
IOP PUBLISHING MEASUREMENT SCIENCE AND TECHNOLOGY

Meas. Sci. Technol. 23 (2012) 025301 (14pp) doi:10.1088/0957-0233/23/2/025301

A parallel algorithm for 3D particle
tracking and Lagrangian trajectory
reconstruction
Douglas Barker1, Jonathan Lifflander2, Anshu Arya2 and
Yuanhui Zhang1

1 Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign,
Urbana, IL, USA
2 Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA

E-mail: dbarker2@illinois.edu, jliffl2@illinois.edu, arya3@illinois.edu and yzhang1@illinois.edu

Received 24 May 2011, in final form 16 November 2011
Published 16 December 2011
Online at stacks.iop.org/MST/23/025301

Abstract
Particle-tracking methods are widely used in fluid mechanics and multi-target tracking
research because of their unique ability to reconstruct long trajectories with high spatial and
temporal resolution. Researchers have recently demonstrated 3D tracking of several objects in
real time, but as the number of objects is increased, real-time tracking becomes impossible due
to data transfer and processing bottlenecks. This problem may be solved by using parallel
processing. In this paper, a parallel-processing framework has been developed based on frame
decomposition and is programmed using the asynchronous object-oriented Charm++
paradigm. This framework can be a key step in achieving a scalable Lagrangian measurement
system for particle-tracking velocimetry and may lead to real-time measurement capabilities.
The parallel tracking algorithm was evaluated with three data sets including the particle image
velocimetry standard 3D images data set #352, a uniform data set for optimal parallel
performance and a computational-fluid-dynamics-generated non-uniform data set to test
trajectory reconstruction accuracy, consistency with the sequential version and scalability to
more than 500 processors. The algorithm showed strong scaling up to 512 processors and no
inherent limits of scalability were seen. Ultimately, up to a 200-fold speedup is observed
compared to the serial algorithm when 256 processors were used. The parallel algorithm is
adaptable and could be easily modified to use any sequential tracking algorithm, which inputs
frames of 3D particle location data and outputs particle trajectories.

Keywords: particle-tracking velocimetry, high performance computing, experimental fluid
mechanics

(Some figures in this article are in colour only in the electronic version)

Nomenclature

α user-defined adjustment parameter for search radius
β user-defined threshold for cost of linking a particle

to a trajectory φi,j

$t time step between image frames
$o mean spacing between particles in an image frame
γcorrect correct ratio of tracked particles in a data set
γcoverage coverage ratio of tracked particles in a data set

x̂f
i predicted particle 3D position vector at time step

(frame) f for trajectory i
Ai 3 × 1 constant vector in second order term in

equation (6) for trajectory i
af

i estimated particle 3D acceleration vector at time step
(frame) f for trajectory i

Bi 3 × 1 constant vector in first order term in equation
(6) for trajectory i

Ci 3 × 1 constant vector in equation (6) for trajectory i

0957-0233/12/025301+14$33.00 1 © 2012 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0957-0233/23/2/025301
mailto:dbarker2@illinois.edu
mailto:jliffl2@illinois.edu
mailto:arya3@illinois.edu
mailto:yzhang1@illinois.edu
http://stacks.iop.org/MST/23/025301

Meas. Sci. Technol. 23 (2012) 025301 D Barker et al

Dk 3 × 1 particle displacement vector between frames
k and k + 1 in a linked trajectory

G 3 × 1 constant vector determined from regression of
Dk in equation (9)

H 3 × 1 constant vector determined from regression of
Dk in equation (9)

uf
i estimated particle 3D velocity vector at time step

(frame) f for trajectory i
xf

i particle 3D position at time step (frame) f for
trajectory i

φi,j cost of adding the j th candidate particle to the ith
trajectory

τk mid-time between frame k and k + 1
θ angle of rotation in equations (15) through (17)
d diameter of rotation in equations (15) through (17)
f frame index
Fn frame-set ID for the nth frame-set
i local particle trajectory index
Lcorrect number of correct particle links made in the tracking

process
Ltotal number of total particle links in the known

trajectories
Ltracked number of particle links made in the tracking process
M total number of global trajectories
m global trajectory index
N total number of frame-sets
n frame-set index
p particle spacing–displacement ratio
S frame-set size, a tunable parameter for parallel

decomposition
tf time at frame f

Tn,i local trajectory segment ID for trajectory segment i
in frame-set n

u total particle speed

1. Introduction

Vision-based particle-tracking techniques have been widely
developed and implemented over the last two decades. A large
base of the particle-tracking research has focused on hardware
and algorithm development for 3D fluid velocity measurement.
Particle tracking in this field, often referred to as particle-
tracking velocimetry (PTV) or (3D-PTV), is emerging as a
vital research tool for its benefits over statistic-based image-
correlation approaches such as particle image velocimetry
(PIV). These benefits include the ability to measure velocity
fields with higher spatial resolution through sub-pixel accuracy
in particle localization [1] and the ability to reconstruct long
particle trajectories with high temporal resolution [2]. Higher
order spatial and temporal derivatives can be directly evaluated
from these long particle trajectories, which enables many new
studies in fundamental fluid mechanics including experimental
characterization of turbulent diffusion [3] and vorticity [4].

Often a goal of particle-tracking experiments is to build
a statistical representation of chaotic object motion through
the largest number of observations possible. Naturally,
there is motivation to develop particle-tracking systems with
higher resolution and accuracy, which are inherently limited

by the hardware (cameras, computers, illumination, etc)
employed. To increase spatial resolution, the number of
resolved tracer particles per unit volume must be increased.
This can be most readily achieved through three imaging
hardware improvements: (1) increase image sensor resolution
(>1 megapixel) [2, 5], (2) add more cameras to increase
the chance of particles being observed in three or more
view planes [3, 6], and (3) increase the camera frame rate
to increase the particle spacing–displacement ratio, allowing
higher particle densities to be resolved in time [7]. As the cost
per performance for increased sensor resolution, frame rate and
memory continues to drop, the particle-tracking algorithms
must scale up to utilize many processors in order to handle the
massive amount of data.

As the resolution of particle-tracking systems has
increased with advancing camera technology, the ability to
efficiently transfer, process and store the enormous amount of
image data has persisted as a limit to measurement capabilities
[8, 9]. One main bottleneck occurs in data transfer between
camera and computer. With enormous data generation rates
and limited transfer rates, the camera must hold images in
buffer memory. For example, a PTV system with four
1 megapixel 8 bit monochrome cameras recording at 500
frames per second (fps) will generate 120 GB of image data
in a single minute. Hoyer et al observed that the measurement
duration with their 500 Hz cameras was limited to only 4 s
due to camera memory, which led to convergence issues in
their statistical analysis [5]. Processing on the computer has
also been limited because the data generated do not fit into the
faster random access memory (RAM) for a single processor,
which is usually about 4 GB in current commodity machines.
Such limitations inhibit the possibility of efficiently handling
the ever growing data sets and eventually achieving real-time
analysis.

There has been significant recent work with new camera
technologies that can eliminate the camera to computer
memory transfer bottleneck. Chan et al developed a data-
compression system that reduced data transfer between the
camera and the computer by a factor of 1000, increasing
the continuous recording time from 6.5 s up to 1 week
[10]. Demonstrating the use of new embedded smart cameras,
Medeiros et al used cameras with single-instruction multiple-
data processors to track several objects through image space
in real time [11]. Kreizer et al have shown significant progress
toward real-time 3D-PTV by addressing the data accumulation
limitation through the use of smart cameras with embedded
field programmable gate arrays (FPGA). The FPGA processes
each pixel in parallel, offering a fast method to filter noise,
remove background and locate particle centroids in real time
prior to transferring data to the host computer [12]. Therefore,
instead of transferring an image, these smart cameras only
output the pixel coordinates of the particles’ centroids; thus,
the overall data transfer was reduced by a factor of up to 1000
[12]. In this case, the processing bottleneck can be eliminated
in the camera and remaining tracking steps on the computer
become the main bottleneck preventing real-time processing.

Rapidly increasing central processing unit (CPU) clock
rates have begun to level off as limits on heat dissipation

2

Meas. Sci. Technol. 23 (2012) 025301 D Barker et al

have emerged. As a result, CPU manufacturers have recently
shifted their focus to increasing the number of processor cores
per unit. However, these multi-core processors can only be
efficiently utilized through scalable parallel algorithms, which
are facilitated by programming tools such as message passing
interface (MPI) [13] and Charm++ [14]. Many benefits can
be achieved through parallel processing in 3D-PTV including
reduced run-times, scalable data storage, real-time multi-
camera data streaming and the potential for complete real-
time measurement. Researchers have predicted that parallel
processing will speed up particle-tracking run-times [1, 6]
and potentially enable real-time measurement capabilities.
However, very few parallel particle-tracking algorithms have
been published and data processing in the computer has
become a bottleneck.

Parallel processing has been discussed since the early
days of 3D particle tracking and related PIV research as a
means of expediting processing times. Most have focused
on parallelizing the expensive fast Fourier transform (FFT)
used in PIV cross correlation and tomographic PTV. Meinhart
et al noted that processing 1000 PIV-generated vectors
required about 3 h. They parallelized the FFT operation and
achieved a speedup of up to tenfold [15]. This approach was
very machine specific since the standard parallel programming
tools such as MPI had not yet been fully developed. Most
recently, Satake et al developed a parallel algorithm for
holographic PTV based on using MPI and achieved a 100-
fold speedup for the FFT operation [16]. Satake continued
this work and developed a Windows-based grid system
and evaluated both spatial and temporal data-decomposition
methods for parallelization of the FFT. They concluded that
temporal decomposition of the image video provided an
efficient method of parallelization and suggested that this
approach could be useful for both PIV and PTV [17]. Thus
far, no general parallel tracking algorithm has been published
for multi-core CPUs and high performance clusters.

Our objective in this research is to develop and evaluate a
general parallel algorithm for the particle-tracking step of PTV
for Lagrangian measurements. This new parallel algorithm is
designed to be easily adapted to utilize many different variants
of the multi-frame tracking algorithm and scale from a single
multi-core desktop to a large CPU cluster. This paper is
organized as follows. Section 2 covers the current approaches
to particle tracking and details the particle-tracking algorithm
implemented in this research. Section 3 introduces the parallel
algorithm including data decomposition, trajectory merging,
parallel computation objects and communication patterns.
Section 4 discusses the evaluation methods and results for
three data sets used to determine the algorithm’s trajectory
reconstruction accuracy, consistency and scalability beyond
500 processors.

2. Particle-tracking algorithm

The underlying particle-tracking technique in 3D-PTV can
be described in general form as follows [18, 19]. First,
images of a particle-laden flow from three or more cameras
are processed to identify particle image pixel coordinates.

Next, the stereo correspondence problem between multiple
camera planes is solved and the matched particle locations are
used to reconstruct their 3D object locations based on camera
calibration. Finally, a tracking algorithm is used to identify
the temporal correspondence of particles through object space
over time.

As noted by Malik [7], a key criterion to predict tracking
difficulty for a given particle-tracking system and flow field is
the particle spacing–displacement ratio p:

p = $o

u$t
. (1)

This ratio is defined by the mean spacing between particles
($o) and the mean particle displacement from frame to frame
(u$t). If p is much greater than 1, then tracking can be
completed with high accuracy and relative ease [7].

This final tracking step was selected as the focus of this
research on parallel algorithm development. The reasoning
for this is that as camera frame rates increase over time, data
parallelism can most immediately be exploited in the temporal
domain. Most PTV systems today use only three or four
cameras, and therefore, coarse grain data parallelism is less
abundant in the spatial correspondence and 3D reconstruction
algorithms. In addition, the tracking algorithm presents a
greater challenge to parallelize due to the inherent dependence
from one time step to another as will be discussed below.

Often the goal of the particle-tracking algorithm is to
reconstruct long trajectories on the order of 100 frames and
greater. Many variations of the tracking algorithm exist, but at
the most general level, they share a common structure. Nearly
all take the input of 3D particle coordinates at each instant
in time (frame) and output the reconstructed trajectories.
One modification to this approach is the use of 2D temporal
information to enhance tracking in 3D space [20]. The multi-
frame tracking algorithm [2], characterized by the use of a
particle’s location in up to five previous time steps to predict its
future position, appears to be the most common for Lagrangian
measurement in PTV. Several other tracking techniques have
shown promise including the neural-network approach [1] and
particle-filter-based algorithms such as the combined extended
Kalman filter and nearest neighbor standard filter approach
described by Straw et al [6]. In many cases, the multi-frame
algorithm has been shown to be superior for long trajectory
tracking and more robust against noise [2, 19, 21].

The multi-frame tracking algorithm initiates trajectories
through a nearest neighbor search in an initial frame,
extrapolates the particle trajectories to subsequent frames,
and searches for and evaluates candidate particle quality for
addition to each trajectory. Common trajectory extrapolation
methods include prediction of particle position at the next time
step using simple kinematic models as shown in the following
equations [7, 19]:

x̂f +1
i = xf

i + uf −1/2
i $t (2)

x̂f +1
i = xf

i + uf −1/2
i $t + af −1

i $t2. (3)

The velocity vector uf −1/2
i is approximated by the first-order

accurate finite-difference approximation and acceleration af −1
i

3

Meas. Sci. Technol. 23 (2012) 025301 D Barker et al

can be estimated by the second-order accurate finite-difference
approximation given as follows:

uf −1/2
i = xf

i − xf −1
i

$t
+ O($t) (4)

af −1
i = xf

i − 2xf −1
i + xf −2

i

$t2
+ O($t2). (5)

An alternative to the finite-difference approach is polynomial
regression, which has proven to be very robust against noise
and uncertainty in the particle positions [22]. Multiple quality
or ‘cost’ metrics have been proposed for selecting particles
for addition to a trajectory including: nearest neighbor [7],
minimum acceleration [7], minimum change in acceleration
[7], and the ratio of regression residual to geometric mean
displacement [22, 23].

2.1. Sequential particle-tracking algorithm

In this paper, the regression-based multi-frame tracking
algorithm (RMT) developed by Li [22] has been augmented
for 3D particle tracking and selected for parallelization.
However, any tracking algorithm that inputs frames of particles
and outputs trajectories could be easily substituted. The
RMT algorithm was selected as a starting point due to its
proven robustness against input noise and cross-gap tracking
capability [22]. Also, its computational complexity warrants
the speedup achieved through parallel processing.

The key aspects that were implemented from the RMT
algorithm can be summarized as follows. The particle’s
extrapolated position in the next frame x̂f +1

i is determined
through the second-order polynomial regression of up to five
previous locations as follows:

x̂f +1
i = Ai t

2
f +1 + Bi tf +1 + Ci (6)

where A, B and C are 3 × 1 vectors determined by regression
and tf +1 is the time at the f + 1 frame. A search sphere
with radius r is created around x̂f +1

i based on the estimated
velocity from the previously connected points in the trajectory
as shown in equation (7), where t is time corresponding to
the frame index subscript and α is a user-defined constant.
Then, all particles that fall inside this sphere are identified as
candidates for the trajectory:

r = α
tf +1 − tf

tf − tf −1

∣∣xf
i − xf −1

i

∣∣. (7)

For each candidate, a cost function is evaluated based on
the smoothness of the trajectory formed. The cost function
used is defined in detail by Li et al [22] and given in
equation (8). With this function, last four linked particles
of trajectory i and a candidate particle j are evaluated to
determine the associated cost denoted as φi,j . If this cost
is below a set threshold β, then the candidate particle is added
to the trajectory:

φi,j =

√∑f
k=f −3 |Dk − Gτk − H|2
√∑f

k=f −3 |Dk|2
(8)

D̂k = Gτk + H. (9)

In this formulation, τk is the mid-time between frames k
and k + 1. f is the frame index of the last linked particle in
the trajectory. Dk is the particle displacement between frames
k and k + 1. G and H are 3 × 1 matrices determined from the
regression process of equation (9).

2.2. Sequential algorithm optimizations

Prior to parallelization, several steps were taken to minimize
the computational cost of the sequential algorithm. Given
that the Vandermonde matrix for the regressions in the
tracking algorithm is guaranteed to be non-singular, a
simple Householder rotation with backward substitution was
implemented for the first- and second-order polynomial fitting.
For low-noise data sets, two additional finite-difference
approximations of particle velocity were derived to replace
the regression in the particle search step for three- and four-
point trajectories. The velocity at frame f along a trajectory
i can be calculated from the second- and third-order accurate
finite-difference approximations given in equations (10) and
(11). These optimizations yielded up to a twofold speedup in
the serial code, with negligible change in results for the data
sets presented in section 4:

uf
i = xf −2

i − 4xf −1
i + 3xf

i

2$t
+ O($t2), (10)

uf
i = −2xf −3

i − 9xf −2
i + 18xf −1

i − 11xf
i

6$t
+ O($t3). (11)

3. Parallel algorithm development

To meet the research objective and create a general parallel
tracking algorithm, the new parallel algorithm was designed
to meet the following three requirements.

• Consistent: must provide results that are consistent with
the serial version and not introduce tracking errors in the
form of erroneous trajectories.

• Scalable: must scale up from one to hundreds of
processors without significant reductions in speedup per
processor added.

• Adaptable: must allow substitution of any sequential
tracking algorithm.

3.1. Parallel implementation strategy

The parallel algorithm for particle tracking was implemented
in C++ and Charm++, allowing the algorithm to be naturally
expressed using object-oriented programming. Charm++ is
an object-oriented parallel programming paradigm that acts as
an extension to the C++ language. It allows programming
objects (i.e. data structures, classes, etc) to be distributed
across multiple processors and asynchronously communicate
by sending and receiving messages. Thus, the resulting
program can be run on shared memory systems such as
multi-core workstations and on distributed memory systems
including high performance clusters.

4

Meas. Sci. Technol. 23 (2012) 025301 D Barker et al

(a)

(b)

(c)

Figure 1. Parallel implementation strategy: (a) 3D particle location data are divided into frame sets, (b) trajectory segments are tracked
within all frame sets simultaneously on parallel processors and (c) trajectory segments are merged to create global trajectories.

The general strategy used in this parallel particle-tracking
algorithm is to first decompose the particle data, consisting
of 3D particle positions at all time steps, into multiple sets of
consecutive frames. These frame sets are distributed between
a group of processors, where trajectory segments are built in
parallel. The trajectory segments from each frame set are
then compared with all segments in adjacent frame sets to be
merged into longer global trajectories. This approach is shown
in figure 1.

3.2. Data decomposition

The first step in parallelizing the tracking algorithm was
to decompose the problem into multiple work units to be
distributed across many processors. There are three possible
data-decomposition strategies for the tracking algorithm:
distributed particles, distributed frames and distributed object
space. The distribution of particles or object space would
require extensive communication between processors that do
not share memory. Therefore, frame decomposition was
chosen because the communication costs are low and it
exposed sufficient parallelism for both shared and distributed
memory systems. In this decomposition, the data are divided
into frame sets of size S consecutive frames, which are
distributed across processors as shown in figure 1. The
number of frames in a set S is the parallel decomposition
factor or frame-set size and is left as a tunable parameter with
a minimum value of eight frames as required for the trajectory
merge operation. These frame sets can be processed in parallel
using any sequential tracking algorithm. The key challenge to
this approach lies in merging the disjoint trajectory segments
without significant processor communication overhead.

3.3. Trajectory merging

A merge operation is required to concatenate local trajectory
segments spanning across a single frame set into global
trajectories that span multiple frame sets. This operation
falls between steps (b) and (c) in figure 1 and begins once
all local trajectory segments from two adjacent frame sets
have been constructed. Therefore, trajectory merging can
happen asynchronously without waiting for all trajectory
segments from all frame sets to be constructed. To maintain
consistency with the serial version, the linear regression based
cost function developed by Li et al [22] given in equation (8)
was used to determine if two local trajectory segments from
adjacent frame sets constitute a single trajectory. Only the
tails of each trajectory, composed of the first four and last
four linked particles, are sent to the merge function in order
to minimize data transfer between processors. The merge
function compares all trajectories constructed within the frame
set n to those in the frame set n + 1, where n is the frame-set
index from 1 to N − 1. If the first particle of the trajectory
segment from the frame set n + 1 is within a certain proximity
to the last particle from the frame set n, then the cost function
is evaluated. As shown in figure 2, the cost evaluation requires
four iterations per candidate trajectory to fully examine the
quality of fit for each particle in the tails. If the cost associated
with each of the four iterations is below a set threshold β, then
the two local trajectory segments are paired for merger.

3.4. Parallel communication and data flow

Parallel particle tracking occurs in five steps: (1) data input
and distribution, (2) tracking, (3) merge identification, (4)

5

Meas. Sci. Technol. 23 (2012) 025301 D Barker et al

Figure 2. Trajectory merge operation: four cost-function iterations are required to evaluate the merge of the last four linked particles of
trajectories in the frame set Fn with the first four linked particles of the trajectories in the frame set Fn+1.

global trajectory construction and (5) trajectory data output
to file. Figure 3 shows a simplified example of the parallel
communication and flow using only two processors and
particle data divided into four frame sets, i.e. two per processor.
In the first step, the 3D particle location data are read from
memory and distributed in frame sets of S frames to the
pool of processors. Next, each processor runs the sequential
tracking algorithm on its frame sets to build local trajectory
segments. Once the trajectory segments spanning two adjacent
frame sets have been constructed, the merge operation is
conducted as discussed in the previous section. The result
of the merge operation is a local mapping of trajectory
pairings between adjacent frame sets. The actual trajectory
data remain fragmented across processors at this point and
only the locally paired trajectory segment IDs are known
by each processor. Once all local trajectory merges have
been identified between each adjacent frame set, the global
trajectory construction process can begin. The purpose of this
phase is to consolidate the trajectory segments belonging to a
single global trajectory on the same processor. First, a set of
instructions is generated that defines the segments to be merged
along with their respective frame-set IDs and host processor.
A sample of these instructions is shown in table 1. Next, each
processor selects an equal subset of global trajectories and
begins communicating with the other processors to obtain the
segments needed for their construction. Once a processor has
received all of the contiguous trajectory segments and built
the global trajectories, it outputs them to a single file and
exits. The final results are a series of files (one per processor)
containing full length trajectories.

Table 1. Global merge map: final instructions for global trajectory
assembly from local trajectory segments.

Frame set number

Global trajectory ID 1 2 n · · · N

1 T1,1 T2,2 Tn,1 · · · TN,13
2 T1,34 T2,7 Tn,19 · · · TN,15

m
...

...
...

...
...

M T1,3 T2,1 Tn,24 · · · TN,4

4. Algorithm evaluation and results

The parallel particle-tracking algorithm was evaluated for
accuracy, consistency and scaling using three data sets. The
first data set was used to evaluate consistency with the
sequential version and was obtained from the PIV 3D standard
images data set #352 [24]. The second set consisted of a
large data set with uniform characteristics and was used to
evaluate the optimal parallel performance of the algorithm
on several large clusters. The third data set was generated
using computational fluid dynamics (CFD) and used to test the
parallel performance with non-uniform data and inherent work
load imbalance across processors. A wide range of machines
were used in the evaluation including a desktop workstation,
a moderate-size cluster (Turing) and one very large cluster
(BlueGene/P). The specifications of these machines can be
found in table 2.

4.1. Performance metrics

The trajectory reconstruction accuracy of the algorithm is
measured by two key metrics: the coverage ratio and the

6

Meas. Sci. Technol. 23 (2012) 025301 D Barker et al

Figure 3. Parallel tracking algorithm flow diagram for a simplified case of three global trajectories spanning four frame sets on two
processors.

Table 2. Computer systems used in parallel algorithm evaluation.

System name Number of processors CPU architecture RAM

Multi-core workstation 2 Intel(R) Xeon(R) E5530 2.4 GHz quad-core CPUs 16 GB/CPU
Turing cluster 1536 Apple G5 2 GHz X-serve cluster 4 GB/node
BlueGene/P cluster 163 840 PowerPC 450 CPUs 850 MHz 2 GB/node

correct ratio as shown in the equations below. The coverage
ratio (γcoverage) is the ratio of correct two-frame particle links
made during the tracking process (Lcorrect) to the total number
of known input links (Ltotal) [22]. A coverage value of 1
indicates that all of the input particles were tracked correctly.
The correct ratio (γcorrect) refers to the number of correct links
made with respect to the total number of links established
in the tracking process (Ltracked) [22]. A correct ratio of 1
indicates that all established particle links were accurately

reconstructed:

γcoverage = Lcorrect

Ltotal
(12)

γcorrect = Lcorrect

Ltracked
. (13)

Parallel performance can be measured in terms of speedup
and scalability. The speedup of the parallel algorithm is the

7

Meas. Sci. Technol. 23 (2012) 025301 D Barker et al

Table 3. Trajectory reconstruction results using the standard PIV data set with no noise #352 [24].

Number of processors Frames/set Run-time (s) γcorrect γcoverage Average trajectory length Trajectories tracked

2 8 0.619 0.984 0.923 32 1400
2 16 0.662 0.981 0.942 32 1444
2 32 0.692 0.980 0.954 32 1463
2 64 0.707 0.980 0.958 32 1468
1 (serial) 145 0.640 0.979 0.960 32 1471

Table 4. Trajectory reconstruction results using the standard PIV data set with heavy noise #352 [24]

Number of processors Frames/set Run-time (s) γcorrect γcoverage Average Trajectory length Trajectories tracked

2 8 0.485 0.992 0.245 9 1375
2 16 0.529 0.990 0.288 9 1627
2 32 0.554 0.980 0.311 9 1762
2 64 0.570 0.989 0.319 9 1805
1 (serial) 145 0.510 0.989 0.324 9 1831

ratio of serial execution time to parallel execution time given
the same work (equation (14)). The algorithm is timed from
data input to data output excluding reading and writing of
data from/to the hard drive. The measure of how well a
parallel application scales is the ratio of speedup achieved
to the number of processors. The optimal case is when

speedup
number of processors equals unity, in which case perfect scaling
is observed. However, in real applications, adding processors
creates overhead, and eventually, a loss in parallel efficiency
is observed:

speedup = sequential time
parallel time

. (14)

4.2. PIV standard 3D images data set #352

The standard 3D images data set #352 from [24] was selected
to test the parallel algorithm for trajectory reconstruction
accuracy and consistency in comparison with the serial
version. This simulated data set consists of an average of
300 particles per frame in three cameras over 145 frames [24]
and is available at www.piv.jp/image3d/image352. The
flow field is 2 cm × 2 cm × 2 cm and contains a jet impinging
on a wall with the inlet speed of 15 cm s−1 and the Reynolds
number of 3000. A subset of 3D trajectories from this set are
shown in figure 4. Accuracy was measured by comparing the
output trajectories with the true trajectories from the known
input data. This data set is too small for a full evaluation of
the parallel scaling and speedup, which are evaluated in the
following sections.

Five tracking runs were completed on this data set as
shown in table 3. The first run was conducted with the serial
algorithm to build the performance benchmark followed by
four runs of the parallel algorithm with different frame-set-
decomposition sizes (8, 16, 32 and 64 frames) on a desktop
workstation with two quad-core processors.

To evaluate the algorithm in the presence of noise, the
data set was heavily modified and used for reevaluation. 10%
of the known particles were randomly selected for removal to
simulate occlusion, 10% more ghost particles were randomly
added throughout the domain to simulate false detections
and all particle positions were perturbed by an average of

Figure 4. Trajectories from the standard PIV data set #352 spanning
75 frames or greater [24].

0.003 cm in each dimension (equivalent to a 0.5 pixel error in
particle centroid localization) to simulate common detection
uncertainty.

Results and discussion: The results show that tracking
was consistent between the serial and the parallel versions,
achieving average tracking correct ratios of 0.98 and average
coverage ratios of 0.94. The average length of the trajectories
remains at 32 frames and is consistent with the serial results
and input data. This indicates that the merge operation is
performing successfully. When the frame-set size S is reduced
from 64 frames to 8, the correct tracking ratio increases
slightly, while the coverage ratio decreases slightly. This is
acceptable deviation since the accuracy (correctness) of the
tracked particles remains constant and no tracking errors are
introduced. Overall, the parallel algorithm was successful in
preserving long and accurate trajectories when noise is low. In
the presence of heavy noise and uncertainty, the performance
diminishes significantly. The results of the parallel algorithm’s
performance in the presence of noise are shown in table 4.

8

Meas. Sci. Technol. 23 (2012) 025301 D Barker et al

−1000
−500

0
500

1000
1500

2000 −2000
−1500

−1000
−500

0
500

1000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Y (mm)
X (mm)

Z
(m

m
)

Figure 5. Simulated trajectories for scaling analysis.

Table 5. Impact of parallel decomposition factor, frame-set size (S), on parallel speedup (Turing cluster) on the data set of 1024 particles
and 8192 frames.

Number of Frame-set Frame sets Processed frames
processors size S per processor Time (s) Speedup per second (fps)

1 (serial) 8192 1 3662.57 1.00 2.23
32 8 32 66.79 54.84 122.65
32 16 16 69.22 52.91 118.35
32 32 8 67.95 53.90 120.56
32 64 4 69.37 52.80 118.09
32 128 2 70.04 52.29 116.96
32 256 1 85.74 42.72 95.54

While the coverage ratio decreases with added noise, it is
important to note that the correct ratio is still near 99%.

4.3. Simulated vortex for parallel performance evaluation

A large uniform data set was created to test the optimal
parallel performance of the algorithm under near-perfect load
balancing for up to 512 processors. This data set consists
of 1024 particles moving with uniform acceleration in a
downward spiral through a 2 m × 2 m × 6 m domain
as shown in figure 5. The spacing–displacement ratio was
greater than 10 in order to ensure 100% tracking coverage and
accuracy. All trajectories are of equal length and span 8192
frames; therefore, each frame contains the same number of
particles and parallel workload is balanced. This type of data
set eliminates the possibility of tracking errors and permits
isolated evaluation of the parallel performance in terms of
scaling efficiency and speedup. To assist in the evaluation, the
data set was parsed to create six total sets representing three
variations in total particles (1024, 512 and 256 particles) and
three trajectory lengths (8192, 4096 and 2048 frames). The

particle trajectories are described in the following equations,
where θ and d are the angle and the diameter of rotation,
respectively, and [xo, yo, zo] is the particle’s random location
in the initial frame:

x = xo +
d

2
sin(θ) (15)

y = yo +
d

2
cos(θ) (16)

z = zo +
d

2π
θ . (17)

The Turing cluster was used to evaluate the impact of
varying the frame decomposition (frame-set size) from 8 to
256 frames on the parallel performance for a fixed number
of processors. The BlueGene/P cluster was used to test
the scalability and speedup when the number of frames and
particles are varied.

Results and discussion: Table 5 shows how the parallel
decomposition factor, the frame-set size S, impacts speedup.
With 32 processors working on the data set of 1024

9

Meas. Sci. Technol. 23 (2012) 025301 D Barker et al

1 2 4 8 16 32 64 128 256 512

Number of Processors

10

100

1000

Ti
m

e
(s

ec
on

ds
)

1024p8192f
1024p4096f
1024p2048f
512p8192f
512p4096f
256p8192f
256p4096f

Figure 6. Scaling results from parallel execution on BlueGene/P (data sets are labeled as ApBf, where A is the number of particles and B is
the number of frames).

16 32 64 128 256 512

Number of Processors

10

100

S
pe

ed
up

 (
S

eq
ue

nt
ia

l /
 P

ar
al

le
l T

im
e)

1024p2048f
512p4096f
256p8192f
256p4096f
y = x

Figure 7. Speedup graph from parallel execution on BlueGene/P (data sets are labeled as ApBf, where A is the number of particles and B is
the total number of frames).

particles and 8192 frames, the speedup remains nearly
constant for all frame-set sizes until the number of frame
sets per processor approaches 1. Once this happens,
the processors are unable to hide communication latency
by overlapping communication with computation. Thus,
two or more frame sets should be assigned to each
processor to minimize idle time. A frame-set size of
S = 8 frames was selected for the following analysis to ensure
that at least 512 processors could be used with the largest
data set. The speedup of 54 achieved in this evaluation was
greater than the number of processors used, indicating that the
parallel algorithm has better memory characteristics than the
sequential version due to slight differences in implementation.

Figure 6 shows strong scaling of the six data sets up
to 512 processors on the BlueGene/P cluster. This graph

demonstrates the impact of diminishing returns and loss of
parallel efficiency as the number of processors increases. The
run-time for the data set with 1024 particles remains at a near-
constant slope with added processors, while the data set with
only 256 particles begins to reduce in slope as inefficiencies
arise. Clearly, the data set with more particles has more work
and can be processed more efficiently with a larger number
of processors. Thus, the program scales very well with an
increasing number of particles tracked. The slopes of the
performance curves for data sets of common particle numbers
are nearly equal when the number of frames is 4096 or 8192,
indicating that the number of frames processed has little impact
on the scaling performance.

Figure 7 shows the speedup over the sequential algorithm.
The straight line represents a linear speedup and perfect

10

Meas. Sci. Technol. 23 (2012) 025301 D Barker et al

Figure 8. CFD simulated displacement indoor air ventilation velocity vector field and velocity magnitude contours (m s−1).

Figure 9. Subset of the CFD simulated particle trajectories in displacement indoor air ventilation.

scaling. For the first two points on the data set of 512 particles
and 4096 frames and the three points on the data set of 1024
particles and 2048 frames, a super-linear speedup is observed.
This phenomenon is normally due to differences between the
sequential and the parallel algorithms or cache effects (the
parallel version has better memory characteristics).

As the number of processors increases (the problem size
remaining constant), the curve becomes sub-linear due to a
decline in parallel efficiency. As the amount of work per
processor decreases, the communication is more prevalent
(because of less overlap with computation) and this decreases
performance (less communication is being overlapped with

computation). Again, this graph clearly demonstrates that
the algorithm scales very well with an increasing number
of particles, and the number of frames has little effect. A
maximum speedup of roughly 200 is achieved with 256
processors for 1024 particles and 2048 frames. The speedup
would continue to increase for this number of processors if
larger data sets (particles) were used.

4.4. Simulated displacement ventilation flow

A CFD simulated indoor air flow field was used to test the
trajectory reconstruction accuracy and parallel performance

11

Meas. Sci. Technol. 23 (2012) 025301 D Barker et al

0 500 1000 1500 2000 2500 3000 3500 4000 4500
400

500

600

700

800

900

1000

1100

1200

Frame number

N
um

be
r

of
 p

ar
tic

le
s

Figure 10. Fluctuation of the number of particles per frame for the CFD simulated data set.

of the new tracking algorithm in the presence of large velocity
gradients and non-uniform particle seeding over time. This
is done to determine how the algorithm performs when the
computational load is unbalanced across processors. The
data set includes 1540 particles tracked over 4096 frames to
accurately evaluate parallel speedup. The flow domain was
a large room (3 m × 3 m × 6 m) with a slot inlet spanning
the width of the room and located on the front wall near the
ceiling and a slot outlet located on the opposite wall near
the floor (figure 8). The inlet boundary condition was a
constant uniform velocity of 4 m s−1 and the outlet boundary
was a standard pressure outlet set to atmospheric conditions.
Turbulence was modeled using a Reynolds averaged Navier–
Stokes approach. The resulting steady-state flow field solution
is shown in figure 8.

Particle trajectories were simulated using a Lagrangian
tracking model, assuming massless particles shown in figure 9.
Particles were injected throughout the domain at two instances
in time (frames 0 and 2000) to obtain a non-uniform number of
particles per frame as shown in figure 10. The data were further
unbalanced due to the presence of large velocity gradients,
which caused a portion of the particles to leave the domain
more quickly than others, leading to variation in trajectory
lengths.

Results and discussion: The results from the trajectory
reconstruction analysis are presented in table 6. The algorithm
worked well and reconstructed the trajectories with nearly
100% coverage and correctness. However, the parallel
algorithm constructed more trajectories and had a lower
average trajectory length than the serial version, which
indicates that some shorter trajectories did not completely
merge. This is likely due to a locally small particle
spacing–displacement ratio near the boundaries of several
frame sets, which resulted in match ambiguity. This,

Table 6. Trajectory reconstruction accuracy results for CFD data set
(workstation).

Frame set Average Trajectories
size S γcorrect γcoverage trajectory length tracked

8 0.999 0.995 1234 2057
64 0.998 0.998 1232 2070

256 0.998 0.999 1228 2079
512 0.998 0.999 1222 2088

4096 (serial) 0.998 0.999 1359 1879

however, does not introduce tracking errors as seen in no
reduction of the correct tracking ratio values and therefore
it may be an acceptable trade-off for increased processing
speed and scalability of data storage. The frame-set
size of 8 resulted in the highest percentage of correct
trajectories and was used for the parallel performance
analysis.

The Turing cluster and multi-core workstation were used
to evaluate the parallel performance with the non-uniform data
set and the results are given in table 7. As expected, the
speedups achieved were lower than those for the uniform data
sets in the previous section due to the inherent load imbalance,
which caused an increase in processor idle time. On the Turing
cluster, the maximum speedup of 42 was achieved with 128
processors for a processed frame rate of 586 fps. The multi-
core workstation achieved a maximum speedup of 7 with
8 processors and processed 402 fps. The workstation with
2.4 GHz processor cores and shared memory was four times
faster than the Turing cluster with 2 GHz cores and distributed
memory when processing the sequential code. These results
show that real-time processing of the tracking algorithm for
a camera frame rate of 100 fps could be possible with either
machine.

12

Meas. Sci. Technol. 23 (2012) 025301 D Barker et al

Table 7. Parallel performance results for CFD data set, frame-set
size (S) = 8 frames.

Number of Run-time Processed frames
System processors (s) Speedup per second (fps)

Workstation 8 10.18 7.02 402.36
4 19.54 3.66 209.62
2 59.01 1.21 69.41
1 (serial) 71.43 1.00 57.34

Turing cluster 128 6.98 42.02 586.82
64 8.68 33.79 471.89
32 12.41 23.63 330.06
16 27.42 10.70 149.38
8 37.88 7.74 108.13
1 (serial) 293.31 1.00 13.96

5. Conclusion

Parallel processing of the particle-tracking algorithm is a key
step in achieving a scalable 3D-PTV measurement system,
where large data sets are seamlessly distributed and processed
across many computers. Such a scalable system directly
addresses the data management issues experienced in 3D-
PTV experiments and could eventually lead to real-time
measurement capabilities. A parallel-processing framework
was developed and evaluation on three simulated data sets
proved that it was consistent with the serial version and could
efficiently scale to over 500 processors. The algorithm was
based on frame decomposition and programmed using object-
oriented C++ with the Charm++ extensions for asynchronous
message passing between distributed objects. This approach
makes adapting the new parallel algorithm for other serial
particle-tracking methods relatively trivial. Any serial tracking
algorithm that inputs frames of particle data and outputs
trajectories can be encapsulated in an object (C++ class) and
substituted with minimal modifications. One key aspect of
the parallel algorithm was the asynchronous trajectory merge
operation that minimizes processor idle time and data transfer
between nodes.

Evaluation of the new algorithm with the PIV standard
3D images dataset #352 demonstrated that it was consistent
with the optimized serial version in terms of trajectory
reconstruction accuracy as quantified by the correct tracking
ratio. This data set also validated the new algorithm’s
ability to handle merging of trajectories of non-uniform length
distributed across many processors. In a few instances, several
local trajectory segments did not merge due to short trajectories
formed near the frame-set intersections. However, this may
be an acceptable trade-off for runtime speedup and scalability
since major tracking errors were not introduced into the results.
Future work can be conducted to optimize the merge function.

The parallel performance evaluation showed that the
new algorithm scaled well with an increasing number of
particles tracked, while the number of frames processed had
very little impact on the scaling performance. This implies
that the parallel performance of the algorithm will remain
nearly constant if only a few frames are processed at a time,
as in real-time data streaming from ‘smart cameras’, or if
thousands of frames are processed in a batch. If camera

resolution is increased to grow the number of resolved tracer
particles, then a proportional number of processors could
be added to maintain parallel performance. The parallel
decomposition factor (frame-set size S) did not influence the
speedup significantly as long as each processor was assigned
more than one frame set. A significant speedup of up
to 200 was obtained with 256 processors for the optimal
case of inherently load-balanced data (1024 particles and
2048 frames), while for a more realistic data set containing
non-uniform trajectories it was observed that the speedups
were still significant: 42 on 128 processors at 586 frames
processed per second. While scaling is consistent from multi-
core workstations to large clusters, the magnitude of speedup
achieved is very dependent on the specific architecture of the
system including cache size and processor clock rate.

Acknowledgments

We gratefully acknowledge the use of the Turing cluster
maintained and operated by the Computational Science and
Engineering Program at the University of Illinois.

References

[1] Pereira F, Stuer H, Graft E C and Gharib M 2006 Two-frame
3d particle tracking Meas. Sci. Technol. 17 1680–92

[2] Ouellette N T, H Xu and Bodenschatz E 2006 A quantitative
study of three-dimensional Lagrangian particle tracking
algorithms Exp. Fluids 40 301–13

[3] Virant M and Dracos T 1997 3D PTV and its application on
Lagrangian motion Meas. Sci. Technol. 8 1539–52

[4] Luthi B, Tsinober A and Kinzelbach W 2005 Lagrangian
measurement of vorticity dynamics in turbulent flow
J. Fluid Mech. 528 87–118

[5] Hoyer K, Holzner M, Lüthi B, Guala M, Liberzon A
and Kinzelbach W 2005 3D scanning particle tracking
velocimetry Exp. Fluids 39 923–34

[6] Straw A D, Branson K, Neumann T R and Dickinson M H
2011 Multi-camera real time 3d tracking of multiple flying
animals J. R. Soc. Interface 8 395–409

[7] Malik N A, Dracos T and Papantoniou D A 1993 Particle
tracking velocimetry in three-dimensional flows: II. Particle
tracking Exp. Fluids 15 279–94

[8] Adrian R J 1991 Particle-imaging techniques for experimental
fluid mechanics Annu. Rev. Fluid Mech. 23 261–304

[9] Kreizer M and Liberzon A 2010 Three-dimensional particle
tracking method using FPGA-based real-time image
processing and four-view image splitter Exp. Fluids
50 613–20

[10] Chan K Y, Stich D and Voth G A 2007 Real-time image
compression for high-speed particle tracking Rev. Sci.
Instrum. 78 023704

[11] Medeiros H, Holguı́n G, Shin P J and Park J 2010 A parallel
histogram-based particle filter for object tracking on
SIMD-based smart cameras Comput. Vis. Image Underst.
114 1264–72 (special issue on embedded vision)

[12] Kreizer M, Ratner D and Liberzon A 2009 Real-time image
processing for particle tracking velocimetry Exp. Fluids
48 105–10

[13] Gropp W, Lusk E, Doss N and Skjellum A 1996 A
high-performance, portable implementation of the MPI
message passing interface standard Parallel Comput.
22 789–828

[14] Kale L V and Krishnan S 1993 CHARM++: A portable
concurrent object oriented system based on C++ Proc.

13

http://dx.doi.org/10.1088/0957-0233/17/7/006
http://dx.doi.org/10.1007/s00348-005-0068-7
http://dx.doi.org/10.1088/0957-0233/8/12/017
http://dx.doi.org/10.1017/S0022112004003283
http://dx.doi.org/10.1007/s00348-005-0031-7
http://dx.doi.org/10.1098/rsif.2010.0230
http://dx.doi.org/10.1007/BF00223406
http://dx.doi.org/10.1146/annurev.fl.23.010191.001401
http://dx.doi.org/10.1007/s00348-010-0964-3
http://dx.doi.org/10.1063/1.2536719
http://dx.doi.org/10.1016/j.cviu.2010.03.020
http://dx.doi.org/10.1007/s00348-009-0715-5
http://dx.doi.org/10.1016/0167-8191(96)00024-5

Meas. Sci. Technol. 23 (2012) 025301 D Barker et al

Conf. on Object-Oriented Programming Systems,
Languages and Applications pp 91–108

[15] Meinhart C D, Prasad A K and Adrian R J 1993 A parallel
digital processor system for particle image velocimetry
Meas. Sci. Technol. 4 619–26

[16] Satake S I, Kanamori H, Kunugi T, Sato K, Ito T
and Yamamoto K 2007 Parallel computing of a digital
hologram and particle searching for
microdigital-holographic particle-tracking velocimetry
Appl. Opt. 46 538–43

[17] Satake S I, Anraku T, Kanamori H, Kunugi T, Sato K and
Ito T 2008 Study on high speed parallel algorithm using pc
grid environment for visualization measurements by digital
holographic particle tracking velocimetry Comput. Phys.
Commun. 178 1–7

[18] Maas H G, Gruen A and Papantoniou D 1993 Particle
tracking velocimetry in three-dimensional flows: I.
Photogrammetric determination of particle coordinates Exp.
Fluids 15 133–46

[19] Shindler L, Moroni M and Cenedese A 2010 Spatial–temporal
improvements of a two-frame particle-tracking algorithm
Meas. Sci. Technol. 21 115401

[20] Willneff J and Gruen A 2002 A new spatio-temporal matching
algorithm for 3d-particle tracking velocimetry Proc. 9th Int.
Symp. on Transport Phenomena and Dynamics of Rotating
Machinery vol 10 p 14

[21] Kitzhofer J and Bruecker C 2010 Tomographic particle
tracking velocimetry using telecentric imaging Exp. Fluids
49 1307–24

[22] D Li, Zhang Y, Sun Y and Yan W 2008 A multi-frame particle
tracking algorithm robust against input noise Meas. Sci.
Technol. 19 105401

[23] Biwole P H, Yan W, Zhang Y and Roux J J 2009 A complete
3d particle tracking algorithm and its applications to the
indoor airflow study Meas. Sci. Technol. 20 115403

[24] Okamoto K, Nishio S, Kobayashi T, Saga T and Takehara K
2000 Evaluation of the 3d-PIV standard images (PIV-STD
project) J. Vis. 3 115–23

14

http://dx.doi.org/10.1088/0957-0233/4/5/013
http://dx.doi.org/10.1364/AO.46.000538
http://dx.doi.org/10.1016/j.cpc.2007.07.006
http://dx.doi.org/10.1007/BF00190953
http://dx.doi.org/10.1088/0957-0233/21/11/115401
http://dx.doi.org/10.1007/s00348-010-0879-z
http://dx.doi.org/10.1088/0957-0233/19/10/105401
http://dx.doi.org/10.1088/0957-0233/20/11/115403
http://dx.doi.org/10.1007/BF03182404

	Nomenclature
	1. Introduction
	2. Particle-tracking algorithm
	2.1. Sequential particle-tracking algorithm
	2.2. Sequential algorithm optimizations

	3. Parallel algorithm development
	3.1. Parallel implementation strategy
	3.2. Data decomposition
	3.3. Trajectory merging
	3.4. Parallel communication and data flow

	4. Algorithm evaluation and results
	4.1. Performance metrics
	4.2. PIV standard 3D images data set #352
	4.3. Simulated vortex for parallel performance evaluation
	4.4. Simulated displacement ventilation flow

	5. Conclusion

