spans parallel computing, including parallel programming
abstractions, scalability, automatic load balancing, communication
optimizations, and fault tolerance. He has collaboratively developed
several scalable CSE applications.

