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Abstract—Power dissipation and energy consumption are be-
coming increasingly important architectural design constraints in
different types of computers, from embedded systems to large-
scale supercomputers. To continue the scaling of performance, it
is essential that we build parallel processor chips that make the
best use of exponentially increasing numbers of transistors within
the power and energy budgets. Intel SCC is an appealing option
for future many-core architectures. In this paper, we use various
scalable applications to quantitatively compare and analyze
the performance, power consumption and energy efficiency of
different cutting-edge platforms that differ in architectural build.
These platforms include the Intel Single-Chip Cloud Computer
(SCC) many-core, the Intel Core i7 general-purpose multi-core,
the Intel Atom low-power processor, and the Nvidia ION2
GPGPU. Our results show that the GPGPU has outstanding
results in performance, power consumption and energy efficiency
for many applications, but it requires significant programming
effort and is not general enough to show the same level of
efficiency for all the applications. The “light-weight” many-core
presents an opportunity for better performance per watt over
the “heavy-weight” multi-core, although the multi-core is still
very effective for some sophisticated applications. In addition,
the low-power processor is not necessarily energy-efficient, since
the runtime delay effect can be greater than the power savings.

I. INTRODUCTION

Following Moore’s law, the number of transistors that can be
placed on a chip keeps increasing rapidly with each technology
generation. Not surprisingly, users expect the performance to
also improve over time with the increase in the number of
transistors. However, performance depends on multiple factors
beyond the transistor count.

The architecture community has historically tried to turn the
higher transistor count into higher performance. For example,
during the single-thread era, excess transistors were used for
architectural features such as pipelining, branch prediction, or
out-of-order execution. These features were able to improve
performance while largely keeping the application unchanged.

However, in the last several years, some key technology
parameters such as the supply voltage have stopped scal-
ing. This has led to chips with unsustainably-high power,
power density and energy consumption. This fact combined
with the diminishing returns from single-thread architectural
improvements, has pushed forward thread parallelism as the
only solution to make effective use of the large number of
transistors available. The result has been a paradigm shift
toward parallelism.

A key architectural challenge now is how to support in-
creasing parallelism and scale performance, while being power
and energy efficient. There are multiple options on the table,
namely “heavy-weight” multi-cores (such as general purpose
processors), “light-weight” many-cores (such as Intel’s Single-
Chip Cloud Computer (SCC) [1]), low-power processors (such
as embedded processors), and SIMD-like highly-parallel archi-
tectures (such as General-Purpose Graphics Processing Units
(GPGPUs)).

The Intel SCC [1] is a research chip made by Intel Labs
to explore future many-core architectures. It has 48 Pentium
(P54C) cores in 24 tiles of two cores each. The tiles are
connected by a four by six mesh in the chip. The SCC naturally
supports the message passing programming model, as it is not
cache-coherent in hardware. We have ported CHARM++[2]
and Adaptive MPI (AMPI) [2] to this platform to be able to
run existing sophisticated applications without any change.

The goal of this paper is to explore various trade-offs
between the SCC and the other types of processors. We
use five applications to study their power and performance:
NAMD, Jacobi, NQueens, Sort and CG (conjugate gradient).
These applications exhibit different characteristics in terms of
both computation and communication. The processors used
are the Intel SCC as a light-weight many-core, the Intel Core
i7 as a heavy-weight multi-core, the Intel Atom as a low-
power processor, and the Nvidia ION2 as a GPGPU. These
processors represent different cutting-edge architectures. To
compare these architectures, the applications are executed with
the same input parameters and we measure speed, power, and
energy consumption.

Our results show that each of the designs is effective in some
metric or condition and there is no single best solution. For
example, the GPGPU provides a significant advantage in terms
of power, speed and energy in many cases, but its architecture
is not general enough to fit all the applications efficiently. In
addition, the GPGPU requires significant programming effort
to achieve this efficiency (as we had to use different codes to
run on the GPGPU) and cannot run legacy codes.

The Intel SCC results suggest that light-weight many-cores
are an opportunity for the future. The SCC has lower power
than the heavy-weight multi-core and runs faster than the low-
power design. Also, the light-weight many-core is general
enough to run legacy code and is easy to program (in contrast
to the GPGPU). However, some weaknesses of the platform
should be addressed in future designs to make it competitive
with sophisticated multi-cores. One such weakness that we



identified is slow floating-point performance.
This paper also proves that the low-power processor does

not necessarily result in less energy consumption. As shown
by our data on the Intel Atom platform, the extra delay has a
greater effect than the power savings achieved.

The rest of this paper is organized as follows. §II describes
the architecture of the platforms that we study. §III briefly
introduces the applications, as their characteristics are very
important to understand their scaling and power consumption
on different platforms. §IV evaluates the platforms using the
applications. We compare the architectures in §V using the
results of the previous section and analyze the tradeoffs of
each one. We discuss the related work in §VI and conclude in
§VII.

II. PLATFORMS

Here we describe the platforms that we evaluate, with a
focus on their design concept and level of parallelism. Among
these platforms, the SCC is a research chip while the others
are examples of commodity platforms, which are being widely
used in different machines.

A. Intel Single-chip Cloud Computer

The “Single-Chip Cloud Computer” (SCC) is Intel’s new
research many-core architecture. It has 48 Pentium cores
connected through a mesh interconnect. It has been created
by Intel Labs to facilitate software research on future many-
core platforms. This chip is not cache coherent and it naturally
supports the message passing parallel programming paradigm.

Figure 1 shows the architecture overview of the SCC [1].
The cores are arranged in groups of two in 24 tiles. The
tiles are connected in a four by six mesh configuration. The
cores are simple second-generation off-the-shelf Pentium cores
(P54C). Each core has 16KB L1 data and 16KB L1 instruction
caches as well as a 256KB unified L2 cache. Each tile has a
16KB SRAM called Message Passing Buffer (MPB), which is
used for communication inside the chip. These MPBs form a
shared address space used for data exchange. The cores and
MPB of a tile are connected to a router by Mesh Interface
(I/F) unit. The SCC also has four DDR3 memory controllers
in the four corners of the mesh network to connect cores to
memory.

Fig. 1. Architecture overview of the SCC.

The SCC is implemented in 45nm CMOS technology and
has 1.3 billion transistors. The area of each tile is 18 mm2

with a total die area of 567 mm2. Power for the full chip

ranges from 25W to 125W. It consumes 25W at 0.7V, with
125MHz cores, 250MHz mesh, and 50◦C. It consumes 125W
at 1.14V, with 1GHz cores, 2GHz mesh, and 50◦C. Power for
the on-die network is 6W for a 1.5 Tb/s bisection bandwidth
and 12 W for a 2 Tb/s bisection bandwidth. Figure 2 shows
the power breakdown of the chip in two different modes: full
power and low power [3].

Fig. 2. Power breakdown of the SCC in full-power and low-power mode
(from J. Howard et al. [3]).

The SCC was designed with power management in mind.
It includes instructions that let programmers control voltage
and frequency. There are 8 voltage domains on a chip: one
for the memory controllers, one for the mesh, and six to
control voltage for the tiles (at the granularity of 4-tile blocks).
Frequency is controllable at the granularity of an individual
tile, with a separate setting for the mesh, thereby providing a
total of 25 distinct frequency domains. The RCCE library [4]
provides easy access to these features, but it is more limited
than the available hardware features [3].

As mentioned, message passing is the natural way of
programming this non-cache-coherent chip. For this purpose,
there is a low level message passing interface called RCCE
that provides low level access to the communication features
of the SCC. It was designed so that the chip can still operate
without any operating system (“bare metal mode”) to reduce
the overheads [4]. However, Linux can also be run on the SCC,
which is the most common usage, and we ran our experiments
in this mode. In addition, there is another interface called
Rckmb, which provides the data link layer for running network
services such as TCP/IP. We used the latter to port CHARM++
and run existing applications. Using other layers to port
CHARM++ could result in some communication performance
improvement; however, it would not change our conclusions.

Porting CHARM++ and the applications did not involve
any conceptual difficulty as the SCC can be easily viewed
as a cluster on a chip. However, there are many technical
issues involved in working with it. These include dealing with
old compilers, an old operating system, and unavailability of
some standard software and libraries. Unfortunately, we could
not perform many of the intended experiments because of
these technical issues and others took much more time than
expected.



B. Other Platforms

Intel Core i7 Processor: The Intel Core i7 is a 64-bit
x86-64 processor. We have used the Core i7 860 Nehalem
processor chip, which has four CPU cores and on-chip cache
memory on one 45nm die. Hyperthreading support allows it to
appear to the OS as eight processing elements. The cores cycle
at 2.8GHz (disregarding Turbo Mode), which is a relatively
high frequency. Each of the four cores has 32KB instruction
and 32KB data Level 1 caches, and 256KB of Level 2 cache.
The four cores share an inclusive 8MB Level 3 cache. The
specification of the Intel Core i7 is shown in Table I.

TABLE I
INTEL CORE I7 PROCESSOR SPECIFICATIONS

Processor Number i7-860
# of Cores 4
# of Threads 8
Clock Speed 2.8 GHz
Cache Size 8 MB
Lithography 45 nm
Max TDP 95W
VID Voltage Range 0.65V-1.40V
Processing Die Size 296 mm2

# of Processing Transistors on Die 774 million

Intel Atom D525: The Intel Atom is the ultra-low-voltage
x86-64 CPU series from Intel. It is designed in 45 nm CMOS
and used mainly in low power and mobile devices. Hyper-
threading is also supported in this processor. However, there
is no instruction reordering, speculative execution or register
renaming.

Due to its modest 1.8 GHz clock speed, even the fastest
Atom D525 is still much slower than any desktop processor.
The main reason behind our selection of the Atom for our
experiments is that, while desktop chips have a higher fre-
quency, the Atom is hard to beat when it comes to power
consumption. Atom allows manufacturers to create low-power
systems. However, low power does not always translate into
high efficiency, meaning that Atom may have low performance
per watt consumed. We have explored this issue in our
experiments.

The specification of the Intel Atom processor that we used
is shown in Table II.

TABLE II
INTEL ATOM D525 PROCESSOR SPECIFICATIONS

Processor Number D525
# of Cores 2
# of Threads 4
Clock Speed 1.80 GHz
Cache Size 512 KB
Lithography 45 nm
Max TDP 13W
VID Voltage Range 0.800V-1.175V
Processing Die Size 87 mm2

# of Processing Transistors on Die 176 million

Nvidia ION2 Platform: Nvidia ION is a system/mother-
board platform that includes Nvidia’s GPU, DDR3 or DDR2
SDRAM, and the Intel Atom processor. The Nvidia ION2

has a dedicated graphics card for the new Atom CPUs. The
ION2 is based on the GT218 chip (GeForce 305M, 310M)
with dedicated memory (compared to the old ION that was a
chipset graphics card). ION2 systems can use CUDA (Nvidia’s
General-Purpose Computing on Graphics Processing Units
technology) as well as OpenCL (Open Computing Language),
to exploit the parallelism offered by the CPU and the GPU
together. This platform is used in low-power devices, and yet
is equipped with a GPU. Hence it has the potential to offer
great benefits in performance and power at the same time.
We have used a 12” ION2 Pinetrail netbook platform for our
experiments.

The specification of the CPU was mentioned in Table II. The
specification of the graphics processor is shown in Table III.

TABLE III
NVIDIA ION2 GRAPHICS CARD SPECIFICATIONS

ION Series ION2
GPU Number GT218
# of CUDA Cores 16
Clock Speed 475 MHz
Memory 256 MB
Memory bus width 64-bit
Power consumption 12W

III. APPLICATIONS

The characteristics of the applications are important to un-
derstand their different behavior and derive conclusions about
the architectures. In this section, we describe the applications
we used to examine the different parallel architectures. We
choose scalable parallel applications that use CHARM++ [2]
or MPI message passing paradigms. For the GPU platform,
we use appropriate versions of the applications based on the
OpenCL or CUDA models. The benchmarks are reasonably
optimized but not highly optimized for any particular architec-
ture. These applications represent different classes of programs
with different characteristics to stress the platforms.

Iterative Jacobi: The Jacobi calculation is a useful bench-
mark that is widely used to evaluate many platforms and
programming strategies. A data set (2D array of values in
our case) is divided among processors and is updated in an
iterative process until a condition is met. The communication
is mostly a nearest neighbor exchange of values. An OpenCL
implementation was used for ION2, while a CHARM++ ver-
sion was used for the other platforms.

We selected Jacobi in our experiments since it is repre-
sentative of stencil computations, which are widely used in
scientific programs.

NAMD: NAMD is a highly scalable application for
Molecular Dynamics simulations [5]. It uses hybrid spatial
and force decomposition to simulate large molecular systems
with high performance. It is written in CHARM++ to exploit
its benefits such as portability, adaptivity and dynamic load
balancing. It typically has a local neighbors communication
pattern without bulk synchronization and benefits from com-
munication and computation overlap. It also tries to keep its
memory footprint small in order to utilize caches and achieve



better memory performance. We chose this application to
represent dynamic and complicated scientific applications. We
used the ApoA1 system as input, which has 92,224 atoms.

NQueens: The NQueens puzzle is the problem of placing
n chess queens on an n × n chessboard so that no two
queens attack each other. The program will find the number of
unique solutions in which such valid placement of queens is
possible. This problem is a classic example of the state space
search problems. Since NQueens is an all-solutions problem,
the entire solution tree needs to be explored. Thus, this
problem also presents a great opportunity for parallelization
with minimum communication.

We selected this problem since it is an integer program, as
opposed to the other floating-point problems, and it represents
state space search applications.

CG: Conjugate Gradient is one of the NAS Parallel
Benchmarks (NPB) [6], which are widely used to evaluate the
performance of different parallel systems. CG is an iterative
method and involves lots of communication and data move-
ment. We chose it to stress the communication capabilities of
our platforms. Unfortunately, we did not have a version of it
available on our GPU system.

Integer Sort: Parallel sorting is a widely used kernel to
benchmark parallel systems because it represents commercial
workloads with few computation and heavy communication.
It does not have the massive floating point computations and
regular communication patterns (such as nearest neighbors) of
many scientific workloads. We use a straightforward imple-
mentation of Radix Sort in OpenCL and a similar CHARM++
version.

Table IV shows some performance counter values for the
applications. They are obtained using the PAPI library running
on the Core i7 system. The numbers are normalized with
respect to the number of dynamic instructions executed. Since
the applications are already well-known, these few numbers
give enough insight to help explain the results.

TABLE IV
PERFORMANCE COUNTERS FOR THE APPLICATIONS

Jacobi NAMD NQueens CG Sort
L1 Data Misses 0.0053 0.0053 0.0003 0.0698 0.0066
Cond. Branches 0.0205 0.0899 0.1073 0.1208 0.0556
Float-pt operations 0.0430 0.3375 0.0004 0.2078 0.0001

IV. EVALUATION RESULTS

We now run the applications on the proposed platforms
and measure the scaling behavior and the power and energy
consumption. The data provides insight into the effectiveness
of different architectural approaches. We focus on the ability
of the applications to exploit the parallelism of the platform
and how using more parallelism will affect power and en-
ergy consumption. We connected power meters to the whole
systems (rather than just the processor chips) to measure the
power consumption.

A. Intel SCC

We have ported CHARM++ to the SCC using the network
layer (TCP/IP) provided by Rckmb. Thus, CHARM++ pro-
grams can run on the SCC hardware without any change to
the source code. This simplifies the porting of software sig-
nificantly. We used the highest performance options available
in the SCC software toolkit (1.3) to run the experiments and
characterize the system. Table V shows the SCC configuration
used in the experiments.

TABLE V
SCC CONFIGURATION USED IN THE EXPERIMENTS

Operating mode Linux
Communication mechanism TCP/IP
Tile frequency 800 MHz
Mesh frequency 1600 MHz
Memory controller frequency 1066 MHz
Supply Voltage 1.1 V
Idle power 39.25 W

Figure 3 shows the speedup of the five applications on
different numbers of cores. It can be observed that using
more cores improves performance, and that all the applications
except CG are scalable on this platform. In addition, these
CHARM++ applications are scalable without any change to the
source code. In Jacobi, the execution time per step on one core
is 7.87s, and on the full machine is 0.32s. This corresponds
to a 24.6 speedup on 48 cores. NQueens takes 568.36s to
execute on one core and 19.66s on 48 cores. The resulting
speedup is 28, which is even higher than Jacobi. In NAMD,
the time per step is 34.96s on one core and 1.23s on all the
cores. This also corresponds to a speedup of 28 on 48 cores.
Thus, NAMD is an example of a full-fledged application that
can use many-core architectures effectively.
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Fig. 3. Speedup of the applications on different numbers of SCC cores.

Sort is the most scalable application, with a 32.7 speedup.
This shows that the network can handle the communication
effectively.

On the other hand, CG is the worst-scaling application,
with a speedup of just 4.91 on 32 cores. We could not run
it on more cores because this application requires the number



of cores to be a power of two. The reason why CG is not
scalable is the fine-grain global communication present in the
algorithm. For example, there is a global reduction after each
phase. Specifically, the performance counter data of Table IV
shows that CG has a high number of L1 cache misses on
Core i7. Since the problem size is small and fits in the cache,
the misses are caused by high communication. Thus, the SCC
communication system (network and software) may not be
suitable for this application. Optimizing the network for global
communication such as by adding a collectives network can
help significantly in this case. Also, tuning the runtime system
such as by tuning the collective algorithms may help.

As indicated above, CG requires a power-of-two number
of cores. This is an important consideration when designing
many-cores, since some programmers may assume the number
of cores to be a power of two for simplicity. A promising
solution is to use virtualization, and use any number of virtual
processors that the application needs on the available physical
processors. This feature is available in CHARM++ but we do
not evaluate it here.

Finally, we ran four of the applications on every possible
number of cores – from 1 to 48. The speedups are consistent
in all the applications. In NAMD, there is some noise due to
the application’s dynamic and adaptive behavior.

Figure 4 shows the power consumption of the platform using
different numbers of cores. These values are the maximum
values seen during the run time of each individual application.
For Jacobi, the power goes from 39.58W using just one core to
73.18W using all the 48 cores. NAMD’s power consumption
is similar to Jacobi. NQueens consumes more power, and goes
up to 85.5W.
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Fig. 4. Power consumption of the applications on different numbers of SCC
cores.

CG and Parallel Sort consume less power compared to the
other applications. This is mainly because these applications
are communication-bound and processors often stall, waiting
for the communications to be completed. CG consumes the
least power because it has the most stall time.

Figure 5 shows the energy consumed by each application,
which is the power multiplied by time of execution. The energy
of each application with a given number of cores is normalized

to the application’s energy using all the cores. This allows
us to compare the applications. The general trend shows that
using more cores to run the applications results in less energy
consumption on the SCC. This is because the performance
improvement attained by the added cores is higher than the
power increases. Note that on the left side of Figure 5 there
is a large reduction in energy as we use more cores. This is
because the idle power of the system is high compared to the
power added by adding one core, while the execution time
decreases notably. For example, when going from one to two
cores, the execution time drops to nearly half, while the power
difference is small. Therefore, the energy consumption drops
to nearly half.
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Fig. 5. Energy consumption of the applications on different numbers of SCC
cores. The data is normalized to the energy consumed with all the cores.

The highest energy drop is for Sort and the lowest is for
CG. This is because Sort is scalable, and the time savings is
more significant than the power added by using more cores.
Conversely, the inferior scalability of CG results in a small
drop in energy consumption. Again, one should keep in mind
the idle power when analyzing power and energy consumption
because it offsets the power increase with more cores, and the
time savings become more important.

B. Intel Core i7 Processor

We have used the CHARM++ infrastructure for the Intel
x86 64 platform. In addition, we have used the same Jacobi,
NAMD, NQueens, and Sort programs written in CHARM++
and the same CG written in MPI as the ones we ran on the
SCC. Since the Intel Core i7 is a quad core processor with
hyperthreading, we can run up to 8 threads.

Figure 6 shows the speedup of these applications on differ-
ent numbers of threads. By increasing the number of threads,
we initially observe good speedups. Note the reduction in
speedup when 5 threads are used as opposed to 4 threads.
This is probably because at least two threads have to share
the resources of one core. Therefore, they become slower and
slow down the whole application. However, with increased
parallelism, the application becomes faster and the slowdown
is compensated.
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Fig. 6. Speedup of the applications on different numbers of threads in the
Intel Core i7.

Figure 7 shows the power consumption of the Core i7
platform using different numbers of threads. As expected,
the power used by this processor increases as the number of
threads increases. However, the increase is much higher than
in other platforms. The power range of the Core i7 system is
from around 51W for the idle power up to 150W, which is
much higher than the SCC power.
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Fig. 7. Power consumption of the applications on different numbers of
threads in the Intel Core i7.

Figure 8 presents the energy consumed by each application,
which is the power multiplied by the execution time. As in
the case of the SCC, the energy is normalized to the energy
consumed when running all the threads. The general trend
is that with more cores, the energy consumption goes down.
Again, as we saw in the case of speedup, when using 5 threads,
we had some increase in the runtime and, therefore, in energy
consumption. Note that the reduction in energy is not as large
as in the SCC case.

C. Intel Atom D525

The Atom D525 is a dual core processor in which each
core is 2-way hyperthreaded. All the 4 threads can execute
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Fig. 8. Energy consumption of the applications on different numbers of
threads in the Intel Core i7. The data is normalized to the energy consumed
with all the threads.

independently. Hence we can specify up to 4 processors to
CHARM++. In Figure 9, we observe good speedups with the
increase in the number of threads for several programs.
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Fig. 9. Speedup of the applications on different numbers of threads in the
Atom processor.

Figure 10 shows that the Atom system consumes much less
power than the other platforms. The increase in power per
thread added is less than 1 W. Since the idle power of the entire
system is about 27.5 W, the power increase due to having all
four threads active is about 15% of the idle power.

In Figure 11, we observe that using more threads leads
to less energy consumption, like in the other platforms. The
power used by the Atom increases with an increase in the
number of threads. However, the increase is not as rapid as
in the Core i7 because of Atom’s simpler architecture. At the
same time, execution time reduces considerably with more
threads, and hence the energy consumption decreases.

D. Nvidia ION2 Platform

We leverage the parallel computing power of the Nvidia
ION2 platform using OpenCL for Jacobi, NQueens and Sort,
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Fig. 10. Power consumption of the applications on different numbers of
threads in the Atom processor.
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Fig. 11. Energy consumption of the applications on different numbers of
threads in the Atom. The data is normalized to the energy consumed with all
the threads.

and CUDA for NAMD. Unfortunately, we could not get a
reasonably tuned version of CG. GPUs are very effective at
data parallel applications due to the high number of simplistic
SIMD compute units available in them. However, because the
GPU is a coprocessor on a separate PCI-Express card, data
must first be explicitly copied from the system memory to
the memory on the GPU board. In general, applications which
require a large amount of computation per data element and/or
make full use of the wide memory interface are well suited to
the GPU programming model.

Figure 12 shows data on the speed, power, and energy of
the applications running on the ION2 platform. We use all 16
CUDA cores in the GPU, and do not change the parallelism
of the applications because there would not be a significant
difference in power. The speed bars show the speedup of the
applications running on the ION2 platform relative to running
on the Atom platform with the maximum number of threads.
We see that the speedup is 22.65 for Jacobi and 16.68 for
NQueens. While these are high speedups, given the number of
compute cores available in the GPU, we would have expected

higher speedups. The copying of device memory buffers at the
end of each iteration forms the bottleneck in this computation.
Note also that NAMD is no faster on ION2 than on Atom.
NAMD has had scalable results on GPGPUs and we believe
that, with careful tuning, it is possible to achieve better results.
However, the effort was estimated to be high. Finally, Sort is
1.76 times slower than all the threads on the Atom. Thus, Sort
is not suitable to run on GPGPUs.
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Fig. 12. Speed, power, and energy of the applicatons running on the ION2
platform.

The power bars show the absolute power consumption of
the ION2 platform in W using all the 16 CUDA cores. We see
that the power consumption ranges from 25 W to 35 W. These
numbers are much lower than those of the Core i7. Note that
we have not performed our experiments on more powerful
GPUs, which are expected to provide better performance,
albeit at the cost of some more power consumption. In any
case, we do not expect the power consumption to rise as high
as a heavy-weight processor like the Core i7.

The final bars show, for each application, the energy con-
sumed by the ION2 normalized to the energy consumed by
the Atom. We normalize the energies to the Atom numbers
to be able to compare the energy of the different applications
— otherwise, long-running applications would dwarf short-
running ones. For these bars, we use the Y axis on the right
side. Overall, from the figure, we see the ION2 is more energy-
efficient than the Atom for Jacobi and NQueens; the opposite
is true for NAMD and Sort.

E. Load Balancing

As the number of cores per chip increases, load balancing
becomes more important (and challenging) for efficient use
of the available processing power. Here, we investigate the
effectiveness of dynamic load balancing on the SCC (with 48
threads) compared to the Core i7 (with 8 threads). We use
LBTest, which is a benchmark in the CHARM++ distribution,
with RefineLB as the balancer. LBTest creates a 3D mesh
graph where the nodes have objects that perform random
computation. Each object also sends a message (of a size
that can be specified) to one of its neighbors randomly. In
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Fig. 13. Utilization of the threads before and after balancing the load on the SCC and Core i7 platforms.

our case, the size of the messages is very small compared
to the computational load, so communication does not matter
much. RefineLB is a simple load-balancing strategy that tries
to balance the load by gradually removing objects from
overloaded threads.

Figure 13 shows the utilization of each of the threads in
the SCC and Core i7 platforms before and after applying the
load balancer. The figure is obtained using Projections [7],
which is a performance visualization tool in the CHARM++
infrastructure. From the figure, we can see that the load
balancer perfectly balances the load on the Core i7 platform
and somewhat improves the balance on the SCC platform. On
average, it increases the average thread utilization from 35%
to 50% in the SCC, and from 59% to 99% in the Core i7.
Load balancing is more difficult in a platform like SCC, which
has many cores. The load balancer has increased the average
utilization of the SCC cores significantly, but at 50% average
utilization, it is clear that more effective methods are needed
in the future. Overall, it can be shown that the load balancer
improves the performance of the benchmark (with the same
input parameters) by 30% in the SCC and by 45% on the Core
i7.

V. COMPARISON OF DIFFERENT ARCHITECTURES

In this section, we use the data of previous sections to
analyze and compare the architectures. For each of the three
metrics (speedup, power and energy consumption), we run the
applications on all the parallel threads of each platform, to
use all the resources available. On all the platforms except
the ION2, we use the same source codes, written either in
CHARM++ (Jacobi, NAMD, NQueens, and Sort), or in MPI
(CG). For the ION2, we use OpenCL for Jacobi, NQueens and
Sort, and CUDA for NAMD. Unfortunately, we could not get
a reasonably tuned version of CG for the ION2.

When comparing the SCC to the other platforms, one should
keep in mind that the SCC is a research chip, whereas the other
platforms are highly-optimized production machines. With this
in mind, one main purpose of the comparison is to find the
weaknesses of the SCC and propose improvements for the
future.

Figure 14 shows the speed of the five applications on the
different platforms relative to Atom. As can be seen, the ION2
shows significantly better performance than the other platforms
for Jacobi and NQueens, but not for NAMD or Sort. Jacobi and
NQueens are simple highly-parallel applications with regular
memory access and communication patterns. They match this
“SIMD-like” ION2 hardware nicely. In contrast, Sort has
irregular memory accesses and communication patterns, which

make it unsuitable for the ION2. Finally, we could not obtain
good speedups for NAMD on ION2 with our minimal porting
and tuning effort, even though NAMD has been shown to
scale well on GPGPUs elsewhere. Porting applications to
GPGPUs is one of the most important issues in these highly-
parallel architectures. There are millions of lines of existing
legacy parallel code, which cannot exploit GPGPUs easily (for
example, scientific communities have a lot of parallel code
mostly written in MPI). In addition, the effort for tuning and
writing new code is high for GPGPUs. Generating highly-
optimized codes on GPGPUs is not easy for an average
programmer, and is not the subject of this work.
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Fig. 14. Speed of the applications on the different platforms relative to Atom

Overall, GPGPUs (and other architectures that are similar
to SIMDs in general) are attractive for applications with
simple control flow and high parallelism. However, they fail
to provide good performance in other classes of applications.

In Figure 14, the Intel Core i7 is much faster than the
other platforms for NAMD, CG and Sort. This shows that
heavy-weight multi-cores are attractive solutions for dynamic
applications with complex execution flow such as NAMD. The
higher performance is due to high floating-point performance,
support for short-length vector instructions such as SSEs,
support for complex control flow (through aggressive branch
prediction and speculation), and support for a high degree of
instruction-level parallelism (attained by out-of-order execu-
tion).

In addition, these multi-cores are suitable for applications
with irregular accesses and fine-grained communications, such
as CG and Sort. These traditional platforms have highly-
optimized cache hierarchies, share memory, and need less



thread-level parallelism for high performance. Thus, irregular
accesses are handled properly by the cache hierarchy, fine-
grained communications are less costly because of shared
memory, and there is less communication because of less
parallelism.

Focusing on the SCC, the figure shows that, in general, the
SCC speedups are not that good. The SCC is faster than the
Core i7 for NQueens, but slower for the other applications.
For such applications, it is comparable to the Atom. The fine-
grain communication in CG is especially hard to support well
in the SCC.

According to table IV, NQueens is an integer application,
with few floating-point operations. On the other hand, Jacobi,
which has a similar scaling behavior on the SCC, has many
floating point-operations. Hence, low floating-point perfor-
mance is a weakness of the SCC and enhancing it can improve
performance substantially. Also, since §IV showed that all the
applications except CG have scalable performance on the SCC,
we believe that by improving sequential performance, the SCC
can be much faster. The SCC needs more sophisticated cores,
which is easily to attain because CMOS scaling will bring
more transistors on chip in the near future. In addition, network
performance also needs to be improved along with the cores,
to keep the system balanced, which is also possible. Thus,
an upgraded SCC many-core architecture can become a very
attractive alternative for the future.

The Atom is slower than the other processors in most of
the cases, which is expected by its low-power design.

Figure 15 shows the power consumption of the applications
on the different platforms. In the figure, the Atom and the
ION2 platforms consume low power. The Core i7 consumes
the most power, because of its higher frequency and its
many architectural features such as out-of-order execution.
As can be seen in the figure, the power consumption of the
SCC is somewhere in between the low-power and the high-
power platforms. The SCC decreases the power consumption
compared to heavy-weight machines through more parallelism
and lower frequency. It is an appealing platform because it
moderates the high power consumption of conventional multi-
cores, while still being general enough to avoid the usability
issues of GPGPUs, and is generally faster than low-power
designs like the Atom.

Figure 16 shows the energy consumption of the applications
on the different platforms normalized to the energy consumed
on the Atom platform. We use this nomalized-energy metric
to be able to compare the different applications which, poten-
tially, have a very different execution time. The figure shows
that the ION2 platform is very energy-efficient for Jacobi and
NQueens. For these regular applications, ION2 consumes low
power and executes fast. However, ION2 is not so energy-
efficient for the NAMD and Sort applications, because of their
long execution time.

The Core i7 platform exhibits good energy efficiency across
the board. The Atom platform is less energy-efficient. Al-
though it uses low power, it has a relatively longer execution
time and, therefore, the energy consumption is higher than
in the Core i7 platform. Thus, low-power design does not
necessarily lead to less energy consumption.
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Fig. 16. Energy consumption of the applications on the different platforms
normalized to the energy on the Atom platform.

The SCC platform is somewhat less energy-efficient than the
Core i7 and Atom platforms for most applications, although
it is still competitive. In the case of NQueens, the SCC is
very energy-efficient. One exception is CG, where the SCC
consumes substantially more energy. This is because CG has
little computation and much communication. Overall, it is
likely that an upgraded and refined SCC will have good energy
efficiency for all of these applications.

VI. RELATED WORK

Marker et al. [8] port a dense matrix computations library
to the SCC. They use the RCCE communications library and
replace the collective communications. Using a lower-level
communications library may have performance advantages,
but it causes porting difficulties, especially when the collective
is not implemented in the library. Our approach of porting the
runtime system made running the applications possible without
any change to the source code.

Power management is another topic of research for the
SCC [9], because of its extensive DVFS support. Different
parts of the SCC design, such as the network [10] or commu-
nication libraries [4] are described elsewhere [1], [3].



Different communication libraries, including MPI, have
been studied and implemented for the SCC [11], [12],
[13]. Porting CHARM++ on top of them is a future study,
which may result in performance improvements. There
are also many other SCC-related studies going on in
the Many-core Applications Research Community of Intel
(http://communities.intel.com/community/marc).

Esmaeilzadeh et al. [14] provide an extensive report and
analysis of the chip power and performance of five different
generations of Intel processors with a vast amount of diverse
benchmarks [14]. Such work, however, does not consider
many-cores or GPUs, which are promising architectures for
the future of parallel computing.

VII. CONCLUSION

Large increases in the number of transistors, accompanied
by power and energy limitations, introduce new challenges
for architectural design of new processors. There are several
alternatives to consider, such as heavy-weight multi-cores,
light-weight many-cores, low-power designs and SIMD-like
(GPGPU) architectures. In choosing among them, several
possibly conflicting goals must be kept in mind, such as
speed, power, energy, programmability and portability. In
this work, we evaluated platforms representing the above-
mentioned design alternatives using five scalable CHARM++
and MPI applications: Jacobi, NAMD, NQueens, CG and Sort.

The Intel SCC is a research chip using a many-core ar-
chitecture. Many-cores like the SCC offer an opportunity to
build future machines that consume low power and can run
CHARM++ and MPI code fast. They represent an intersting
and balanced design point, as they consume lower power
than heavy-weight multi-cores but are faster than low-power
processors and do not have the generality or portability issues
of GPGPU architectures. In our analysis of the SCC, we
suggested improvements in sequential performance, especially
in floating-point operation speed, and suggested adding a
global collectives network.

We showed that heavy-weight multicores are still an ef-
fective solution for dynamic and complicated applications, as
well as for those with irregular accesses and communications.
In addition, GPGPUs are exceptionally powerful for many
applications in speed, power and energy. However, they lack
the sophisticated architecture to execute complex and irregular
applications efficiently. They also require a high programming
effort to write new code, and are unable to run legacy codes.
Finally, as seen from the Intel Atom experiments, we observe
that low-power designs do not necessarily result in low energy
consumption, since they may increase the execution time
significantly. Therefore, there is no single best solution to fit
all the applications and goals.
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