
A Message-Logging Protocol for Multicore Systems
Esteban Meneses, Xiang Ni and Laxmikant V. Kalé

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
E-mail: {emenese2, xiangni2, kale}@illinois.edu

Abstract—Although many details of an eventual Exascale
machine remain unknown, we can safely make a couple of
assumptions. Exascale machines will be composed of multicore
nodes and will experience frequent failures. The latter means
that effective resilience support is imperative to make Exascale
machines usable. The former opens up opportunities for explor-
ing new alternatives to provide resilience support. This paper
examines a new fault tolerance protocol for multicore systems.
The paper contains three major parts. In the first part, we
start by showing evidence that a node (and not a core) is the
appropriate unit of failure. When a crash hits a machine, it
usually renders unusable a whole node. Rarely, the crash brings
down more than one node. The second part describes a message
logging protocol that tolerates the failure of whole nodes and
uses an efficient shared memory scheme to minimize overhead.
We present results on various clusters and scale the approach to
1024 cores with a stencil computation. The overhead is always
lower than 4%. The third part performs an analysis of reliability
to understand how robust the protocol is when failures affect
several nodes. Using an analytical framework and the frequency
of multiple-node failures, we find that our approach is able to
survive more than 99% of the crashes.

Keywords-fault tolerance, message logging, multicore systems.

I. INTRODUCTION

One of the major concerns for the future of high perfor-
mance computing (HPC) is fault tolerance [1], [2]. The most
optimistic predictions about Exascale forecast a mean time
between failures of a few hours. To make HPC applications
able to scale and make progress in spite of frequent failures,
it is necessary to design new fault tolerance techniques that
consider the peculiarities of modern supercomputing environ-
ments (hardware, systems and applications) and optimize for
the common case.

The traditional solution for fault tolerance in HPC is check-
point/restart. Under this scheme, all the nodes running an
application must checkpoint their state periodically. If one
of the nodes fails, the whole set of nodes have to roll back
to the most recent checkpoint and restart from there. This
makes checkpoint/restart have a high recovery cost in terms
of both time and energy. An alternative approach is message
logging, which requires messages to be stored and additional
information to be computed after each message is received.
The benefit of message logging is that a crash on one node
only requires that node to roll back, while the rest of nodes
resend the messages to the recovering node and keep making
progress (or idle spending less energy) in the meantime.

Additionally, environments that permit more than one task to
be run per core may recover the crashed node in parallel,
thereby reducing the time to catch up with the rest of the
system [3].

A multicore machine poses new challenges to the design of
message logging protocols. The first issue is to determine an
appropriate unit of failure. On one hand, tolerating the failure
of one single core is likely to be insufficient, since a typical
failure will bring down a whole node with all its corresponding
cores. On the other hand, it is well known that tolerating the
failure of any subset of nodes in the system will make the
protocol too onerous [4]. A good balance may be to tolerate the
failure of one single node, proven that multiple-node failures
are rare and do not impose a serious threat to the reliability
of the protocol. An additional challenge of multicore systems
is to efficiently adapt a traditional message logging protocol,
keeping low the overhead of the new failure unit.

The contributions of this paper can be summarized as
follows: i) distributions of frequency of multiple-node failures
from system logs of recent supercomputers and two functions
to model those distributions, ii) the design of a message
logging protocol for multicore systems that has a low overhead
compared to checkpoint/restart and, iii) an analysis of the
reliability of this protocol to multiple-node failures.

II. RELATED WORK

Previous work on checkpoint/restart for multicore machines
focuses on reducing the jitter at the time of checkpoint by
merging multiple requests to the file system into coarser writes.
Ouyang et al [5] have identified the benefits of write aggrega-
tion and interleaving in this scenario. Our scheme exploits
shared memory too, but we implement a message logging
protocol that brings new advantages over checkpoint/restart.

Most of the work on fault tolerance message logging proto-
cols has seen a core, not a node, as the unit of failure. Some
of the protocols only tolerate the failure of one single core
[3], [6]. Others tolerate the failure of multiple cores but only
at the cost of a high overhead [7]. More recently, protocols
based on properties of HPC applications have been shown to
tolerate multiple simultaneous crashes [8], but they may have
a high cost on recovery. We provide evidence that a node, and
not a core, should be the appropriate unit of failure.

Ropars and Morin [9] developed a distributed event logger
to store the non-deterministic events in an active optimistic
message logging protocol for MPI. In their work, each node

holds a certain portion of the total number of determinants
and there is some redundancy among the event loggers in the
different nodes. As opposed to their approach, we do not have
the notion of an event logger, since determinants are stored at
the receivers of the messages according to a causal message
logging protocol.

Another work has highlighted the failure correlation of
cores on the same node [10]. The authors of that paper
propose a technique to enhance message logging and deal with
correlated failures. In their approach, a group of cores that
have correlation according to their failure pattern checkpoint
coordinately and rollback as a unit in case of failure. Their
approach is more general than ours, but it does not provide any
mechanism to minimize overhead by using shared memory.

III. THE RIGHT UNIT OF FAILURE

The first comprehensive study of failures in HPC systems
was performed by Schroeder and Gibson [11]. They analyzed
failure data from several supercomputers at Los Alamos
National Laboratory. They found Poisson and exponential
distributions to be poor fits for number of failures per node and
time between failures, respectively. On the contrary, Weibull
and lognormal distributions were shown to be a good model for
time between failures and repair time, correspondingly. Their
analyses helped to understand better the behavior of failures in
large-scale computing systems. Another finding in their paper
was that failure rates do not grow significantly faster than
linearly with system size. Based on that fact, we can assume
failure frequency will scale as supercomputers grow within the
same architecture type. This particular paper was followed by
other studies [12], [13].

One statistic that has eluded the analysis of system logs is
the probability of a failure affecting k nodes. In other words,
how likely is it that k nodes go down as part of the same failure
in the system. As noted by other authors, failures rarely affect
more than one node. For instance, Moody et al [13] mention
that 85% of the failures disable at most one compute node
on the clusters at Lawrence Livermore National Laboratory
where the Scalable Checkpoint/Restart (SCR) library is run.
Understanding this distribution is important since it directly
dictates what design decisions should be made when laying
out the fault tolerance protocol. It is well known that tolerating
the concurrent failure of any k nodes in a system has a high
impact on the performance of message logging protocols [4],
[14]. Also, protocols that tolerate one single failure at a time
present low overhead and good scalability [6].

In order to study how many nodes are lost due to a single
failure in real-world HPC systems, we collected failure infor-
mation from several available sources. The Computer Failure
Data Repository (CFDR) [15] has information about failure
data collected at different institutions and made public for
scientific use. We extracted the failure information of several
different machines from CFDR. These machines are called
System i (for i = {12, 18, 19, 20, 21}) from Los Alamos Na-
tional Laboratory and MPP2 from Pacific Northwest National

Laboratory. We also gathered information from Tsubame su-
percomputer at Tokyo Institute of Technology and Mercury
machine at National Center for Supercomputing Applications.
All those machines have architectures with multiple cores per
node and exhibit different features about memory size, number
of cores per node, and so on.

Finding recent information about failures in supercomputers
is not an easy task. There are several reasons for this. First,
the nature of the information is very sensitive. There is
little motivation for a supercomputing facility to make public
their failure record, something that in a sense exposes their
weaknesses. Moreover, releasing that information may impose
a threat to any of the contractors that supply parts or the whole
machine. Second, even if all system logs were made publicly
available, parsing, interpreting and filtering failure information
is a complex task. One single failure may manifest itself as
a series of disconnected messages. In other cases, a failure
does not really occur until certain thresholds in number of
warnings or timeouts are reached. Despite these drawbacks, the
community has realized the benefits of providing researchers
with failure data. All the failure datasets we use in this paper
were already filtered by a group of experts. They were able
to determine what messages in the logs correspond to failures
and what nodes are impacted at what particular time.

Thus, each dataset is basically a list of failures. Each failure
typically includes: nodes affected, possible reason for the
failure, date and time. We proceeded to examine each dataset
in two phases. The first phase goes through the whole data
set coalescing failures of the same node that occur within a
time window smaller than ∆C . This phase eliminates multiple
instances of the same failure. Our value for ∆C was 6 hours
in accordance with a reasonable estimate of a repair time of a
node [11]. The second phase traverses the reduced list obtained
after the first phase and counts how many nodes failed in a
time window defined by ∆M . Our value for ∆M was based on
the time it takes for a system to detect a failure and restart. We
chose a value of 1 minute (a conservative estimate according
to our experimental results [16]). Thus, if k nodes fail within
a time frame of ∆M , we consider that as a failure affecting k
nodes as if all of them had failed simultaneously.

In this paper, we call multiple-node failure distribution as
the one that represents the number of nodes that simultane-
ously go down per failure. Figure 1 presents the multiple-node
failure distribution for each of the machines we examined.
We only present the percentage of failures that involve 1, 2,
3, 4 or more than 4 nodes. There are two important things to
notice. First of all, the distribution is very skewed, to the point
that the Y axis had to be logarithmic in order to appreciate
the percentage of the less common cases. This means a very
high percentage of the time a failure involves only one node.
This is consistent with the findings of other authors [13].
Second, we see two different types of cases according to
the shape of the curve. In the first group (consisting of the
first 3 machines) we can appreciate that the percentage of
cases reduces exponentially from 1 node to more than 4. The
last two machines show a slightly different story, where the

 0.1

 1

 10

 100

 Syst
em

 12

 Syst
em

 18

 Syst
em

 19

 Syst
em

 20

 Syst
em

 21

 M

PP2

 T
su

ba
me

 M
erc

ury

Fr
eq

ue
nc

y
(%

)

1 node
2 nodes
3 nodes

4 nodes
> 4 nodes

Fig. 1: Number of nodes brought down per failure.

decrease in the percentage is not as steep. Their functions
correspond to a heavy-tailed distribution. The rest of the cases
stay somewhere in the middle. We proceeded to find good-
fit probability distributions to model the two different types
of curves in the data collected: exponential decay and heavy
tail. For the former case we chose the geometric distribution,
whereas for the latter we selected Zipf’s. More details about
how these functions fit the data can be found elsewhere [16].

IV. MESSAGE LOGGING PROTOCOL

Given that most failures only make a single node to crash,
we present a message logging protocol that tolerates the loss
of one node per failure. In the infrequent case where several
nodes go down simultaneously, the protocol may still be able
to recover. However, there is no guarantee in the general case.
Section V will provide an analysis of the probability of our
protocol resisting multiple-node failures.

We assume that a parallel computation is decomposed into
different objects. Each object holds a portion of the program’s
data and performs a fraction of the computation. The only
mechanism to exchange information between the objects is
through messages. The network delivers the messages in any
order, there is no FIFO guarantee for each communication
channel. There is a runtime system which schedules the
execution of each object and monitors each message exchange.
The runtime system may migrate objects from one node to
another when it sees that convenient. This is a realistic model
used in several applications and systems, such as CHARM++
[17].

The underlying machine is thought to be a set of multicore
computational nodes. Each node is comprised of various
processing elements (PE), each equivalent to one core. Each
node has shared memory for its own cores, but this memory
cannot be shared by the objects. The runtime system is the
only entity able to share the memory for communication.

We assume nodes crash according to the fail-stop model,
in which the node ceases to work. The runtime system runs
its own failure detector and as soon as one node crashes it is

able to get a spare node to replace the one that just crashed.
The preferred method to provide fault tolerance in HPC is
checkpoint/restart [13], [18]. In a nutshell, checkpoint/restart
consists in nodes frequently checkpointing their state to stable
storage or the memory of another node. Nodes can coordinate
their checkpoints to store them in a consistent way. If there is a
failure, all nodes must roll back to the previous checkpoint and
restart from there. In the double in-memory checkpoint/restart
protocol, each node at checkpoint will store its state in two
places: its own memory and the memory of its buddy node.
If a node fails, its buddy will provide the required state to
restart.

To avoid all nodes to rollback in case of a failure, we
designed a message logging protocol that will make only the
crashed node to rollback in case of a failure. In principle,
every application message needs to be stored. For instance, if
the sender node X stores all the messages it sends, then after
a failure of one of its recipient nodes Y , X is able to re-send
to Y all the messages it sent before the crash. That way, X
does not roll back and Y is able to recover.

In addition to storing messages, message logging protocols
must also store extra information about the messages. A
determinant is the outcome of any non-deterministic decision
made by a node. For example, a message reception is in
general non-deterministic. After receiving a message, a node
will generate a determinant consisting of four components
〈senderID, receiverID, ssn, rsn〉. Along with the IDs of
both sender and receiver, the determinant contains the send
sequence number (ssn) and the receive sequence number (rsn).
Both numbers, ssn and rsn, are used during recovery. The
former is required to detect duplicate messages, while the latter
provides the sequence in which messages have to be processed.
A determinant is necessary to provide a consistent recovery,
discarding repeated messages and ordering the reception of
messages resent. Depending on how determinants are manip-
ulated, several flavors of message logging are possible [7].

In this paper we will use a protocol called causal message
logging [6], [7], [14]. The main intuition behind this protocol is
that determinants will be stored in the causality path that starts
at their creation. In other words, a determinant d produced at
PE A will be stored somewhere else only if there is a message
leaving A that occurs after d has been generated at A. If no
message connects determinant d with any other determinant,
then it is fine to lose d in a failure, since it did not have any
causal effect on the system.

The way causal message logging works is depicted in figure
2. There are two parts presented in the figure. The failure-free
scenario or forward path is shown on the left extreme. The
recovery after a failure is shown on the right. The execution in
the figure starts with a checkpoint that we assume is globally
coordinated. This assumption can be easily removed as one
of the major advantages of message logging is to provide un-
coordinated checkpoint. However, many applications in HPC
exhibit global synchronization points and those places are ideal
to trigger the checkpoint mechanism. Each node checkpoints
its state in the memory of a buddy node. Unlike the double in-

Node X

Node Y

Node Z

m1

m2

m3⊕{d1,d2} ACK

m4⊕{d1,d2} ACK m1

{d1,d2}

{d1,d2}

Checkpoint Failure
Restart

Time

PE A

PE B

PE C

PE D

Fig. 2: Forward path and recovery in causal message logging.

memory checkpoint/restart approach, each node is not required
to store its state in local memory.

Every message reception generates a determinant. In figure
2 message m1 is sent by PE A and received by PE B. As
soon as the message is received, B generates determinant d1.
Once a determinant is generated, it will be piggybacked on
every outgoing message until it is safely stored in other node.
Notice that message m2 does not piggyback any determinant,
since it is a local message, i.e., within the same node.
However, at C, the reception of m2 generates determinant
d2. The next outgoing message, m3 in this case, piggybacks
both determinants. We denote the piggyback operation by
the ⊕ symbol. Note that message m4 also piggybacks both
determinants, since at the time of sending m4 out of node
Y , the acknowledgments for the determinants have not been
received.

In our causal protocol, a node is the minimum unit of failure
and as such, all the PEs fail as soon as their containing node
crashes. Figure 2 presents the failure of node Y . Once the
system finds substitute for Y , all the PEs are recreated on that
node from their last checkpoints. All the other nodes resend
the messages they sent from the last checkpoint and they also
send any determinants they have stored from node Y . With
messages and their respective determinants, node Y is able to
recover from the crash.

There are two types of messages in our protocol. If a
message is exchanged between PEs on the same node, it is
called a local message. On the other hand, a remote message
is exchanged between two PEs on different nodes. For instace,
in figure 2, message m2 is local and message m3 is remote.
An important thing to highlight is that local messages are
not stored, since they will be lost in case of a failure. This
means our protocol decreases the memory pressure due to
the messages. If an important portion of the communication
occurs inside the nodes, then the reduction in the memory
required for the message log can be substantial. Determinants
corresponding to local messages are nevertheless generated
and treated as any other determinant.

To leverage the potential of multicore machines, we devised
a method to manage the determinants generated at a particular
node. All the PEs share a common structure for storing deter-
minants. This structure behaves like a queue, where different
PEs will insert a new determinant, copy several of them to

 1.05

 1.10

64 128 256 512 1,024

E
x
ec

u
ti

o
n
 T

im
e

O
v
er

h
ea

d

Number of Cores

Checkpoint/Restart
 Message Logging

 0.90

 0.95

 1.00

Fig. 3: Weak scaling experiment with Stencil 3D.

piggyback and acknowledge the safe storage of other determi-
nants. Since all PEs will simultaneously access this structure,
we must have a way to synchronize the access to the structure
for the three different operations. We designed a lockless set
of operations to efficiently perform these operations [16].

We implemented two fault tolerance approaches for multi-
core systems in the CHARM++ runtime system [17]. The first
scheme corresponds to a double in-memory checkpoint/restart
and the second to the message logging protocol explained
above. We ran our experiments on three different clusters:
Steele at Rosen Center for Advanced Computing (RCAC),
Ranger at Texas Advanced Computing Center (TACC) and
Trestles at San Diego Supercomputer Center (SDSC).

A comparison of both approaches, checkpoint/restart and
message logging, was obtained by using a 7-point stencil
program (Stencil 3D). Using a weak scaling approach, where
each core has four objects (each having a block of size
128x128x128) we ran the program from 64 cores up to 1024
cores. Figure 3 presents the results of the overhead of message
logging with respect to checkpoint/restart. The overhead never
goes beyond 4%, the highest value is obtained for 64 cores
where the overhead is 3.82%. The rest of the data points
show lower values for the overhead. This experiment was run
on Ranger, which has 16-way nodes. We show performance
results up to 64 nodes.

Since we conceive a node as the fundamental unit of
failure, we do not log messages local to a node when using
the message logging protocol. As we mentioned above, this
reduces the amount of memory required to store messages.
The larger the number of cores in a node, the less messages
we need to save. Figure 4 presents the fraction of memory
due to message log that is required in each of the three
machines we used. We ran Stencil 3D program on 256 cores
on each machine and counted how many bytes we store in the
message log, versus the number of bytes we would store if
we logged every single message. Naturally, on Steele we log
more messages, since it has the smallest node size. Increasing
the node size should only increase the benefits. A traditional
expectation is that the reduction in memory overhead goes
down linearly with the node size. However, that is not always

0.17 0.20

 0.40

 0.60

 0.80

 1.00

Steele(8) Ranger(16) Trestles(32)

M
es

sa
g
e

L
o
g
 (

F
ra

ct
io

n
)

System (Cores/Node)

0.42
0.33

 0.00

Fig. 4: Memory overhead relative to node size.

the case, since it all depends on the communication graph
of the application and the assignment of objects to cores. In
figure 4, we see that Ranger decreases the log size for about
a fifth, relative to Steele. Trestles, however, practically halves
the memory overhead compared to Ranger. We note that a
smart mapping of objects to cores can make this reduction even
more dramatic. In other words, if highly connected objects are
mapped to the same node, not only may we get a performance
boost, but also a significant reduction in message log.

V. ANALYSIS OF RELIABILITY

The two protocols presented in section IV for multicore ma-
chines, checkpoint/restart and message logging, are designed
to tolerate one single failure at a time. Multiple-node failures
may be tolerated, though. This section presents an analysis of
how likely it is for those protocols to survive a crash involving
multiple nodes.

The checkpoint/restart mechanism requires each node to
have a buddy node where it will checkpoint. Besides the check-
point stored in its buddy, each node will store a checkpoint
in its own memory. That way, the crash of the buddy will not
affect the recovery of a particular node. We require the buddy
relationship to be bidirectional, i.e., if node X is the buddy of
Y , then Y is the buddy of X . We want to answer the question
of how resilient this protocol is when we have n nodes and
f nodes fail concurrently. Since we have a total of n nodes
and a subset of size f nodes fail, the total possible number of
such subsets is

(
n
f

)
. We need to compute, how many out of

those subsets are not catastrophic, given the buddy mapping.
In order to survive a multiple crash of f nodes, we need to

compute how many subsets of f nodes do not take down a
node and its buddy. Now, if we need to choose f nodes with
such property, then the first node of the f has n options, the
second has n− 2 (since we do not want to include the buddy
of the first), the third has n − 4, and so on. In the end, the
total number of subsets size f that will not make the whole
system to collapse is n(n − 2)(n − 4)...(n − 2(f − 1))/f !,
which gives us the following expression for the probability of

surviving f concurrent failures:

n(n− 2)(n− 4)...(n− 2(f − 1))

n(n− 1)(n− 2)...(n− f + 1)
=

∏f−1
i=0 (n− 2i)∏f−1
i=0 (n− i)

The checkpoint/restart model is oblivious of communi-
cation. In other words, having more nodes connected via
messages does not affect the resilience of checkpoint/restart.
That metric, however, makes a big impact on message logging.
In the causal message logging scheme, each determinant is
replicated at least once on the memory of other node, in
addition to the node where it was generated. This means, it
will support with total certainty one single failure at a time.
A multiple-node failure can be tolerated as long as there is a
copy of the determinant alive after the crash. More specifically,
if node x communicates with g other nodes, and there is a
multiple failure where x is involved (i.e., x crashes), then the
only hope to tolerate such a failure is to have the other g nodes
x communicates with still alive.

The system has n nodes where each node communicates
with g others. For simplicity, we will assume each node
chooses randomly the other nodes it exchanges information
with. Let us assume a multiple failure involves f nodes in
the system. The set of crashed nodes is denoted by F . To
compute the probability to survive the failure of set F , we
need to compute how likely it is for F to not intersect the f
different communication subgroups of elements in f . In other
words, there cannot be 2 or more nodes in F that communicate
with each other. It is a combinatorics problem. Let’s pick one
element x in F and compute how likely it is that the rest of
F does not intersect the subset of g elements x communicates
with (denoted by G). Since the system has n elements, the
number of subsets of g elements that x may contact is

(
n−1
g

)
.

Now, the number of subsets of size g that do not intersect
F are given by

(
n−f
g

)
. With this two quantities we are ready

to compute the probability of the set G not intersecting F .
Moreover, the probability of set F not intersecting any of
the communication subsets of its members and, by definition,
the probability of tolerating a multiple concurrent failure of f
nodes is: [(

n−f
g

)(
n−1
g

)]f
Using the previous formulae for the two protocols we get

the probability of surviving a multiple-node crash based on
different values of g and different values of f . Figure 5
presents the checkpoint/restart curve and four different curves
for message logging with degree g equals to {2, 4, 8, 16} for
a value of n = 1024. We see that all message logging curves
drop more drastically than the checkpoint/restart case. That is
the price of being susceptible to communication. The higher
the value of g, the more rapidly the curve plummets.

As the number of nodes involved in a crash increases,
the probability of survival decreases. However, the chance of
having a failure with that many nodes decreases as well. Let
us define survivability as the probability of survive any crash,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

P
ro

b
a
b

ili
ty

 o
f

S
u
rv

iv
a
l

Number of Nodes Failing Concurrently

Checkpoint/Restart
Message Logging (g=2)
Message Logging (g=4)
Message Logging (g=8)

Message Logging (g=16)

Fig. 5: Probability of surviving a multiple-node failure.

regardless of how many nodes are involved in the failure. The
formula is given by S =

∑n
i=1 s(i)p(i), where s(i) represents

the probability of surviving a crash that involves i nodes and
p(i) is the probability of a random failure involving i nodes.

We used the two functions discussed in section III with
reasonable parameters [16] to model p(i). Table I shows the
survivability values for the different fault tolerance strategies.
Although the survival of checkpoint/restart is better than mes-
sage logging, which has a curve that drops exponentially as the
number of concurrent failures increases, that does not translate
into a big difference for survivability. The reason comes from
the fact that functions to model the probability of multiple
concurrent failures are very skewed, making negligible the
contribution of larger values of f .

TABLE I: Survivability

Geometric Zipf’s
Checkpoint/Restart 0.9997 0.9992

Message Logging (g=2) 0.9988 0.9966
Message Logging (g=4) 0.9980 0.9945
Message Logging (g=8) 0.9964 0.9911
Message Logging (g=16) 0.9933 0.9854

VI. CONCLUSION AND FUTURE WORK

This paper presented ongoing work on the design, im-
plementation and analysis of fault tolerance strategies for
multicore machines. We focused our paper on a message
logging protocol that tolerates the crash of a single node
and may survive a multiple-node failure. Our experiments
showed that this protocol has low overhead. An analytical
model helped us to determine the protocol has high resiliency.

For future work, we are planning to analyze the cases where
multiple concurrent failures are correlated. Since there are
architectural constraints that may cause several nodes to fail in

tandem, we may design message logging protocols to tolerate
those multiple correlated failures.

ACKNOWLEDGMENTS

This work partially supported by the US Department of
Energy under grant DOE DE-SC0001845 and by a machine
allocation on the Teragrid under award ASC050039N. We
would like to thank Ana Gainaru and Leonardo Bautista-
Gomez for providing us failure data of Mercury and Tsubame,
respectively.

REFERENCES

[1] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally,
M. Denneau, P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler,
D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely,
T. Sterling, R. S. Williams, and K. Yelick, “Exascale computing study:
Technology challenges in achieving exascale systems,” 2008.

[2] F. Cappello, “Fault tolerance in petascale/ exascale systems: Current
knowledge, challenges and research opportunities,” IJHPCA, vol. 23,
no. 3, pp. 212–226, 2009.

[3] S. Chakravorty and L. V. Kale, “A fault tolerance protocol with fast fault
recovery,” in Proceedings of the 21st IEEE International Parallel and
Distributed Processing Symposium. IEEE Press, 2007.

[4] K. Bhatia, K. Marzullo, and L. Alvisi, “The relative overhead of
piggybacking in causal message logging protocols,” in SRDS ’98:
Proceedings of the The 17th IEEE Symposium on Reliable Distributed
Systems. Washington, DC, USA: IEEE Computer Society, 1998, p.
348.

[5] X. Ouyang, K. Gopalakrishnan, T. Gangadharappa, and D. K. Panda,
“Fast checkpointing by write aggregation with dynamic buffer and
interleaving on multicore architecture,” in HiPC, 2009, pp. 99–108.

[6] E. Meneses, G. Bronevetsky, and L. V. Kale, “Evaluation of simple
causal message logging for large-scale fault tolerant hpc systems,” in
16th IEEE Workshop on Dependable Parallel, Distributed and Network-
Centric Systems in 25th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2011)., May 2011.

[7] L. Alvisi and K. Marzullo, “Message logging: pessimistic, optimistic,
and causal,” Distributed Computing Systems, International Conference
on, vol. 0, p. 0229, 1995.

[8] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and F. Cappello, “Un-
coordinated checkpointing without domino effect for send-deterministic
mpi applications,” in IPDPS, 2011, pp. 989–1000.

[9] T. Ropars and C. Morin, “Improving message logging protocols scal-
ability through distributed event logging,” in Euro-Par (1), 2010, pp.
511–522.

[10] A. Bouteiller, T. Hérault, G. Bosilca, and J. J. Dongarra, “Correlated set
coordination in fault tolerant message logging protocols,” in Euro-Par
(2), 2011, pp. 51–64.

[11] B. Schroeder and G. Gibson, “A large scale study of failures in
high-performance-computing systems,” in International Symposium on
Dependable Systems and Networks (DSN), 2006.

[12] A. J. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in DSN, 2007, pp. 575–584.

[13] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski, “De-
sign, modeling, and evaluation of a scalable multi-level checkpointing
system,” in SC, 2010, pp. 1–11.

[14] A. Bouteiller, B. Collin, T. Herault, P. Lemarinier, and F. Cappello,
“Impact of event logger on causal message logging protocols for fault
tolerant MPI,” in IPDPS’05, 2005, p. 97.

[15] CFDR. (2011, May) Computer failure data repository. [Online].
Available: http://cfdr.usenix.org/

[16] E. Meneses, X. Ni, and L. V. Kale, “Design and analysis of a mes-
sage logging protocol for fault tolerant multicore systems,” Parallel
Programming Laboratory, Department of Computer Science, University
of Illinois at Urbana-Champaign, Tech. Rep. 11-30, July 2011.

[17] L. Kalé and S. Krishnan, “CHARM++: A Portable Concurrent Object
Oriented System Based on C++,” in Proceedings of OOPSLA’93,
A. Paepcke, Ed. ACM Press, September 1993, pp. 91–108.

[18] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A survey of
rollback-recovery protocols in message-passing systems,” ACM Comput.
Surv., vol. 34, no. 3, pp. 375–408, 2002.

