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Abstract—Parallel programs often express operations on a
subset (process group) of all the participating processes or ranks.
Subcommunicators in MPI are an example of such process
groups. Often, these process groups are used only for simple
collective communication (broadcast, reduction, allreduce) over
the members of the process group.

Current algorithms to create process groups tend to be
centralized schemes which store or manipulate data structures
of size proportional to the number of members in the process
group. In extreme scale parallel architectures, these algorithms
will consume a prohibitive amount of memory to manage the
process group and also suffer from scalability limits.

In this paper, we contend that MPI subcommunicators pack
more features than are necessary for a sizeable fraction of the
use cases. We make a case for system-ranked process groups,
intended primarily for simple collective operations. As opposed
to MPI communicators, member ranks in system-ranked process
groups are assigned by the runtime system.

This paper presents distributed algorithms for the creation of
spanning trees for rudimentary collective communication over
system-ranked process groups that are obtained by splitting an
original parent process group. Our schemes use only a small
constant amount of memory per node and also perform better
than a reference centralized scheme even at modest process
counts. We also demonstrate performance results up to 131, 072
cores of BlueGene/P.

Our algorithms can apply to the creation of MPI subcom-
municators as well as to equivalent entities in other parallel
programming paradigms.

Keywords-sub-communicators, spanning trees, distributed al-
gorithms, exascale

I. INTRODUCTION

Process Groups are subsets of processes (ranks) in a parallel
program that participate in some specific portion of the parallel
execution and are addressable as a unified entity. Such process
groups greatly facilitate the expression of parallel algorithms
and the development of modular parallel software components.
Apart from these productivity benefits, they allow the under-
lying runtime software stack to provide encapsulated, high-
performance routines for communication within these process
groups. Most programming models provide entities equivalent
to process groups (communicators in MPI) and mechanisms
to create, store and manage these entities.

Parallel runtime software typically manages the numerous
process groups created by user code via schemes whose
storage requirements and computational complexity increase
in proportion to the number of members in the process group

(or worse). On current and future extreme-scale architectures,
these approaches will consume a prohibitive amount of mem-
ory and hit scalability limits. This is compounded by the fact
that parallel programs typically create and use many such
process groups.

It is quite important that runtime implementations provide
inexpensive process groups. Trends in high performance sys-
tem architecture point to a slower growth in the available mem-
ory than the increase in the number of threads of execution
[1]. As memory continues to become a more valuable resource
during parallel program execution, it is imperative that runtime
software adopt leaner, resource-conserving algorithms and
book-keeping mechanisms to manage process groups.

The work presented in this paper is motivated by these real-
izations. To retain relevance to multiple parallel programming
paradigms, we do not consider the design of specific data
structures or book-keeping mechanisms required for managing
the full life cycle of process groups in a parallel program.
Instead we focus only on mechanisms for the creation of
process groups. We preface our work by making a case for
system-ranked process groups with a relaxed feature set that
can be realized by simply constructing spanning trees over
the process group (section II). We then explore distributed
algorithms for the creation of communication trees spanning
new process groups obtained by enrolling a subset of members
from a parent process group. To ensure support for nested (or
recursive) partitioning of a parent process group into smaller
process groups, we assume that initial communication for
spawning a new process group will occur over the spanning
tree of the parent. We base our algorithms on the assumption
that memory is a constrained resource, and impose limits on
their transient and final consumptions. We ensure that memory
requirements are bounded and do not increase with the size
of the process group.

Our efforts have resulted in distributed tree construction
algorithms that only consume O(k) memory per process and
take O(logkN)) time (where k is the branching factor of
the spanning tree, and N is the number of members in
the parent process group). We present two new schemes
for the distributed construction of spanning trees: a Shrink-
and-Balance algorithm in section V, and a Shrink-and-Hash
algorithm in section VI. We also discuss some variations in
the algorithms and analyze their relative merits. We discuss
and implement a reference “centralized” spanning tree con-



struction program that exhibits the aforesaid O(N) memory
and time consumption behavior (section IV). To corroborate
our analysis with actual measurements, we implement our
algorithms and compare their performance with the reference
implementations (section VII). Our implementations scale well
to large supercomputers that exist today and the performance
of the new algorithms is competitive with the centralized
scheme.

II. SYSTEM-RANKED PROCESS GROUPS

In this section we propose that system-ranked process
groups will satisfy a sizeable portion of the use-cases for
process groups in a parallel program. Our convictions arise
partly from studying several tera/petascale parallel applications
implemented atop a parallel programming framework that
provides system-ranked process groups as a core feature.

A. Usage Contexts

We commence by discussing scenarios in which the in-
tended usage of a process group does not depend on a specific
assignment of ranks to processes within the process group.

1) Simple Collective Communication: Parallel programs
predominantly use process groups to perform collective com-
munication amongst members. From the list of supported
collective operations, barrier, broadcast, reduce and allre-
duce can satisfy a large fraction of collective communication
requirements in parallel algorithms. A sizeable fraction of
collective communication calls in applications may involve
these operations. The results of these collective operations
are independent of the ranks from which the individual data
contributions arise from. Below we enumerate some examples
of parallel algorithms where collective communication needs
within process groups can be met by the calls listed earlier.
• Dense LU Factorization: Dense LU is a popular com-

pute benchmark that used on almost all major super-
computers. Implementations typically adopt a parallel,
block decomposition and use process groups to broadcast
factorized blocks across processed owning a row of
blocks. They also use process groups to group processes
owning columns of blocks. These column process groups
participate in what is effectively an allreduce operation
where the pivot row is identified via a reduction and
then broadcast to all the processes in the section. All
operations described here do not depend on any spe-
cific assignment of ranks to the processed participating
in any of the sections. Recent work has demonstrated
high performance implementations in modern parallel
programming paradigms that provide support for system-
ranked process groups [2], [3].

• Plane-wave based ab-initio quantum chemistry: Open-
Atom is a massively parallel quantum chemistry appli-
cation that divides the computation into several phases.
A description of the structure of the application can
be found in [4] and demonstrates the extensive use of
multiple process groups, predominantly for performing
broadcasts and reductions.

• Master-Worker Algorithms A master-worker expression
of several parallel algorithms offers a large space of
programs and benchmarks that primarily use broadcasts
and reductions during their execution. Many of these have
use for process groups in efficiently expressing parallel
logic. Some examples include:

– Map-Reduce
– Histogram sorting
– Divide-and-Conquer
– Monte Carlo computations

2) Parallel Libraries / Modules: Parallel libraries, and
modular components in a parallel program are often given their
own execution and communication contexts by spawning their
execution within process groups. Such use is a compelling case
for letting the runtime assign ranks within the process group.

B. Benefits

MPI is the de facto standard in parallel programming. In
MPI, process groups are always created by having the client
program supply a key that determines its rank in the pro-
cess group. However, as discussed above, such user-assigned
ranks within a process group are not always necessary. MPI
communicators, by always requiring user-assigned ranks, bind
themselves into supporting communication infrastructure that
is bulkier than needed. Removing this requirement can lead to
more scalable resource management by the runtime software.

III. TERMINOLOGY

Table I lists the definition of various symbols used in the
paper.

TABLE I: List of Symbols

n Total number of processes
m Number of processes that participate in the

new process group i.e. size of the new
process group

k Branching factor of the spanning tree
my id process identifier, goes from 0 to n− 1 for

n processes
my rank rank of the process in a process group

(my rank is same as my id when all the
processes are present in the process group)

di,k Depth (generation number) of a process
with rank i− 1 in a balanced spanning tree
of branching factor k

p fraction of members of the original process
group that participate in the new process
group

Original spanning tree Balanced spanning tree (branching factor k)
of all the processes

Hole A process in the original spanning tree that
is not participating in the new process group

Given its rank (my rank) and the size of the process group,
a process can compute the number of children it has and the
ranks of its parent and children in a balanced spanning tree of
branching factor k using the formulas given in Equation 1, 2



and 3 respectively.

#children =

{
k, k ∗ (my rank + 1) < n

max(0, n− 1− k ∗my rank), otherwise
(1)

parent rank =

{
0, my rank = 0

bmy rank−1
k c, otherwise

(2)

children rank = k ∗my rank + i+ 1 for i = 0 to #children
(3)

The height of a balanced spanning tree of size n and
branching factor k is given by equation (4).

dn,k = dlogk(n(k − 1) + 1)e (4)

IV. THE REFERENCE CENTRALIZED ALGORITHM

The centralized algorithm takes place in the following two
steps:

A. Upward Pass

Each process participates in a gather operation that collects
enrollment information. Only the participating processes con-
tribute their ids into the gather. The result of the operation is
an array of process ids that are members of the new process
group. This gather takes place over the original spanning tree
of size n and branching factor k. Since there are dn,k levels
in the spanning tree, the latency term is given by dn,kα. If
there is no network contention, the bandwidth term is given
by the summation

∑i=dn,k

i=1 kiβ. Assuming that a fraction p of
the members of the original process group participate in the
new process group, the bandwidth cost reduces by a factor of
p, hence the total time complexity of this phase is:

T1 = dn,kα+ pnkβ

B. Downward Pass

At the completion of the enrollment (upward) phase, the
root of the parent process group possesses the id′s of all
the participating processes. It selects one of the participating
processes as the root of the new process group and hands the
membership roster over to it. The new root process selects k
process as its children, splits the remaining process list into k
parts and sends one part to each child. The process is repeated
on each of the child processes until no more processes are left.
The cost of this step is:

T2 = dm,kα+mkβ

Since pn ∼= m, the total cost of the centralized scheme is
given by:

T = T1 + T2 (5)
T = (dn,k + dm,k)α+ 2pnkβ = O(n) (6)

And the maximum memory at the root = O(n)

V. THE SHRINK-AND-BALANCE ALGORITHM

A. Upward Pass

The Centralized scheme collects enrollment information, but
does not act on this information until it reaches the root of the
parent spanning tree. Because we’d like to avoid gathering
O(N) enrollment data, we begin our search for an improved
algorithm by using enrollment information earlier, during the
initial upward phase. The Shrink-and-Balance scheme is based
on the idea of immediately using enrollment information to
shrink the original spanning tree by excluding processes which
will not be members in the new process group. Excluding non-
participating processes during the upward enrollment phase
will result in holes at the vertices of the original tree where
processes choose to drop out of the new process group. In
order to maintain a contiguous tree structure, these holes need
to be “filled” with processes that are members in the new
process group. We achieve this in one of two ways:
• Child-as-filler

Any process that will not participate in the new process
group selects a participating child to replace itself in
the new spanning tree. The nominated child, which may
have other children of its own, now “fills” the hole
left by the parent. Additionally, it assumes parenthood
of its immediate siblings that are participating in the
new process group. If a vertex and none of its chilren
are participating, a no-participation message is sent to
its parent vertex. Figure 1 demonstrates the step-by-step
progress of the upward pass of this scheme.
The repurcussions of promoting an immediate child to fill
a hole is the increase in the number of children that the
filler process is now burdened with. We observe in our
experiments that this is quite likely to result in “bushy”
vertices at the end of the upward phase, where some
vertices have many more than k children.

• Leaf-as-filler In this scheme, a hole is filled with one of
the leaf vertices of the subtree rooted at the hole. During
the upward pass, a list of candidate filler processes com-
prised only of leaves in the new spanning tree is generated
and transmitted up the original spanning tree. A process
with id i sends a maximum of di+1,k candidate fillers to
its parent. If the parent (with id j) is not participating
in the new process group it picks a victim process from
the set of candidate fillers that it has received from its
children. A maximum of dj+1,k fillers from the remaining
set is sent to its parent. Figure 2 demonstrates the step-
by-step progress of the upward pass.
The Leaf-as-filler scheme increases the size of the mes-
sages during the upward phase compared to the Child-
as-filler scheme. However, it can avoid the bushy trees
that may result from the Child-as-filler approach. The
size of the messages is tunable based on the number of
candidate fillers that are transmitted upward. However,
each vertex in the spanning tree must transmit a number
that is sufficient to fill a string of consecutive holes all the
way to the root of the original spanning tree. The scheme
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Fig. 1: Level-by-level demonstration of the upward pass in the Child-as-filler scheme
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Fig. 2: Level-by-level demonstration of the upward pass in the Leaf-as-filler scheme

can also be used to transmit extra fillers, that are passed
down sibling subtrees for filling holes elsewhere in the
tree. Such extra fillers, may move some surplus vertices
out of supplier subtrees during the upward pass itself,
thereby reducing the effort required during the downward
pass to balance the tree.
In the downward pass when using a Leaf-as-filler scheme
a list of victim process ids is also sent alongwith the rank
information. A vertex updates the sizes of its children
based on the list of victim ids received from its parent.

With either strategy, the upward pass is commenced by
the leaves in the original spanning tree, and is initiated at
any vertex upon receipt of messages from all children of
that vertex in the original tree. The process of filling holes
applied in this bottom-up manner yields subtrees of only
participating processes at each step of the upward phase.
This property is used to count and transmit the size of the
newly constructed participating sub-tree upward. This results
in constant message sizes and memory consumption during
the upward phase unlike the gather performed in the reference
Centralized scheme.

In order to speed up the critical path (the upward communi-
cation), messages transmitted up the spanning tree can be sent
directly by the non-participating process at a hole on behalf of
the filler process. This will overlap upward progress with the
messages that perform the actual “filling” (i.e., a relocation
message to the filler, and to all processes that are now part of
newly formed parent-child relationships.

B. Downward Pass

Once a participants-only spanning tree is realized during the
upward pass, further communication to complete all pending

steps in the algorithm takes place over this tree, and the non-
participating processes are no longer involved. Although, the
upward pass yields a contiguous spanning tree, there are no
guarantees on its quality. Hence, in order to obtain a balanced
tree with the desired branching factor, the algorithm continues
into a downward pass. The algorithm is listed in listing V-A

In the downward pass, the Shrink-and-Balance algorithm
attempts to balance the tree while keeping the number of
vertex migrations to a minimum. At the end of the upward
pass, the root of the tree is aware of its size. This is used to
compute the ideal height h of a perfectly balanced spanning
tree of that size (Equation 4). This target height is used
to compute the maximum number of vertices that can fit
within each of the subtrees of the root (Equation 7). If the
size of any of the subtrees is greater than its maximum
capacity, it indicates that some vertices must move out of
these subtrees in order to limit its height to h − 1. These
subtrees are then marked as a vertex suppliers with the number
of excess vertices marked as the availability of that supplier.
After identifying the vertex suppliers, they are assigned to
child vertices (consumers) that have sufficient leftover capacity
(size < maximumcapacity) to accommodate all the excess
vertices in that supplier. Suppliers with availability greater
than the remaining capacity of any of consumers, are split
amongst them. Suppliers assigned to a single consumer, are
sent directly to that vertex. However, those that are amongst
multiple consumers are sent a vertex request message on
behalf of each each consumer. The supplier then identifies
child suppliers from its subtree that can be assigned directly
to the assigned consumers.

maxChildSize =
kh−1 − 1

k − 1
(7)



Algorithm 1 Downward Pass in Shrink-and-Balance algorithm

Input: vertex supplier list(S), list of fillers used by
ancestors(F), finalSize
update children sizes based on the fillers used by ancestors
for filler f in F do
{size(c)← size(c)− 1|f ∈ subtree(c)}

end for
myCurrentSize ←

∑
size(ci) +

∑
nAvailable(Si)

# calculate new height
h← logk(size ∗ (k − 1) + 1)
# calculate maximum capacity of children
maxChildSize ← kh−1−1

k−1
currentChildCnt ← 0
for each child with size > 0 do

currentChildCnt ← currentChildCnt +1
extraNodes ← max(0, childSize − maxChildSize)
if extraNodes> 0 then

add child to the vertexSupplier list S
end if

end for
vertices4Export ← max(0, myCurrentSize − finalSize)
finalChildrenCnt ← min(finalSize, k)
# calculate number of missing children
childVtcsRequired ← finalChildrenCnt − currentChildCnt
request childVtcsRequired vertices from suppliers in S
select vertices4Export vertices from S and add to E
# remaining vertices in S are assigned to the children
for every child do

remainingCapacity(ci) ← maxChildSize−childSize
end for
# sort suppliers in decreasing order of available vertices
sort(S)
for supplier s ∈ S do

if ∃c ∈ C : remainingCapacity(c) > nAvailable(s) then
assign s to c
update remainingCapacity(c)
S.remove(s)

end if
end for
for supplier s ∈ S do

distribute/split s amongst children in C
update remainingCapacity of children

end for
for c ∈ C do

if c.id >= 0 then
call downwardpass on c

end if
end for
for suppliers which were split amongst children
send vertex request to them and they will directly
send the suppliers to the children.

if some child id was not known at that time,
the suppliers will be sent to the parent
and parent will forward the suppliers once the child id
is known

Once the root vertex completes this “matchmaking” step
of assigning consumer(s) to each supplier, it completes it
participation in the downward pass. Each of the supplying
children, can now proceed in a similar fashion, where they
are aware of target sizes, and simply match the assigned
consumer(s) with the appropriately sized subtrees. Once a
subtree is identified that can be completely consumed by an
assigned consumer, the root of the subtree is made a child
of the consumer. Consumers wait to receive the appropriate
number of vertices, and then launch a balance process within
their own subtrees. At the end of such a downward pass, all
subtrees with excess vertices move them to other trees which
can absorb the supply without growing beyond target height
limits. This results in a tree that is as shallow as possible
(and hence as balanced as need be). It should be noted, that
the algorithm ventures into such vertex relocations only if it
will result in an overall shorter spanning tree and does not
unnecessarily strive for perfect balance.

This approach limits the total memory footprint of the
creation process to a very small number. Our experiments
bear this out, although a theoretical upper bound on the space
complexity of this approach is yet to be established.

VI. THE SHRINK-AND-HASH ALGORITHM

The Shrink-and-Hash scheme works by assigning ranks to
the participating processes in the downward pass and then
enabling the discovery of the process ids corresponding to
a rank in the new process group via a hash function.

A. Upward Pass

The upward pass for the hashing scheme proceeds in a man-
ner identical to the upward phase of the Shrink-and-Balance
scheme. Each process contributes the size of its subtree. Let
us denote a process’s participation decision by in ∈ {0, 1},
where in = 0 means the process is not participating and
in = 1 means that the process is participating in the new
process group.

size(u) = in +

j=#children∑
j=0

size(cj) (8)

where size(u) is the size of subtree rooted at child u. At the
end of this upward pass, each node knows the size of subtree
rooted at itself as well as the size of the subtrees rooted at
each of its children.

B. Downward Pass

The downward pass in this scheme consists of assigning
ranks to each participating process in the new process group.
The starting point for this process is knowledge of the sizes
of each subtree which is available at the root. These sizes
are used to assign ranges of ranks to each child process and
progressively distribute the ranks down the tree.

Let the children of a node be denoted by c1, c2, ...., cj
and their corresponding sizes be s1, s2, ..., sj . The root node
assigns rank 0 to itself and sends rank 1, 1 + s1, 1 + s1 +
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Fig. 3: Element ranks after the downward pass in the Hashing
Scheme

s2, ...., 1 +

j−1∑
i=1

si to c1, c2, c3, ....cj respectively. The same

process is repeated in the subtrees rooted at the children
with starting ranks as the ones sent by the parent. Note that
messages are not sent to children with no participating node
in their subtrees.

Figure 4a and 4b shows the subtree size and rank infor-
mation after the upward and the downward pass respectively.
It should be noted that, like the Shrink-and-Balance scheme,
the structure of the tree at the end of the downward pass
depends on the hole filling scheme used in the upward pass.
For example, figure 3 shows the ranks of participating nodes
at the end of the downward pass when using the Child-as-filler
scheme for the upward pass.

1) No-filler: Because the Shrink-and-Hash scheme simply
doles out ranks to the participating processes in the down-
ward pass, we realized that the presence of non-participating
processes can be accommodated by not assigning any ranks
to them. Generating ranks in the downward phase does not
necessarily require a “shrunk” tree. This No-filler scheme is
a third variant of the upward pass strategies and is illustrated
in figure 4.

C. Identifying Tree Neighbors

Given the rank of a process and the total tree size, the
process can determine the rank of its parent and children
using the formulae given in Equation 1, 2 and 3. However,
the process ids associated with the parent or child ranks will
be unknown for a newly shrunk tree. This algorithm enables
the discovery of the process ids corresponding to parent or
child ranks in the new subtree by having each rank talk to an
intermediary process. The process id of this intermediary can
be discovered through a predetermined hash function that will
yield a process id Hi, given the rank i in a section. Hence,
parent and child ranks in the new process group can exchange
process ids via the intermediary process that is identified via
the hash function.

Lets denote the intermediary process id of the parent’s
rank to be Hp and that of the children ranks to be Hci

for i = 0 to #children. The process then sends a message
containing (my rank, my id) to Hp and messages containing
(my rank, my id, #children) to Hci for i = 0 to #children.
All intermediary processes coordinate the exchange of the

appropriate process ids. Thus each participating process sends
a total of 1+ #children messages (cost: α + (k + 1)β) and
receives 2 messages(cost: α + 2β): one containing the id’s
of its children and the other one containing the parent id.
Since an intermediary process can be the same as one of the
participating processes, an additional overhead of receiving
and sending a total of 2k+ 2 messages (cost: (2k+ 2)β) can
be incurred, leading to a total cost of:

T = 2α+ (3k + 5)β = O(1)

VII. ANALYSIS AND RESULTS

A. Experimental Setup

To begin the construction of the new process group a
broadcast is issued by process 0 to indicate the beginning of
the construction operation. At the end of the construction, a
reduction over the newly constructed spanning tree takes place
to indicate completion of the operation. We time the construc-
tion operation from the beginning of the broadcast to the end
of the reduction. Our experiments are designed to measure the
time taken to create process groups of varying sizes from a
parent process group that spans all the processes in the system.
We control the size of the new process group by specifying a
participation probability. All processes sample from a random
number distribution to determine their participation in the
new process group. We ensure identical process groups across
multiple runs (to compare the different schemes) by ensuring
the same seed to our random number generator. The runs
were performed on ”Intrepid”, an IBM BG/P supercomputer at
Argonne National Laboratory. They were performed in the VN
mode to maximize the process counts in the experiments. We
observed that the variation in execution time across multiple
runs was negligible as compared to the program execution
time. Hence, we report program timings only from a single
run for a given set of input parameters. These algorithms
were implemented using the Charm++ parallel programming
framework. We report our results for spanning trees with
branching factor k but similar results were obtained for other
branching factors.

In subsection VII-B we discuss and analyze the space and
time complexity of the three filler-identifying schemes. In
subsection VII-C, we analyze the number of messages ex-
changed in different algorithms for constructing the balanced
spanning trees. Finally in subsection VII-D, the performance
of the proposed distributed algorithms are compared with the
reference Centralized scheme.

B. Filler Identifying Schemes

1) No-filler scheme: Both the upward pass and the down-
ward pass take place over the original spanning tree and hence
the total cost comprises of a broadcast and reduction, totaling
to:

T = 2 ∗ dn,k(α+ kβ) = O(dn,k) = O(logk n)
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Fig. 4: The No-filler scheme

2) Child-as-filler scheme: Upon every replacement of a
hole with a child, the branching factor of a node increases
by a maximum of k − 1 vertices. In the worst case, the
replacement can take place at every vertex on the path to
the root and the same vertex can be elected as the victim at
every level. The branching factor of the tree at the root vertex
can thus become k + (dn,k − 1)(k − 1). Therefore, the space
complexity of this approach is O(logk n). Each hole removal
requires 1 relocation message sent to the victim vertex. The
relocation message updates the victim with information about
its new parent and children. The relocation message sizes are
of the order of O(k). Since the relocation messages are sent
and processed in parallel with the upward pass, they do not
contribute to the time complexity of this scheme. Figure 5
demonstrates this with the help of an execution trace of
the processors obtained using Projections [5] (a performance
analysis tool). Each process is represented by a horizontal line
with the colored blocks on the line representing the execution
time spans of methods on that process. Methods are invoked
upon receipt of an incoming message.

The downward pass, in the worst case, occurs over a tree
of branching factor O(logk n). The total time complexity of
this scheme is

T = dn,k(α+ kβ) + dn,k(α+ logk nβ) = O((logkn)
2)

3) Leaf-as-filler scheme: The upward pass messages con-
tain the filler ids and the downward pass messages contain
the victim ids. Hence the message sizes are of the order of
O(logkn). Akin to the Child-as-filler scheme, the relocation
messages are processed in parallel to the upward pass and
hence do not contribute to the time complexity. Hence, the
total time complexity of this scheme is:

T = 2 ∗ dn,k(α+ kβ) = O(logk n)

C. Message Counts

The centralized scheme requires one upward and one down-
ward pass. Total number of messages for the centralized
scheme:

Mc = (n− 1) + (m− 1)

In the Shrink-and-Hash scheme, besides the messages sent
during the upward and the downward pass for doing the
enrollment and rank dissemination respectively, messages are
also exchanged for obtaining process id’s corresponding to
given ranks (we call these as the hashing messages). For a
complete k-ary tree with l leaf nodes, there are t = l−1

k−1
internal nodes. Total number of messages generated by process
group member nodes informing the hashed processes about
id’s associated with the ranks is 2 ∗ m. Total number of
messages generated by the hashed processes informing the
process group members about their parent and children id’s =
t+m, where t messages are the child id messages sent only
to internal nodes and m are the parent id messages sent to
all but one node. Hence, total number of hashing messages
= 3 ∗m+ t = 3m+ m−1

k .

Our experiments also show that the total number of mes-
sages in the upward and downward pass in the No-filler,
Leaf-as-filler and Child-as-filler schemes are the same (within
±1). This is because the number of relocation messages sent
during the upward pass in the Child-as-filler and Leaf-as-filler
schemes are the same as the number of messages sent ot the
holes during the downward pass in the No-filler scheme.

Finally, for the Shrink-and-Balance scheme the number of
messages sent for balancing the tree depends on the actual
tree structure after shrinking. We have not yet established any
theoretical upper bound on the number of messages exchanged
but our experiments show that the number of messages in
this scheme are similar in number to the messages sent in the
reference centralized scheme. Figure 6 compares the messages
sent in the Shrink-and-Balance scheme and the Shrink-and-
Hash scheme with the centralized scheme as the reference
scheme. Number of messages in the Shrink-and-Hash and
the Shrink-and-Balance scheme are 125% and 8% of the
Centralized scheme at p = 0.3, respectively. Table 2 gives
in-detail comparison of the message counts for the Shrink-and-
Balance and the Shrink-and-Hash scheme with the Centralized
scheme.
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TABLE II: Comparing the tree construction time (in microseconds) and total number of messages sent during the construction
in the centralized, Shrink-and-Balance and the Shrink-and-Hash schemes at different scales and subgroup sizes

fraction 2k 4k 8k 16k 32k 64k 128k
time Msgs time Msgs time Msgs time Msgs time Msgs time Msgs time Msgs

0.001
cent 334 2050 359 4100 399 8203 464 16409 534 32825 613 65687 674 131363
spass 378 2065 458 4124 616 8267 715 16550 847 33123 981 66430 1190 132846
hash 354 2072 389 4139 436 8299 474 16620 541 33301 582 66905 705 133697

0.01
cent 388 2074 472 4144 506 8285 549 16555 655 33149 727 66312 859 132583
spass 508 2172 596 4307 718 8611 824 17161 1013 34478 1121 69014 1246 137853
hash 402 2252 459 4456 471 8890 520 17675 635 35615 609 71326 688 142346

0.1
cent 492 2263 541 4512 611 8991 723 17999 870 36056 1214 72213 1852 144401
spass 639 2595 708 5163 835 10294 981 20657 1137 41518 1224 83342 1432 166660
hash 442 3236 482 6437 506 12715 566 25561 607 51414 690 103397 743 206716

0.3
cent 577 2671 616 5313 797 10610 962 21238 1403 42589 2089 85326 3666 170567
spass 677 3209 761 6348 914 12665 1052 25446 1507 52311 1347 102684 1614 205129
hash 466 5114 515 10103 542 20093 594 40342 639 81207 680 163142 746 325774

0.6
cent 571 3284 673 6545 822 13120 1195 26209 1704 52479 2939 105015 5337 209854
spass 735 3640 992 7581 1023 14525 1374 32384 1517 58917 1546 113569
hash 497 7649 503 15215 547 30584 602 61055 653 122353 746 244977 804 489115

0.9
cent 622 3914 716 7820 970 15611 1401 31183 2119 62366 3903 124750 7823 249206
spass 786 3967 905 7926 1116 15853 1330 31696 1614 63427 1785 126830
hash 488 10187 535 20341 584 40584 609 81027 678 162088 720 324209 783 647166

0.99
cent 625 4073 776 8158 1029 16314 1514 32636 2320 65247 4098 130513 8337 260982
spass 800 4078 921 8170 1184 16342 1387 32685 1684 65341 1946 130686
hash 495 10829 534 21711 577 43417 621 86860 698 173606 721 347277 802 694391
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Fig. 7: Scaling results with Shrink-and-Hash scheme for different process group sizes for spanning trees with branching factor
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Fig. 6: Message count comparison between Shrink-and-Hash
and Shrink-and-Balance scheme relative to the Centralized
scheme for different process group sizes with 64k as the size of
the initial process group. Centralized scheme is the reference
scheme here(1.0)

D. Total time

The results show that the distributed schemes outperform the
centralized scheme in most of the cases even at very modest
number of process counts. In this subsection we first analyze
the performance of the Shrink-and-Hash scheme with the three

different filler-identifying schemes and then we compare the
performance of the Centralized, Shrink-and-Balance and the
Shrink-and-Hash schemes.

Figure 7 compares performance of the Shrink-and-Hash
scheme implemented with the three filler-identifying schemes,
namely the No-filler, Child-as-filler and Leaf-as-filler scheme.
Except at very small participation probabilities (e.g. p = 0.001
in Figure 7), the No-filler scheme consistently performs better
than the other two distributed schemes. The slow down in the
Leaf-as-filler scheme is attributed to the extra processing asso-
ciated with the selection and packing of fillers and the larger
message sizes (O(logn)). The Child-as-filler scheme performs
worse than the other two schemes at p = 0.01 and p = 0.3.
This is because of its large branching factor(O(k logk n))
during the downward pass.

In Table 2 we compare the execution time for the Shrink-
and-Balance scheme (with Leaf-as-filler scheme used for the
upward pass) and the Shrink-and-Hash scheme with the Cen-
tralized scheme. Figure 8 summarizes the results by show-
ing the performance of the three schemes at 64k processes
and different process group sizes. Shrink-and-Hash scheme
outperforms the Centralized scheme in all cases while the
Shrink-and-Balance scheme starts to outperform the Central-
ized scheme for p = 0.1 and greater.

The Shrink-and-Balance scheme, despite offering much
lower message counts performs worse than the Shrink-and-
Hash scheme. This can be explained by shorter critical path
to completion offered by the Shrink-and-Hash scheme. There
are only O(k) messages on the critical path after the end of



the downward pass (which is of length O(log n)). In contrast,
the Shrink-and-Balance scheme contends with a longer critical
path in the downward pass.
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Fig. 8: Execution time comparison between Shrink-and-Hash
and Shrink-and-Balance scheme relative to the Centralized
scheme(1.0)

VIII. RELATED WORK

There has been significant amount of emphasis and sub-
sequent work on the need of exascale algorithms for com-
munication in message driven paradigms. Balaji et.al. in [6],
[7] discuss the memory overheads in communicator creation
in MPI. The per communicator memory usage increases
with system size which significantly affects the number of
subcommunicators that can be created as the system size
increases. e.g. in BG/P for 128K processes, the number of
new communicators that can be created drops to as low as
264 with default MPI settings.

Moody et. al. in [8] present use cases for a generalized
MPI Comm split in which the reordering function is disabled
and processes within the new subgroup are ordered according
to their rank in the initial group. They present a linked list
based distributed representation of the subgroups that use
O(1) memory and can run scans and associative reductions
in O(logN) time. They mention that tree-based collectives
can also be implemented using linked list representation but
they do not give any details. Further, their approach does not
support general point-to-point communication.

Paul Sack et.al. propose in [9], a distributed algorithm for
subcommunicator construction in MPI Comm split that uses
O(n/p) memory where p is the number of sorting processes
used for sorting. Subcommunicator construction times are
order of magnitude larger than our spanning tree construction
algorithms.

IX. CONCLUSIONS AND FUTURE WORK

Existing schemes for subcommunicator creation in MPI are
not suitable for exascale systems. We presented motivations

for supporting system-ranked process groups. We developed
two different algorithms, Shrink-and-Balance and Shrink-and-
Hash, for constructing balanced spanning trees over a process
group. The Shrink-and-Hash scheme takes only O(1) space
complexity and O(logN) time. We presented the performance
of these algorithms on up to 128K cores of BG/P (80% of
the total system size). Our results show that these algorithms
perform better than the Centralized scheme even at modest
process counts and significantly outperform the Centralized
scheme at large scale. These algorithms are yield process
groups that are well-suited for collective operations like broad-
casts, reductions, and allreduce. They can also be adapted for
point-to-point communication.

There are several immediate extensions to the work we
describe here. We intend comparing the performance of the
Shrink-and-Balance and Shrink-and-Hash schemes in the pres-
ence of other communication and computation akin to real
application execution scenarios. We also plan to evaluate the
performance of a multi-color enrollment process that more
closely mimics the MPI’s comm split operation. We believe
these experiments will throw more light on the relative merits
of the two algorithms discussed here, and possibly lead the
way to further improvements. We also plan to evaluate solu-
tions for accounting for network-topology while constructing
the spanning trees.
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