
Collective Algorithms for Sub-communicators

Anshul Mittal Thomas George
Yogish Sabharwal

IBM Research India, New Delhi, India
{mittal.anshul,thomasgeorge,ysabharwal}@in.ibm.com

Nikhil Jain
University of Illinois,

Urbana Champaign, USA
nikhil@illinois.edu

Sameer Kumar
IBM T.J.Watson Research Center,

Yorktown Heights, USA
sameerk@us.ibm.com

Abstract
Collective communication over a group of processors is an integral
and time consuming component in many HPC applications. Many
modern day supercomputers are based on torus interconnects. On
such systems, for an irregular communicator comprising of a subset
of processors, the algorithms developed so far are not contention
free in general and hence non-optimal.

In this paper, we present a novel contention-free algorithm to
perform collective operations over a subset of processors in a torus
network. We also extend previous work on regular communica-
tors to handle special cases of irregular communicators that oc-
cur frequently in parallel scientific applications. For the generic
case where multiple node disjoint sub-communicators communi-
cate simultaneously in a loosely synchronous fashion, we propose
a novel cooperative approach to route the data for individual sub-
communicators without contention. Empirical results demonstrate
that our algorithms outperform the optimized MPI collective im-
plementation on IBM’s Blue Gene/P supercomputer for large data
sizes and random node distributions.

Categories and Subject Descriptors D.m [Software]: Miscella-
neous

General Terms Performance, Algorithms

Keywords Collectives, Torus, Sub-communicators

1. Introduction
MPI collective routines that perform one-to-many, many-to-one,
and many-to-many communications among the processors are
amongst the most important and time consuming components in
most high performance computing applications. The performance
of these MPI collectives is critical for improved scalability and effi-
ciency of parallel scientific applications. With limited bandwith on
most systems, for collectives on large messages, avoiding network
contention is critical.

Many modern day supercomputers are based on interconnec-
tion networks with a k-ary n-cube topology, for example, the Blue
Gene/P and Cray XT machines have a 3D torus topology. Ap-
plications on such architectures involve collective operations, not
only on the entire processor partition (MPI COMM WORLD or
the full-communicator in MPI) but also on sub partitions (i.e., sub-
communicators in MPI). For example, in molecular dynamics, each
processor communicates with other processors that contain atoms

Copyright is held by the author/owner(s).
PPoPP’12, February 25–29, 2012, New Orleans, Louisiana, USA.
ACM 978-1-4503-1160-1/12/02.

that interact with the atoms in the original processor, resulting in an
arbitrary subset of processors forming a sub-communicator.

Optimizing MPI collectives has been a key topic of interest
in high performance computing due to its importance in scaling
parallel applications. Most of the existing algorithms are either
generic algorithms which work well for most network topologies
and a wide range of message sizes, or are specifically tailored
for a particular class of collectives on a given network topology
and typically large message sizes. The later outperform the generic
algorithms for the specific target topologies and message sizes. For
example, Van de Geijn et.al [3] proposed an algorithm for large
message broadcast that has been shown to outperform the binomial
algorithm. Optimization for 3D torus networks has been presented
in [1] and [2]. However, most of these algorihms have focused on
the cases involving full-communicator.

Our Contributions. In this paper, we propose algorithms for
Broadcast, Reduce, and Allreduce based on the construction of
novel edge disjoint spanning trees for a random sub-communicator.
We make the following key contributions.

• We propose algorithms to construct contention free spanning
trees for performing collective operations over a random sub-
communicator on a 3D torus network. An SPI implementation
of our approach shows an improvement of 2 – 4× for Broadcast
and Allreduce operations over an optimized MPI implementa-
tion available on Blue Gene/P.

• We extend earlier work by in [1] to handle special communi-
cators such as the master/slave scenario where a single proces-
sor is excluded from the communicator, and the case where the
communicator comprises of a random set of complete parallel
2D planes. An empirical evaluation of our approach demon-
strates a speedup of 1.7 – 5.8× using an SPI implementation.

• We also explore scenarios where multiple node disjoint irregu-
lar sub-communicators exist and communicate simultaneously.
For such scenarios, with a moderate number of random sub-
communicators we obtain a speedup in the range 1.6 – 2.6×.

2. Algorithm
The key new idea in our approach is to decouple the construction
of edge-disjoint spanning trees from the collective operation which
allows us to handle any arbitrary communicator and/or root. Our
approach thus essentially consists of two steps. The first step is
the construction of the edge-disjoint spanning trees. This is a one
time operation that is extremely fast and is performed during the
call to create the sub-communicator. The construction is based
on two algorithms - the first one is a novel algorithm that we
propose for constructing edge-disjoint spanning trees for arbitrary
sub-communicators while the other one is a multi-color algorithm
proposed by Faraj et at. [1], which we extend to handle special
cases of irregular communicators. The second step is the actual
collective operation performed over the spanning tree.

Construction of edge-disjoint spanning tree for an arbitrary sub-
communicator in 2-D torus is done by carefully choosing a lin-

315



earized (snake like) ordering of nodes which are part of the sub-
communicator. The choice of communicating neighbors in this
snake pattern ensures that no two communicating nodes use any
common link for data transfer. The spanning tree for 3-D torus is
obtained by a generalization of the 2-D case.

3. Common Sub-communicators
In this section, we demonstrate the use of the algorithms men-
tioned in Section 2, on a few commonly occurring scenarios that
involve collective communication on sub-communicators. The dif-
ferent scenarios are classified on the basis of the number and kind
of simultaneous sub-communicators.
Random communicator: In such cases, our algorithm can be di-
rectly used to achieve a single link throughput performance for the
collective.
Single communicator with one node missing: Our solution for
this scenario is based on extending the algorithm by Faraj et.al. [1].
In the first step, we follow the multi-color rectangular approach to
create three edge disjoint trees for the collective operation using
links only in the X+, Y+ and Z+ direction. However, we start the
tree construction using a pseudo root that is at least one hop away
from the missing node in every dimension. The missing node is
bypassed during the tree construction. In the second step, the direc-
tions of the links is adjusted according to the user specified root.
Random subset of parallel planes: Without loss of generality, let
us assume that the missing planes are along the Z- axis. Since each
of the 2D planes do not have any missing nodes, we first perform
phases 1 and 2 of the collective operation where the data is trans-
ferred along the X and Y dimensions respectively, as described in
[1]. In phase 3, the data is transferred along the Z dimension, with
the missing planes in Z dimension being bypassed to transfer the
data to the nodes in next 2D plane in the sub-communicator. Phase
4 remains the same as before. In this case, we can obtain maximum
throughput for both Broadcast and Allreduce.
Contiguous sub-communicator groups: In this case, all the sub-
communicators can be readily mapped onto contiguous nodes on
the processor space such that there are no overlapping paths.
Overlapping sub-communicator groups: For overlapping sub-
communicators, we propose a novel approach where multiple sub-
communicators co-operate to achieve an optimal performance for
the collective operations.

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

512KB 2MB 8MB 32MB 128MB 512MB

Th
ro

ug
hp

ut
 (M

Bp
s)

Message Size

BC-SPI
BC-MPI

BC-IBM Product MPI

Figure 1. Broadcast on sparse random sub-communicator

4. Results
Hardware: All the experiments were performed on Blue Gene/P
which is IBM’s massively parallel supercomputer. Each node in
BGP supports 850 MBps bidirectional links to each of its nearest
neighbors for a total of 5.1GB/s bidirectional bandwidth per node.
Implementation Specifics: We present two versions of our algo-
rithms; (i) an optimized version which uses a lower level API (SPI)
and (ii) an MPI version by modifying the MPI stack. We refer to our
Broadcast implementation using SPI as BC-SPI and the MPI stack
implementation as BC-MPI. Similarly, we refer to our Allreduce
implementations as AR-SPI and AR-MPI respectively. We compare
our results against the IBM’s product MPI referred to as BC-IBM

Product MPI and AR-IBM Product MPI for Broadcast and Allre-
duce, respectively.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

512KB 2MB 8MB 32MB 128MB

Th
ro

ug
hp

ut
 (M

Bp
s)

Message Size

BC-SPI-3Trees
BC-IBM Product MPI

AR-SPI-3Trees
AR-IBM Product MPI

Figure 2. One node missing sub-communicator

We present the performance results of our Broadcast implemen-
tation for increasing message sizes in the range 512KB-512MB for
a sparse (31/1024 nodes) random sub-communicator in Figure 1.
Similar results were obtained for Allreduce. Figure 2 shows the
plot of throughput vs. message size for Broadcast and Allreduce on
sub-communictor with one missing node.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

512KB 2MB 8MB 32MB 128MB

Th
ro

ug
hp

ut
 (M

Bp
s)

Message Size

BC-SPI-3Trees
BC-IBM Product MPI

AR-SPI-3Trees
AR-IBM Product MPI

Figure 3. Missing plane sub-communicator.

In Figure 3, we show the plot of throughput vs. message size
for Broadcast and Allreduce operations for sub-communicator with
missing planes.

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

512KB 2MB 8MB 32MB 128MB 512MB

Th
ro

ug
hp

ut
 (M

Bp
s)

Message Size

BC-SPI-3Trees
BC-SPI

BC-IBM Product MPI

Figure 4. Broacast with mutiple random sub-communicators.

Figures 4 and 5 show the performance of our algorithms for the
case when multiple random sub-communicators perform Broadcast
and Allreduce respectively.

 30

 40

 50

 60

 70

 80

 90

512KB 2MB 8MB 32MB 128MB 512MB

Th
ro

ug
hp

ut
 (M

Bp
s)

Message Size

AR-SPI-3Trees
AR-SPI

AR-IBM Product MPI

Figure 5. Allreduce with multiple random sub-communicators.

References
[1] A. Faraj, S. Kumar, B. Smith, A. Mamidala, J. Gunnels, and P. Heidel-

berger. MPI collective communications on the Blue Gene/P supercom-
puter: algorithms and optimizations”. In ICS, pages 489–490, 2009.

[2] N. Jain and Y. Sabharwal. Optimal bucket algorithms for large MPI
collectives on torus interconnects. In ICS, pages 27–36, 2010.

[3] M. Shroff and R. A. V. D. Geijn. Collmark: Mpi collective communi-
cation benchmark. Technical report, 2000.

316


	Introduction
	Algorithm
	Common Sub-communicators
	Results



