ACM SRC Poster: Optimizing All-to-All Algorithm for
PERCS Network Using Simulation

Ehsan Totoni and Laxmikant V. Kale
Department of Computer Science
University of Illinois at Urbana-Champaign
{totoni2, kale}@illinois.edu

ABSTRACT

Communication algorithms play a crucial role in the per-
formance of large-scale parallel systems. They are imple-
mented in runtime systems and used in most parallel appli-
cations as a critical component. As vendors are willing to
design new custom networks with significantly different per-
formance properties for their new supercomputers, design-
ing new efficient communication algorithms is an inevitable
challenge. This task is desirable to be done before the ma-
chine comes online since inefficient use of the system before
the new algorithm’s availability is a huge waste of a possibly
hundreds of millions of dollars resource. Here, we demon-
strate the usability of our simulation framework, BigSim,
in meeting this challenge. Using BigSim, we observe that
the commonly used Pairwise-Exchange algorithm for all-to-
all communication pattern is suboptimal for a supernode of
the PERCS network (two-level directly connected similar to
Dragonfly topology). We designed a new all-to-all algorithm
for it and predict a five-fold performance improvement for
large message sizes using this algorithm.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of
Systems— Design studies

General Terms

Algorithms, Design, Measurement, Performance

1. INTRODUCTION

Many supercomputers are being deployed with tens or
hundreds of millions of dollars in cost. They are complex
machines that typically have hundreds of thousands of cores
or even more than a million cores. Their interconnection
topologies are also very complicated to connect this enor-
mous number of cores effectively. Interconnection topologies
are becoming more intricate as lower latencies and higher
bandwidths are required on the path to Exascale. This is es-

pecially important as topologies different than well-established

ones (e.g. other than 3D Torus) are being proposed and used
in newer machines. These new topologies make the task of
designing and implementing runtime communications and
collectives libraries very difficult.

Copyright is held by the author/owner(s).
SC’11 Companion, November 1218, 2011, Seattle, Washington, USA.
ACM 978-1-4503-1030-7/11/11.

For new supercomputers in general, porting and tuning
applications and runtimes can take months to years. In this
period, the machine will be used with much less efficiency
than possible just to make use of it. Given the four to five-
year effective life time of typical supercomputers, this is a
huge waste of resources! Designing efficient communication
and collective algorithms inside runtime systems is particu-
larly important because performance of most parallel appli-
cations depends on them.

Our approach is to use detailed simulation and analysis
to tune the applications and runtimes before the machine
comes online. BigSim [1] simulation framework has been
developed over the years for this purpose. Here, as a case
study, we show how we identified that the standard Pairwise-
Exchange algorithm for MPI_Alltoall is inefficient on the
PERCS [2] architecture and how we designed a new algo-
rithm. PERCS is a two-level directly connected network
(similar to Dragonfly topology) and will be used in many
IBM machines in the future. In addition, Dragonfly is pro-
posed as a possibility in the Exascale study report (Kogge
et al.)and other vendors (such as Cray) are considering vari-
ants of it. Furthermore, the simulation-based methodology
used in this work can be used to design other communica-
tion algorithms for different networks as well. Overall, our
algorithm is designed for All-to-all inside a “Supernode” of
PERCS and shows five-fold improvement over the older al-
gorithm. A more comprehensive version of this work will
appear in another publication [3].

1.1 BigSim Simulation Framework

BigSim [1] simulation framework addresses the above men-
tioned issue by its unique “emulation followed by simulation”
approach. The emulation runs the user application at the
target scale using a much smaller machine. For example, an
application can be run on an existing one hundred thousand
machine pretending to have one million cores. This is made
possible using processor virtualization feature of CHARM++
and AMPI runtime systems. Other than revealing the scal-
ing bugs by running the application at scale, emulation pro-
duces the application traces needed for simulation.

These traces contain the dependencies of computations
and messages, as well as salient features of computation
blocks. The simulator of BigSim uses these traces to pro-
duce different performance and timing outputs. In this work,
we plugin a packet-level network model of PERCS network
(which has been validated extensively [3]) inside the simu-
lator to model the machine accurately.



Base All-to-All Algorithm’s Link Utilization
300 300

Improved All-to-All Algorithm’s Link Utilization

Link 7 (LR) m—
25 Link 12 (LR) wessssm
S0 Link 24 (LR) wesssss

200

Link 7 (LR) —
Link 12 (LR) mwwsesn

|

150

100 | t I
50 50

: U :

150

100

Links Stacked Utilization (%)
Links Stacked Utilization (%)

0 600 1200 1800 2400 3000 0 1.38

Time (ms)

(a) Link utilization of pairwise-exchange

250 ' Link 24 (LR) —7
200 T—

(b) Link utilization of new algorithm

4—5

s

L=l

2.76 4.14 5.52 6.90

Time (ms)

(c) Sends in first phase of the
new all-to-all algorithm

Figure 1: New all-to-all algorithm illustration

1.2 PERCS Architecture

PERCS (Productive, Easy-to-use, Reliable Computing Sys-
tem) is an architecture by IBM that uses a two-level directly-
connected network [2]. In PERCS, the system is divided
into supernodes, containing 32 nodes each. Each supern-
ode is divided into four drawers (eight nodes per drawer).
24 GB/s LLocal (LL) links connect each node to the seven
other nodes in its drawer and 5 GB/s LRemote (LR) links
connect it to the other 24 nodes in its supernode. 10 GB/s
D links connect all supernodes to one another.

Each node contains four POWERY chips, with total of 32
cores, and a Hub chip. The POWERT chips are connected
with 192 GB/s of bandwidth to the Hub chip. This Hub
chip interfaces the node with the network.

2. ALLTOALL OPTIMIZATION

MPI_Alltoall is an important collective operation, which
is used in many parallel applications and kernels such as
FFT and Matrix Transpose. We narrow our focus to All-to-
all of large messages inside a supernode, because of its many
practical interests. The Pairwise-Exchange algorithm is the
dominant approach for all-to-all of large messages, which
is based on tightly coupled send-receive operation of P/2
pairs of tasks in each step. Figure 1(a) is BigSim’s output
that shows link utilizations of three different links of a node
at the same time for this algorithm. It can be seen that
Pairwise-Exchange algorithm does not utilize all the links
simultaneously for the whole all-to-all duration. Thus, in
our new algorithm, we try to exploit all the links of a node
by having each core send to a different node in each phase
of the algorithm:

1. t = n % ¢ tasks are running on n nodes with ¢ cores
each.

2. Each task has to send ¢t — 1 messages. Any core can
reach a particular set of ¢ cores by using the direct link
between the destination node and its home node.

3. Inphase i (0 <i<n—1),corej (0<j<c—1)on
every node sends data to the set of cores residing in
the ((j 4 ¢) mod n)th node.

Figure 1(c) illustrates one phase of the algorithm by using
a four node fully connected network (four cores per node).
An arrow with the same color as a core shows the core’s
destination in that phase. Using this algorithm we obtain

the link utilization graph of Figure 1(b), which shows that
all the links are being used for the whole all-to-all duration.

Figure 2 compares the execution time of our algorithm
with Pairwise-Exchange algorithm and theoretical peak of
the links. Note that the theoretical calculation does not
consider other limitations of the hardware, such as band-
width of each node to the network and limited buffer sizes
of the Hub chip. We see up to 80% reduction in execution
time of all-to-all for large messages, which corresponds to a
five-fold improvement.

Performance Comparison of AlI2All

Base A2A —+—
12 Improved A2A ---x---
Bandwidth Optimal ---%:---

Time (s)
o
I~

2 o
// s *

32 64

Message Size (KB)

Figure 2: Performance comparison of different algo-
rithms for all-to-all

3. REFERENCES

[1] Gengbin Zheng, Terry Wilmarth, Praveen
Jagadishprasad, and Laxmikant V. Kalé.
Simulation-based performance prediction for large
parallel machines. In International Journal of Parallel
Programming, volume 33, pages 183—-207, 2005.

[2] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel,
B. Drerup, T. Hoefler, J. Joyner, J. Lewis, Jian Li, Nan
Ni, and R. Rajamony. The PERCS High-Performance
Interconnect. In 2010 IEEE 18th Annual Symposium on
High Performance Interconnects (HOTI), pages 75 —82,
August 2010.

[3] Ehsan Totoni, Abhinav Bhatele, Eric Bohm, Nikhil
Jain, Celso Mendes, Ryan Mokos, Gengbin Zheng, and
Laxmikant Kale. Simulation-based performance analysis
and tuning for a two-level directly connected system. In
Proceedings of the 17th IEEE International Conference
on Parallel and Distributed Systems, December 2011.



