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ABSTRACT
The US air fleet is tasked with the worldwide movement of
cargo and personnel. Due to a unique mixture of operating
circumstances, it faces a large scale and dynamic set of cargo
movement demands with sudden changes almost being the
norm. Airfleet management involves periodically allocating
aircraft to its myriad operations, while judiciously account-
ing for this uncertainty to minimize operating costs. We
have formulated this allocation problem as the optimization
of a stochastic two-stage integer program.

Our work aims to enable rapid decisions via a scalable par-
allel implementation. We present the design of our parallel
solution that applied a well-known master- worker approach
to solving the undecomposed linear programs underlying the
formulation. This paper presents a narrative of the issues en-
countered and solutions that we developed to combat these.
We believe these techniques may be generally applicable in
other contexts where a parallel solution of stochastic opti-
mization is of interest.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Numerical Analy-
sis—Optimization: Stochastic Programming ; I.6 [Simulation
and Modeling]: Applications—airfleet management ; D.1.3
[Software]: Programming Techniques—Parallel Program-
ming ; J.1 [Computer Applications]: Administrative Data
Processing—Military
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1. INTRODUCTION
Stochastic optimization plays an important role in the

analysis, design, and operation of modern systems. It pro-
vides a means of coping with inherent system noise and
models that are highly nonlinear, high dimensional, or oth-
erwise inappropriate for classical deterministic methods of
optimization. In the classical deterministic models, the so-
lutions obtained are optimal for the specific problem but
may not be optimal for the situation that actually occurs.
Being able to take this randomness into account is critical
for many problems where the essence of the problem is deal-
ing with the randomness in some optimal way. Stochastic
programming enables the modeller to create a solution that
is optimal over a set of scenarios.

Stochastic optimization algorithms have broad application
to problems in statistics, science, engineering, and business.
Specific applications include business (making short- and
long-term investment decisions in order to increase profit),
transportation (planning and scheduling logistics), aerospace
engineering (running computer simulations to refine the de-
sign of a missile or aircraft), medicine (designing laboratory
experiments to extract the maximum information about the
efficacy of a new drug), and traffic engineering (setting the
timing for the signals in a traffic network). There are, of
course, many other applications in agriculture, energy, mil-
itary, telecommunications, water management etc. In this
paper, we propose and evaluate novel techniques to solve a
2-stage stochastic optimization model with linear recourse
for an aircraft planning problem.

At a high level, stochastic optimization involves search-
ing for an solution that is optimal over a set of scenarios.



In most cases, it would involve evaluation of the candidate
solution for each scenario. Since, the number of scenarios
can be large, it behooves us to consider strategies to re-
duce this work. We analyze different strategies for reducing
the stage 2 work, namely advanced start and scenario clus-
tering and show that advanced start with random scenario
clustering reduces the number of iterations and the time to
convergence. We also present an LRFU based scheme for
cut management in stage 1, that performs better than cut
management based on just the frequency or recency of their
activity. We then present our scalability results using these
optimization strategies.

Stochastic optimization algorithms have been growing rapidly
in popularity over the last decade or two, with a number of
methods now becoming “industry standard” approaches for
solving challenging optimization problems. Given the com-
plexity of the systems and the scale at which the system
parameters change, the time to solve stochastic models is
very critical. It is therefore natural to develop techniques
to utilize the parallel computing resources (in the form of
multi-core desktops and servers, clusters, super-computers)
to cut down the solution times. An interesting development
in this context, is the widespread availability of cloud com-
puting platforms which offer computational resources and
optimization solvers as services. Since users pay for the
time they use these resources/services, it is critical to op-
timize the application. We strongly believe that this area
has great potential for research in parallel computing com-
munity and hope that it would receive due attention by the
community.

Contents of the paper are organized as follows. In Sec-
tion 2 we briefly introduce the problem of concern to the
authors - the United States military aircraft allocation prob-
lem managed by TACC. In Section 3 we discuss our parallel
program design for the benders decomposition approach. In
Section 4,5 we present our optimization strategies for the
stage 1 problem while in Section 6 we present our analysis
of the stage 2 problem. Scalability results are presented in
Section 7. Related work is reviewd in Section 8. Finally,
conclusion and future work are given in Section 9.

2. MODEL FORMULATION AND THE SO-
LUTION APPROACH

In this section, we give an overview of the United States
military aircraft allocation problem. We then present our
stochastic linear program formulation of the problem. United
States Air Mobility Command (AMC) 1 manages a fleet of
over 1300 aircrafts [1] that operate globally. Various mis-
sions of AMC involve uncertainty based on worldwide ten-
sion and commitments. Aircrafts are allocated by the mili-
tary at its different bases in anticipation of the demands for
several missions to be conducted in the period of one month
or fifteen days. Aircraft breakdowns, weather, natural disas-
ter, conflict, are some of the various possible outcomes that
confound decision support. The purpose of the stochastic
model is to optimally allocate aircraft against each mission
area in a manner that minimizes subsequent disruption. The
planning period occurs prior to the execution period, where
stochastic cargo and mission realizations drive actual mis-
sion requirements.

1http://www.amc.af.mil/

TACC2 is responsible for allocating aircrafts to three of
the primary mission types flown by AMC:

• Channel missions, which are regularly scheduled missions
between the US and overseas locations

• Contingency missions, which are irregularly scheduled mis-
sions that deliver cargo to an international ”hot spot,”and

• Special assignment airlift missions (SAAMs), which are
chartered by military units for a specific purpose.

Aircrafts are allocated by aircraft type, airlift wing, mis-
sion type and day. In situations when self-owned military
aircrafts are not sufficient for outstanding missions, civil-
ian aircrafts are leased. Rent of civilian aircrafts procured
in advance for the entire planning cycle is lower than the
rent of civilian aircrafts leased at short notice. Therefore, a
good prediction of the aircraft demand prior to the schedule
execution reduces the execution cost. We model the alloca-
tion process as a two-stage stochastic linear program with
complete recourse.

In the first stage, before a realization of the demands are
known, one has to make a decision about leasing of the long
term civilian aircrafts and the allocation of the aircrafts to
different missions at each base location.

min Cx+

K∑
k=1

pkθk (1)

s.t. Ax ≤ b, (2)

Elx+ θ ≤ el (3)

In the objective function(1), x corresponds to the aircraft
allocations by the aircraft type, location, mission and time.
C is the cost of allocating military aircrafts and leasing of
civilian aircrafts. θk and pk are the cost and probability of
occurrence of scenario k, respectively. Constraints in (2) are
the feasibility constraints, while constraints in (3) are the
optimiality constraints obtained from stage 2 and are also
called as cuts.

At the second stage, the expected cost of an allocation is
computed by solving the second stage optimization problem
for a large number of realizations(scenarios).

min qk
T y (4)

s.t. Wy ≤ hk − Tkx (5)

Second stage optimization helps the stage 1 to take the re-
course action of increasing the capacity for satisfying an un-
met demand by providing cuts(6).

θk ≤ πk ∗ (hk − Tkx∗)− πkTk(x− x∗) (6)

where πk are the dual multipliers obtained from stage 2 op-
timization and x∗ is the allocation vector obtained from the
last stage 1 optimization.

Note that our formulation of the aircraft allocation model
has complete recourse (i.e. all allocations generated in stage
1 are feasible) because any demand that cannot be satisfied
by allocation done in stage 1 is met by short term leasing of
civilian aircrafts at a high cost. Because of space limitation,
detailed description of the model is not possible here. For
complete description of the model and the cost comparison
of stochastic vs deterministic models, please refer to [15].

2Tanker Airlift Control Center,
http://www.618tacc.amc.af.mil



Table 1: Airlift Fleet Assignment Models Set
Model
Name

#Stg1 variables #Stg2
Linear
Vari-
ables Per
Scenario

#Stg2
Con-
straints
Per Sce-
nario

3t 135 + #scenarios 8970 5572
5t 225 + #scenarios 13862 8869
10t 450 + #scenarios 25573 16572
15t 675 + #scenarios 34642 23375
30t 1350 + #scenar-

ios
66304 46445

Stg1Solver

Comm

Stg2Solver Stg2Solver Stg2Solver

allocation

scenarios, allocations

cuts

Figure 1: Design

3. PARALLEL PROGRAM DESIGN
We implemented the solver for the two-stage bender’s de-

composition formulation in Charm++ [10–13]. Charm++
is an object-oriented parallel programming framework based
on C++. It has an adaptive run-time system. Chares and
chare arrays form the basic unit of program control flow.
Chares are allocated to processors and can be migrated from
one processor to another. Computation is done by either re-
motely or locally invoking entry methods on a chare.

Figure 1 gives a schematic of the implementation of our
solver. It has three entities, namely the stage 1 solver, the
communicator (a.k.a. Comm) and the stage 2 solvers. Stage
1 solver (the master) proposes new aircraft allocations based
on the feedback it has collected from stage 2 so far and sends
it to the Comm. Comm assigns scenarios to the stage 2
solvers. Stage 2 solvers evaluate the scenarios assigned to
them and send the feedback(cuts) to the stage 1 solver. The
Comm and the stage 1 solver are chares and are assigned
dedicated processors. For each of the remaining processors,
there is one chare array element acting in the role of a stage
2 solver.

4. ADVANCED STARTS IN STAGE 1
We first evaluate the effect of advanced start(or warm

start) in stage 1 optimization. With advanced start, the LP
solver starts with the solution and basis from the previous
solve, which in this case is the solve from the last iteration.
Since, in every iteration the LP is changed only by the ad-
dition of some constraints, the optimization of the new LP

takes much less iterations as comapred to the solves done
from scratch. Figure 2 validates the advantage of advanced
start for this problem.
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Figure 2: Stage 1 solve times with and without ad-
vanced start

However, an important thing to note here is that the stage
1 solve time increases with the iteration number irrespective
of the use of advanced start. Additionally, the memory re-
quirements of the stage 1 model increases as the number of
rounds increase because of the accumulation of cuts in every
round. For large stage 1 problems, which take many itera-
tions to converge, the increasing stage 1 solve time and the
increasing memory demands poses a serious serial bottle-
neck making these problems intractable with the Bender’s
approach. Figure 3 shows this effect observed in a relatively
larger 15t model solved upto 1% accuracy. The memory us-
age is as high as 5GB and the stage 1 solve time can go
upto 100secs. In the following section on stage 1 optimiza-
tion(Section 5), we address these bottlenecks by employing
intelligent cut management schemes.
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5. RETAINING THE MOST USEFUL CUTS
IN STAGE 1



Certain cuts become inactive in the course of convergence
either because they present weak optimiality constraints and
have been superseded by stronger optimiality cuts or be-
cause they were feasibility constraints but now there are
other cuts that encompass the feasibility posed by them.
Such cuts simply add to the size of the stage 1 model and
its solve time and can be safely discarded. Activity of a cut
in an optimization is determined by the slack value of it’s
constraint. If the slack value is zero (within the tolerance
limits) then the cut was active (or useful), otherwise it was
not used in finding the optimal value to the linear program.
Figure 4 shows the usage rate (defined by equation 7) of
the cuts generated during the course of convergence of a 5t
model. Most of the cuts have very low usage rate while a
significant number of the cuts were not used at all.

Cut Usage Rate =
number of rounds in which it is used

total number of rounds since its generation
(7)
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Figure 4: Cut usage rate for a 5t model

We therefore implemented a cut retirement scheme, that
discrads/retires cuts when the total number of cuts in the
stage 1 model exceed a predefined limit set on the maxi-
mum number of cuts that can be stored in stage 1 model.
Cuts with smaller usage rate (defined by Equation 7) are
discarded. The rationale behind safely discarding cuts is
that if any cut that might be needed in future rounds gets
discarded it can be regenerated again by the feedback pro-
viding mechanism implicit in the bender’s approach. This
can cause an increase in the number of rounds required to
reach convergence, but this approach guarantees bounded
stage 1 solve time and memory requirements of the stage 1
model. Figure 5 demonstrates all these effects very clearly.
After every round of the bender’s method, cut score is up-
dated based on it’s activity in that round. The extra X low
scoring cuts can be determined using a partial sort that runs
in linear time.

An input parameter to the cut retirement scheme is the
Cut Window. Cut Window is the upper limit on the number
of cuts allowed in stage 1 model. For ease of readability, it is
defined as the maximum number of cuts divided by the num-
ber of scenarios. Therefore, Cut Window of 10 in a model
with 120 scenario means a maximum of 120 ∗ 10 or 1200 are
stored in the stage 1. Runs with different Cut Windows will
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Figure 5: Comparing the stage 1 solve times and
memory usage with and without cut retirement

take different number of rounds to converge. In Figure 6
and 7, we study the effect of different Cut Windows on the
number of rounds required to converge and also the time
to solution. As we decrease the Cut Window size, it takes
increasing number of rounds to converge but the time to
solution decreases. Smaller Cut Windows reduce the indi-
vidual stage 1 solve time, leading to an overall improvement
in the time to solution even though it takes larger number
of rounds to converge. Decreasing the Cut Window beyond
a certain limit, leads to significant increase in the number
of rounds because of many potential cuts getting discarded
earlier and need to be regenerated in later rounds. Even
further decrease in the Cut Window makes the problem im-
possible to converge because of insufficient cut collection at
any time. Hence, these experiments demonstrate the need
to make a wise choice on the Cut Window size to get fastest
time to solution. e.g. for 5t model with 120 scenarios, op-
timal Cut Window size is close to 25 while for a 10t model
with 120 scenarios it is close to 15.

1 5

1
0

1
5

2
5

5
0

7
5

1
0
0

cut window size

0

200

400

600

800

1000

n
u
m

b
e
r 

o
f 

ro
u
n
d
s

0

500

1000

1500

2000

ti
m

e
(i

n
 s

e
co

n
d
s)

time to solution
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for 5t model (solved upto 0.1% convergence on 8
cores)

We investigate cut management further to study it’s per-
formance with other cut scoring schemes. Three cut scoring
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for 10t model (solved upt 1% convergence on 32
cores)

schemes are discussed here namely, the least frequently used,
the least recently used and the least recently/frequently used.
Each one of these are briefly discussed here:

• Least Frequently Used (LFU) - A Cut is scored based
on it’s rate of activity since it’s generation.

LFU Score =
Number of rounds in which it was active

Number of rounds since its generation

This scoring method was used for results presented in
Figure 6 and 7.

• Least Recently Used (LRU) - In this scheme, recently
used cuts are scored higher. Therefore, score of a cut
is simply the last round in which it was active.

LRU Score = Last active round for the cut

• Least Recently/Frequently Used (LRFU) - This scheme
takes both the recency and frequency of cut activity
into account. Each round in which the cut was active
contributes to the cut score and the contribution is
determined by a weighing function F(x), where x is
the time span from the activity in the past to current
time.

LRFU Score =

k∑
i=1

F(tbase − ti)

where t1, t2, ..., tk are the active rounds of the cut and
t1 < t2 < ... < tk ≤ tbase. This policy can demand
large amount of memory if each reference to every cut
has to be maintained and also demands a considerable
amount of computation every time the cut retirement
decisions are to be made. Lee, et. al. [14,16] have pro-
posed a weighing function F(x) = ( 1

p
)λx (p ≥ 2) which

reduces the storage and computational needs drasti-
cally. They tested it for the cache replacement policy
and obtained competitive results. With this weighing
function, the cut score can be calculated as follows:

Stk = F(0) + F(δ)Stk−1 ,

where Stk is the cut score at the kth reference to the
cut, Stk−1 was the cut score at the (k− 1)th reference

and δ = tk − tk−1. For more details and proofs for
the weighing function refer to [14]. We use p = 2 and
λ = 0.5 for our experiments.

Figure 8 compares the result of these strategies. LRFU
gives the best performance out of the three strategies.
Cut Window used for these experiments was the opti-
mal values obtained from experiments in Figure 6 and
7.
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Finally to conclude this section, Figure 9 shows the benefit
of cut management on the stage 1 memory usage and solve
times of the 15t model solved upto 1% accuracy. The total
time to solution reduces from 19025s (Figure 3) without cut
retirement to 8184s (Figure 9) with cut retirement, about
57% improvement.

0 100 200 300 400 500
0

20

40

60

80

100

120

st
a
g
e
 1

 s
o
lv

e
 t

im
e
(s

)

0

1000

2000

3000

4000

5000

st
a
g
e
 1

 m
e
m

o
ry

 u
sa

g
e
(M

B
)

w/o cut retirement
with cut retirement

Figure 9: Stage1 solve time and memory usage for
15t model solved upto 1% convergence with cut-
window of 75

6. EXPLOITING ADVANCED STARTS IN
STAGE 2



• talk about how using advanced start in stage 2 can
also reduce the stage 2 solve time and discuss different
ways to reduce the stage 2 solve time: by custering
scenarios using demands, duals, etc.

• Since, scenario differs only in demands, it is easy to
cluster them

In every iteration, there are as many stage 2 LP solves as
there are scenarios. This constitutes a major portion of the
computation involved in the Bender’s approach because of
the large number of scenarios in practical applications. Even
small amount of reduction in the number of rounds or av-
erage stage 2 solve time can have sizeable payoffs. In this
section, In this section, we analyze different strategies to
reduce the amount of time spent in doing stage 2 work.

The demands for the concerned military aircraft alloca-
tion proble have probabilisitc distribution. Scenarios were
generated with channel demands drawn from a normal dis-
tribution, SAAM demands from a poisson distribution and
the contingencies occurring randomly with some assigned
probabilities of occurrence.

At first, we employed a pull-based mechanism to assign
work to stage 2 solvers i.e. as soon as a stage 2 solver be-
comes idle, it sends a work request to the stage 2 man-
ager which assigns it an unevaluated scenario. In contrast
to the stage 1 lp solves, stage 2 lp solves take more time
with the advanced start feature as compared to fresh start.
This can happen because the initial basis from the previ-
ous scenario solve can be a bad starting point for the new
scenario. Despite the slower lp solves with the advanced
start our experiments show that runs with advanced start
take fewer rounds to converge than with fresh start (term
frest start is synonymous with w/o advanced start). This
indicates that starting from the previous solves gives us bet-
ter cuts. This behavior was seen in other models as well.
Reason for such a behavior is yet to be studied. Figure 10
shows that runs with stage 2 reset (in red color) took 300
rounds to converge as compared to just 100 − 150 rounds
with advanced start. Consequently, the time to solution
with advanced start is much less than with stage 2 reset
despite slower stage 2 lp solves. Therefore, from hereon we
will continue to use the advanced start feature. An impor-
tant point to note from Figure 10 is that advanced start
together with the pull-based work assignment mechanism
introduces variability across various runs of the same pro-
gram. Figure 10 shows the number of rounds and time to
solution for 25 runs on the same model. Scenario assignment
to solvers takes place based on the order in which the work
requests are received, which can vary across different runs
because of variable message latencies and also fine variations
in LP solve times because of system noise. A different order
of LP solves on a solver yields different cuts for identical
scenario evaluation because the solver starts from the basis
of the previous scenario evaluation. This variation in cuts
affects the course of convergence of the model. Variation
across different runs can be significant making it difficult to
measure the effect of different optimization strategies. Ad-
ditionally in many situations, getting an optimal solution in
predictable time is considered more important than getting
it in the shortest possible time. Therefore, removing the
variability is an important consideration. Turning off the
advanced start feature can signficantly increase the time to
solution and hence is not a good idea, however the scenario

evaluation order can be pre-determined by assigning a fixed
set of scenarios to each solver. This approach can potentially
decrease the processor utilization because of load imbalance
as it does not account for the LP solve times and just as-
signs equal number of scenarios to each solver. However,
traces show that the processor utilization with pull-based
and push-based work assignment schemes distrurbs the load
balance only minutely. Hence, push based scheme is a win-
win approach as it eliminates the undesirable variability in
the solution times.
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Figure 10: Variation across runs with advanced-
start and their comparison with fresh start (10t
model)

Since, the scenarios are related to each other, it is possi-
ble to use the optimal solution of one scenario to compute
the optimal solution for the next scenario. We now sug-
gest a clustering based scenario assignment scheme. The
advanced start feature can lead to reduction in solve times
when similar scenarios are solved consecutively. We can use
this property to speedup stage 2 solves. Similarity between
scenarios can be determined either by using the demands in
each scenario or the duals (cuts) returned by them or by
a hybrid of demands and duals. In this paper, we use the
demands to cluster scenarios because they are known apri-
ori i.e. before the stochastic optimization process begins.
We use the well known KMeans [9] algorithm for clustering
scenarios. Since, the clusters returned from KMeans can be
unequal in size, we use a simple approach (described in Al-
gorithm 6) to migrate some scenarios from oversized clusters
to the undersized clusters.

Figure 6 compares the improvement in average stage 2
solve times when scenarios are clustered using Algorithm 6.

However, our results show that random clustering gives
faster convergence rate than KMeans clustering(Figure 12).
Therefore, despite faster stage 2 solves, clustering does not
gives us faster time to solution(Figure 13). These experi-
ments lead to the conclusion that advanced start with ran-
dom clustering is the best combination for faster time to
solution.

7. SCALABILITY
With the optimizations stated above we were able to achieve

significant speed-ups upto 122 cores. For 120 scenarios, a
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Figure 13: Comparing the effect of advanced start and clustering on performance of different models
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Figure 14: Scalability plots for 5t and 10t model solved upto 0.1% convergence

Algorithm 1 The Scenario Clustering Algorithm

Input
Di- Demand set for scenario i (i = 1, 2, ...., n)
k - number of clusters

Output
Algorithm
{label, centroids} = kMeans({D1, D2, D3, ..., Dn}, k)
IdealClusterSize = n

k
sizei = size of cluster i
{Identify Oversized clusters}
O = {c ∈ Clusters | sizec > IdealClusterSize}
{Identify Undersized clusters}
U = {c ∈ Clusters | sizec < IdealClusterSize}
S: set of adjustable points
for c ∈ O do

Find (sizei−IdealClusterSize) points in cluster c that
are farthest from centroidc and add them to the set S

end for
while size(S) > 0 do

Find the closest pair of cluster c ∈ (U) and point p ∈ S

Add p to cluster c
Remove p from S
if sizec == IdealClusterSize then

Remove c from U
end if

end while
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tering using KMeans algorithm
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maximum of only 122 processors are required - 1 stage 1
solver, 1 Comm and 120 stage 2 solvers for 5t and 10t model
respectively. Figure 14(a) and 14(b) show the scalability
plots with stage 1 and stage 2 walltime breakdown. The
plots also demonstrate the Amdahl’s effect as the maximum
parallelism available is proportional to #scenarios that can
be solved in parallel.

8. RELATED WORK
Stochastic linear programs can be solved using the exten-

sive formulation(EF) [7]. Extensive formulation of a stochas-
tic program is its deterministic equivalent program in which
constraints from all the scenarios are put together in a sin-
gle large scale linear program. e.g. the extensive formulation
for a stochastic program corresponding to stage 1 given in
equations 1, 2, 3 and stage 2 in equations 4, 5 can be
written as:

min cTx+
∑K
k=1 pkq

T
k yk

s.t. Ax = b,

Tkx+Wyk = hk, k = 1, ...,K

x ≥ 0, yk ≥ 0, k = 1....,K

EF results in a large linear program which can be solved us-
ing any liner program solver but because LP solvers are hard
to parallelize, other parallelization approaches are sought
for. Recently, there has been some work on parallelization of
the simplex algorithms for linear programs with dual block-
angular structure [5]. Lubin et.al.in [20], demonstrated how
emerging high-performance computing architectures can be
used to solve certain classes of power grid problems, namely,
energy dispatch problems. Their PIPS solver is based on the
interior-point method and uses a Schur complement tech-
nique to obtain a scenario-based decomposision of the linear
algebra.

J. Linderoth, et. al. [17,18] have studied the performance
of two-stage stochastic linear optimizations using the L-
shaped algorithm on computational grids. Unlike modern
supercomputers, computational grids have poor communi-
cation latencies and availability of nodes is sporadic. Hence,
their work focusses on performance of an asynchronous ap-
proach to the bender’s decomposition. In contrast, our work

is based on a synchronous approach where a new iteration
is initiated only after completion of all the scenario solves
from the previous iteration. They have also applied regu-
larization by means of trust region(see [18]) to improve the
convergence rate.

9. CONCLUSION AND FUTURE WORK
For stochastic optimization with Bender’s approach, stage

1 presents a serial bottleneck that seriously inhibts the effi-
cieny of any parallel implementation. We presented a LRFU
based cut management scheme, that completely eliminates
the memory bottleneck and significantly reduces the stage 1
solve time, thus making the optimizaiton of large scale prob-
lems such as 15t and 30t tractable. Most of the stochastic
programs incorporate large number of scenarios to hedge
against all possible uncertainties. Therefore, stage 2 work
constitutes a significant portion of the total work done in
stochastic optimizations. We analyzed different dimensions
to stage 2 optimzation and concluded that advanced start
with random scenario solve ordering can speed up the rate
of convergence of the stochastic program. Even though sce-
nario clustering reduces the average stage 2 solve time but
it takes more rounds to converge. With these optimizations,
we were able to obtain a speedup of upto X% for the 10t
problem with 120 scenarios. We believe that these optimiza-
tion strategies can be applied to other sotchastic programs
in general.

A lot of future work ensues from this research. The pro-
posed strategies can be applied to other stochastic linear
problems e.g. industrial design, environmental planning, as-
set management, etc. A list of test problems for stochas-
tic linear programming is available at [6]. All of our ex-
periments were with the use of Gurobi [3] LP solver, we
would also like to test these optimizations with other pop-
ular linear program solvers such as CPLEX [4], GLPK [21],
COIN-CLP [2, 19]. These strategies can also be applied to
stochastic integer programs that have integer variables in
stage 1. Stochastic integer programs have many real-life ap-
plications and consitute a significant portion of the broader
class of stochastic programs. Motivate Parallel Branch and
Bound using these optimizations

10. TERAGRID
The Teragrid/NCSA Intel 64 Cluster Abe (installed at

NCSA, Illinois) was instrumental in conducting this research.
The Gurobi linear program solver is a licensed solver avail-
able for free academic use. It requires licensing on a per
node basis, making most of the supercomputers unviable for
research because of their large node count. With the help of
Abe cluster administrators we were able to get a time shared
(and dedicated at crucial times!) reservation on a select set
of high memory compute nodes of Abe. This made our scal-
ability runs feasible as we had to acquire licenses only for the
assigned set of nodes. Runs on Abe cluster were done under
the TeraGrid [8] allocation grant ASC050040N supported by
NSF.
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