
A uGNI-based Asynchronous Message-driven Runtime System
for Cray Supercomputers with Gemini Interconnect

Yanhua Sun, Gengbin Zheng, Laxmikant V. Kalé
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, Illinois

{sun51, gzheng, kale}@illinois.edu

Terry R. Jones
Computer Science and Mathematics Division

Oak Ridge National Lab
Oak Ridge, Tennessee

trjones@ornl.gov

Ryan Olson
Cray Inc

ryan@cray.com

Abstract—Gemini, the network for the new Cray XE/XK
systems, features low latency, high bandwidth and strong scal-
ability. Its hardware support for remote direct memory access
enables efficient implementation of the global address space
programming languages. Although the user Generic Network
Interface (uGNI) provides a low-level interface for Gemini with
support to the message-passing programming model (MPI), it
remains challenging to port alternative programming models
with scalable performance.

CHARM++ is an object-oriented message-driven program-
ming model. Its applications have been shown to scale up to
the full Jaguar Cray XT machine. In this paper, we present
an implementation of this programming model on uGNI for
the Cray XE/XK systems. Several techniques are presented to
exploit the uGNI capabilities by reducing memory copy and
registration overhead, taking advantage of the persistent com-
munication, and improving intra-node communication. Our
micro-benchmark results demonstrate that the uGNI-based
runtime system outperforms the MPI-based implementation
by up to 50% in terms of message latency. For communication
intensive applications such as N-Queens, this implementation
scales up to 15, 360 cores of a Cray XE6 machine and is
70% faster than the MPI-based implementation. In molecular
dynamics application NAMD, the performance is also consid-
erably improved by as much as 18%.

Keywords-Cray XE/XK, Gemini Interconnect, Asynchronous
message-driven, Low Level Runtime System

I. INTRODUCTION

Modern interconnection networks on parallel computers
are complex systems. It is challenging to obtain good per-
formance over the range of possible communication patterns
that parallel applications exhibit. At the same time, there
are multiple programming languages and models that are
being developed as alternatives to the de facto industry-
standard message passing interface (MPI), such as UPC [?],
Chapel [?], X10 [?] and CHARM++ [?]. How should one
go about attaining good performance for applications pro-
grammed in these alternative models?

In this paper, we focus on exploiting the performance
of an asynchronous message-driven programming model
CHARM++ and its runtime on Gemini. Gemini [?] is the new
interconnect for Cray XE/XK systems; it is characterized
by low latency, high bandwidth and strong scalability. A

user-level Generic Network Interface (uGNI) [?] is pro-
vided as a low-level interface for Gemini, on top of which
the Cray MPI is implemented. Gemini-based interconnects
have been deployed in two petaflop supercomputers, Cielo
at Los Alamos National Lab and Hopper at Lawrence
Berkeley National Lab. Jaguar, one of the most powerful
supercomputers, is being upgraded to a XK6 system with
Gemini interconnect. The newly announced Blue Waters
supercomputer, which will deliver sustained performance of
1 petaflop, will also be equipped with a Gemini interconnect.
As Cray supercomputers with Gemini interconnects become
one of the major platforms for large scale real-world science
and engineering applications, it is important to port and scale
existing runtime systems and parallel applications on the
new interconnect.

One possible strategy is to implement the message-driven
programming model on Cray’s MPI implementation, which
has been optimized for message passing using the low level
features provided by the Gemini hardware. The advantage
of this approach is the portability since MPI is supported
ubiquitously on any supercomputing platform. In our pre-
vious work [?], we have demonstrated the success of this
method. We have scaled a 100-Million-atom simulation up to
224,000 cores of the whole Jaguar machine using MPI-based
CHARM++. However, we did observe some performance
problems, for example, caused by prolonged MPI Iprobe.

There are two reasons that make the MPI-based im-
plementation inefficient. First, MPI supports synchronous
communication and in-order message delivery as well as
a large set of functionalities which are not required for
implementing CHARM++, and these features potentially
incur unnecessary overhead for CHARM++ on MPI. Sec-
ond, the interaction patterns exhibited by CHARM++ pro-
gramming model differ significantly from those in typical
MPI applications. In the CHARM++ asynchronous message-
driven programming model, communication does not require
participation of both senders and receivers as in MPI. A
sender initiates a send-like call with an outgoing message.
When the message arrives on the receiver, it is queued for
execution. This is the same as the active message model.

Moreover, CHARM++ manages its own memory allocation
and de-allocation, while MPI implementation also internally
manage its own memory. If CHARM++ is implemented on
MPI, an extra memory copy between CHARM++ and MPI
memory space may be needed.

Furthermore, when MPI is used as a layer above uGNI, it
adds extra overhead to the software stack. As an experiment,
we compared the one-way latency on a Gemini-based Cray
machine using simple ping-pong benchmarks. The first data
was obtained from the benchmark implemented directly on
uGNI, the second from an implementation on MPI, and the
third from a CHARM++ implementation based on MPI. The
results are illustrated in Figure 1. It is clear that the MPI
layer adds considerable overhead to the latency compared
to the uGNI layer, and not surprisingly, CHARM++ runtime
implemented on top of MPI performs even worse.

 1

 2

 4

 8

 16

 32

32 512 1K 4K 16K 64K

T
im

e(
u
s)

Message bytes

MPI-based CHARM++
pure MPI

uGNI

Figure 1. Comparison of ping-pong one-way latency in uGNI, MPI and
MPI-based CHARM++

These factors motivated us to implement CHARM++ di-
rectly on uGNI, the lower level of the Cray network software
stack. We first identified the functionality the CHARM++
runtime needs from from the low level communication
library. We further defined an API for such required func-
tionality in the form of a general and light-weight Low-level
RunTime System (LRTS) interface to facilitate future porting
efforts.

Remote direct memory access functions in uGNI require
memory to be allocated and registered, which can be very ex-
pensive. To realize the potential of uGNI-based CHARM++
implementation, techniques are explored to take advantage
of persistent communication, reduce memory copy and reg-
istration overhead, and improve intra-node communication.
Although some of these optimization techniques are based
on general ideas, they are deployed in the context of a
message driven runtime system interfacing with the uGNI.
The proposed techniques leverage the characteristics of the
message driven programming model, e.g., message buffers
are managed directly by the runtime, which allows the
runtime to aggressively reuse the message buffers to avoid

expensive memory operations. Our performance results on a
Cray XE machine using several micro-benchmarks and real
world applications demonstrate the success of this approach
on uGNI. We believe that the LRTS interface and the
optimization techniques are suitable to other target networks
with remote memory access capabilities. It may also be use-
ful for developers of other alternative programming models.

The remainder of the paper is organized as follows:
Section II presents an overview of the Gemini and uGNI
API. Section III describes the LRTS interface and its im-
plementation on uGNI software stack. The optimization
techniques to improve uGNI-based CHARM++ are presented
in Section IV. Performance results are provided in Section V
with both micro-benchmarks and real world applications.
Finally, we discuss some related work in Section VI, and
Section VII concludes the paper with future plans.

II. GEMINI AND UGNI API OVERVIEW

A. Gemini Overview

The Gemini interconnect [?] is the current state-of-the-
art networking hardware used in the Cray XE and XK
supercomputers. Using a system-on-chip design, the Gemini
interconnect constructs a three-dimensional torus of con-
nected nodes that has the capability of scaling beyond
100,000 multi-core nodes. The advantages of Gemini over
the preceding Seastar2 interconnect are improved laten-
cies and messaging rates, especially for small messages,
and hardware support for one-sided messaging and atomic
operations. The Gemini ASIC provides service for two
AMD based Opteron nodes by connecting each node to
one network interface controller (NIC) over a non-coherent
HyperTransport(TM) 3 interface as shown in Figure 2. The
data to/from the two NICs on the Gemini ASIC travel
through the Netlink to a 48-port router which is capable
of dynamically routing traffic on a packet-by-packet basis
to fully utilize the links in the direction of the traffic.

There are two hardware features of the Gemini NIC
for initiating network communication: the Fast Memory
Access (FMA) unit and the Block Transfer Engine (BTE)
unit. To achieve maximum performance, it is important for
developers to properly utilize these two distinct components
of the Gemini NIC.

FMA allows for direct OS-bypass enabling FMA com-
munication to achieve the lowest latencies and highest mes-
sage rates, especially for small messages. BTE transactions
can achieve the best computation-communication overlap
because the responsibility of the transaction is completely
offloaded to the NIC. The BTE is most effective for mes-
sages greater than 4096 bytes. The crossover point between
FMA and BTE for most application is between 2048 and
8192 bytes depending on the communication profile.

For users to interface with Gemini hardware, two sets
of APIs are developed by Cray: User-level Generic Net-
work Interface (uGNI) and Distributed Memory Applica-

Figure 2. Gemini Hardware

tions (DMAPP). DMAPP is a communication library which
supports a logically shared, distributed memory program-
ming model. It is a good match for implementing parallel
programming models such as SHMEM, and PGAS lan-
guages [?], [?]. On the other hand, uGNI is mainly designed
for applications whose communication patterns are message-
passing in nature. Therefore, we chose to target our message-
driven machine layer on uGNI for the Cray XE network.

B. uGNI API

uGNI API defines a set of functions to transfer data using
the FMA and BTE mechanisms described above. For small
message communication, there are two types of messaging
facilities available. They are GNI Short Message (SMSG)
and Message Queue (MSGQ).

SMSG provides the best performance for short messages,
but it comes at the expense of memory usage. It requires
each peer-to-peer connection to create mailboxes for its
both ends of the SMSG channel by allocating memory and
registering it before the SMSG channel can be used to
send messages. Therefore, the memory grows linearly with
the number of peer-to-peer connections. MSGQ overcomes
the above scalability issue due to memory cost, but at the
expense of lower performance. Setup of MSGQs is done on
a per-node rather than per-peer basis, so the memory only
grows as the number of nodes in the job.

uGNI provides Completion Queues (CQ) as a light-weight
event notification mechanism for applications. For example,
an application may use CQ to track the progress of local
FMA/BTE transactions, or to notify a remote node that data
have been delivered to its memory.

While the uGNI API offers rich functionality for support-
ing communication, it is clear that there are many consid-
erations in terms of performance, overhead and scalability

issues to choose the best messaging facility for sending
a message. This can be a challenge for implementing an
efficient runtime system on uGNI.

The following functions are relevant to our implementa-
tion of the asynchronous message-driven runtime system.
More details of the uGNI API can be found in [?].

• GNI CqCreate(): It creates a Completion Queues (CQ),
which can be linked to an end point, or a region of
memory for incoming messages. The information of
next event is returned by calling GNI CqGetEvent to
poll the CQ.

• GNI MemRegister(), GNI MemDeregister(): Memory
registration and deregistration. In Gemini, memory can
be used in communication only after the memory is
registered.

• GNI SmsgSendWTag(), GNI SmsgGetNextWTag():
These functions are used to send and receive point-to-
point short messages (SMSG).

• GNI PostFma(): It executes a data transaction (PUT,
GET, or AMO) by storing into the directly mapped
FMA window to initiate a series of FMA requests.

• GNI PostRdma(): It posts a descriptor to the RDMA
queue for BTE to execute a data transaction. The
descriptor contains all information about the transaction
such as destination process, memory address, handler,
etc.

III. DESIGN OF CHARM++ RUNTIME ON GEMINI

In this section, we first describe the CHARM++ runtime
system and its low level runtime system (LRTS) interface
for the portability layer. Next, a design of the uGNI-based
LRTS is presented.

A. CHARM++ Programming Model

CHARM++ is a C++-based parallel programming system
that implements a message-driven migratable objects pro-
gramming model, supported by an adaptive runtime sys-
tem [?]. The adaptive runtime system automates resource
management and communication optimizations, and pro-
vides services such as automatic fault tolerance. Adaptive
MPI [?] is an implementation of the message passing
interface standard on top of the Charm++ runtime system.

CHARM++ applications consist of C++ objects that are
organized into indexed collections. Programmers are respon-
sible for decomposing problems into collections of objects
based on the domain knowledge, and letting the intelligent
runtime manage these objects efficiently. In the CHARM++
model, objects communicate via asynchronous method in-
vocations similar to active messages. The runtime system
automatically maps and balances these objects to processors,
and optimizes the communication among them. CHARM++
has been widely deployed on a large number of parallel
platforms including IBM Blue Gene/P, Cray XT, commodity
InfiniBand clusters and even Windows HPC clusters.

Applications

Libs Langs

CHARM++ Programming Model

Converse Runtime System

DCMF TCP/IP MPI uGNI
more

machine
layers

Lower-level Runtime System Interface(LRTS)

Machine
Implementation

Figure 3. CHARM++ Software Architecture

A layered approach was taken in designing the CHARM++
runtime system, as illustrated in Figure 3. Underneath the
CHARM++ software infrastructure, sets of lower-level run-
time system interface are defined and needs to be imple-
mented based on the native communication libraries. This
interface provides basic message passing functions to the
upper portability layer, Converse, which provides a common
machine interface. It is clear that the performance of the
underlying machine layers on specific hardware signifi-
cantly influences the performance of CHARM++ applica-
tions. Other components of the CHARM++ software stack
include the CHARM++ layer itself, which is implemented on
top of the machine-independent layer of Converse. Various
system and user libraries and applications are built on top
of CHARM++. The layered approach facilitates machine
porting, development and maintenance.

B. Lower-level Runtime System (LRTS) Interface

Converse is a component of the CHARM++ runtime
system that provides a unified functionality across all ma-
chine layers to CHARM++. For portable and efficient imple-
mentations on a variety of parallel machines, this runtime
system needs a minimum set of capabilities from the parallel
machine, its communication infrastructure, and its node-
level operating system. Therefore, it is desirable to sepa-
rate machine specific components of Converse into a low-
level runtime system, i.e., LRTS. Different machine-specific
LRTS implementations can share common implementations
such as collective operations (e.g. broadcast) to construct a
full Converse layer.

For a supercomputer vendor, LRTS serves as a concise
specification of the minimum requirements to implement
CHARM++ software stack on their platform. This simplifies
the work of porting the CHARM++ runtime to a new
platform since the vendor only needs to implement the

functions defined in the LRTS. These LRTS functions are
classified into capabilities needed for communication, node-
level OS interface (including memory allocation, virtual
memory functions, topology information, and timers), sup-
port for user level threads, external communication, and fault
tolerance.

Although many features including the machine timer,
memory management and topology are specific to machine
layers, the following three LRTS functions are essential to
implement the upper level runtime system.

• void LrtsInit(int argc, char **argv): This function
is called at the beginning of the program, and is
responsible to initialize any system specific vari-
able/structure/device of the underlying hardware.

• void LrtsSyncSend(unsigned int destPE, unsigned int
size, void *msg): It sends msg of size bytes to processor
destPE. It is a non-blocking call. The message is either
sent immediately to network or buffered.

• void LrtsNetworkEngine(): This function is responsible
for sending any pending messages and polling network
messages. The incoming messages are delivered to the
Converse layer to be executed.

C. Design of uGNI-based LRTS

As mentioned in Section II, two mechanisms are provided
to transfer data: FMA and BTE. Both mechanisms support
GET and PUT operations, which give us four options to
perform a communication. The one-way latency achieved
with these four options is depicted in Figure 4. It is clear that
efficiently transferring message data requires the runtime to
select the best mechanism based on the size of the message
and the overhead associated with each method.

 1

 4

 16

 64

 256

 1024

8 256 1K 4K 16K 64K 1M 4M

T
im

e(
u
s)

Message bytes

FMA Put
FMA Get
BTE Put
BTE Get

Figure 4. One way latency using FMA/RDMA Put/Get

In our design, small messages are directly sent using
SMSG protocol. On the receiver side, dequeuing of incom-
ing messages is done by polling the RX Completion Queue
(CQ) associated with the SMSG mailbox. The runtime
copies out the messages and hands off the messages to
Converse. By default, the maximum SMSG message size is

1024 bytes. However, as the job size increases, this limit
decreases to reduce the mailbox memory cost for each
SMSG connection pair.

alloc memory for send
message

alloc memory to
receive message

register memory

register memory

Sender Receiver

SMSG INIT_TAG
(mem addr, hndl)

FMA/RDMA GET

SMSG ACK_TAG
message delivered to

Charm++

de-register/free
memory

Figure 5. Sending large messages using FMA/RDMA Get

When the message is larger than the size SMSG can
deliver, either an FMA or BTE transaction is issued, de-
pending on the message size. Notice that both FMA and
BTE require the memory addresses and handles of the
sender and receiver. However, in message driven systems,
the receive buffer address is not available to the sender
in common usage. Therefore, extra steps have to be taken
before and after the transactions. First, memory information
of one side must be sent to the other side to set up the
transaction. After the transaction is finished, a completion
event in uGNI is generated on the remote side, however,
it does not return the exact memory address, which is
needed for either freeing the sender memory (GET-based
scheme) or delivering the message to the application (PUT-
based scheme). Therefore, an acknowledgment message with
detailed transaction information must be sent to the remote
side. In our design, a GET-based RDMA scheme is used in
conjunction with SMSG. The advantage of the GET-based
scheme over the PUT-based scheme is that the PUT-based
scheme requires one extra rendezvous message.

Figure 5 illustrates the process of sending a large message.
A sender first allocates enough memory for the message
and registers this memory. A small control message with
INIT TAG is constructed to contain information of memory
address, memory handler and size. This small message is
sent to the receiver using the SMSG protocol. When the
receiver gets the control message, it allocates memory of
the corresponding size and registers it. Now a FMA/BTE
transaction is initiated depending on the message size. When
resources are available to transfer the data, the transaction is
processed. Once the transaction is done, the receiver sends
another small message with ACK TAG to the sender so that
the sender can de-register and free the memory. Based on

this scheme, the time cost of sending a large message can
be described in Equation 1.

Tcost = Tsender + Trdma + Treceiver + 2× Tsmsg

= 2× (Tmalloc + Tregister) + Trdma + 2× Tsmsg
(1)

In this equation, Trdma and Tsmsg are determined by
the underlying hardware. 2 × (Tmalloc + Tregister) is the
overhead of setting up the memory for the message.

 1

 2

 4

 8

 16

 32

 64

 128

 256

32 512 1K 4K 16K 64K 256K 1M
T

im
e(

u
s)

Message bytes

uGNI-based CHARM++
MPI-based CHARM++

pure uGNI

Figure 6. Comparison of on-way latency in uGNI, MPI-based CHARM++
and the initial version of the uGNI-based CHARM++

Based on the above design and implementation, we mea-
sured the one-way latency in uGNI-based CHARM++ and
compared it to the pure MPI and uGNI. The result is illus-
trated in Figure 6. For messages smaller than the maximum
size that SMSG can deliver (around 1000 bytes), uGNI-
based CHARM++ performs quite well, with performance
close to the latency obtained by uGNI. The small overhead
is due to CHARM++ overhead. MPI-based CHARM++, how-
ever, performs the worst mainly due to the additional MPI
overhead and the inefficiency of using MPI to implement
the message-driven execution model. For large messages,
however, uGNI-based CHARM++ performs even worse than
the MPI-based CHARM++. In the next section, we will
present techniques to improve large-message performance.

IV. OPTIMIZING PERFORMANCE

In this section, we focus on improving the communication
performance, especially for messages that are larger than
SMSG can deliver. Techniques are presented to exploit per-
sistent communication, reduce memory copy and registration
overhead, and optimize intra-node communication.

A. Persistent Messages

In many scientific applications, communication with a
fixed pattern is repeated in time steps or loops of a parallel
computation. In different iterations, the communicating pro-
cessors and communication arguments including data size

remains persistent. In such a situation, it may be possible
to optimize the communication by reusing the memory
for messages to avoid memory allocation operations, and
by using efficient one-sided communication. For example,
MPI standard provides persistent communication requests
by creating a persistent communication request once and,
then, repeatedly using the request to initiate and complete
messages.

CHARM++ LRTS defines a simpler persistent communi-
cation API which only requires the sender for setting up
the communication channel, as the allocation of the receive
buffer is controlled by the runtime itself.

• PersistentHandle LrtsCreatePersistent(int destPE, int
maxBytes): Sender initiates the setting up of persistent
communication with processor destPE and returns a
persistent communication handler. A buffer of size
maxBytes is allocated in the destination processor.

• void LrtsSendPersistentMsg(PersistentHandle hdl, int
destPE, unsigned int size, void *msg): This call sends
msg of size bytes to destNode using the persistent
communication handle hdl .

In Gemini, only those large messages beyond what SMSG
can deliver can benefit from using the persistent messages,
since SMSG already provides the best performance for small
messages. The process of a persistent communication is
depicted in Figure 7(a). Comparing with Figure 5, persistent
messages eliminate the overhead of memory allocation,
registration and de-registration, which may be expensive [?].
Moreover, because the memory buffer on the receiver is per-
sistent and known to the sender, the sender can directly put
its message data into the persistent buffer, which saves one
control message that was needed to exchange message buffer
information. Therefore, the one-way latency is reduced to:

Tcost = Trdma + Tsmsg

Figure 8(a) compares the single message transfer time
with and without using persistent message. As can be seen,
persistent message greatly reduces the latency of messages
using the large message RDMA protocol.

B. Memory Pool

Persistent communication eliminates the memory alloca-
tion and registration overhead during send and receive, but
it requires explicitly setting up the communication channel,
which is not always feasible. A more general optimization
using a memory pool is described next.

As we have seen in Figure 6, the performance of our
original uGNI-based CHARM++ is worse than the MPI
implementation. One reason is that MPI uses the registration
cache (uDREG) [?] to reduce the overhead of memory
registration for large messages. However, uDREG has its
own overhead and pitfalls [?]. Furthermore, while the MPI
standard specifically demands user-supplied buffers, the

persistent memory for
sending message

Persistent memory to
receive message

Sender Receiver

FMA/RDMA PUT

SMSG PERSISTENT_TAG
message delivered to

Charm++

transaction done
memory available

(a) Send persistent messages

request memory from
memory pool to
receive message

request memory from
memory pool

Sender Receiver

SMSG INIT_TAG
(mem addr, hndl)

FMA/RDMA GET

SMSG ACK_TAG message delivered to
Charm++

put memory to pool

(b) Send messages using memory pool

Figure 7. Optimization with persistent message and memory pool

CHARM++ runtime takes full control of the memory alloca-
tion and de-allocation for messages due to the nature of its
the message driven programming model. Taking advantage
of this fact, we can exploit the use of a memory pool
aggressively by pre-allocating and registering a relatively
large amount of memory, and explicitly managing it for
CHARM++ messages. When messages are allocated or freed,
the runtime allocates or frees memory from the memory
pool, instead of calling system malloc/free. Since the entire
memory pool is pre-registered, there is no additional regis-
tration cost for each message. In the case when the memory
pool overflows, it can be dynamically expanded.

After using the memory pool, the process of transferring a
message is depicted in Figure 7(b). Compared to equation 1,
Tmalloc and Tregister are now eliminated due to the use of
memory pool. Therefore, the time to transfer a message is
reduced to the following:

Tcost = 2× (Tmempool) + Trdma + 2× Tsmsg

Figure 8(b) shows the performance improvement of send-
ing single messages using the memory pool. Comparing
with the original uGNI-based CHARM++ implementation
without using a memory pool, the latency is significantly
reduced by 50%. For relatively small messages, the latency

 1

 2

 4

 8

 16

 32

 64

 128

 256

1K 2K 4K 8K 16K 64K 128K 512K

T
im

e(
u
s)

Message bytes

w/o persistent message
w/ persistent message

pure uGNI

(a) w/ and w/o persistent message

 1

 2

 4

 8

 16

 32

 64

 128

 256

1K 2K 4K 8K 16K 64K 128K 512K

T
im

e(
u
s)

Message bytes

w/o memory pool
w/ memory pool

pure uGNI

(b) w/ and w/o memory pool

 1

 4

 16

 64

 256

 1024

1K 2K 4K 8K 16K 32K 64K 128K 512K

T
im

e(
u
s)

Message (bytes)

w/ pxshm (double copy)
w/ pxshm (single copy)

Pure MPI
original uGNI-based

(c) w/ and w/o intra-node optimization

Figure 8. Comparison of message latency in MPI-based and uGNI-based CHARM++

difference between the uGNI-based CHARM++ and pure
uGNI is around 2.5us, which includes runtime overhead and
one small message latency caused by the control message
required in the send protocol. As the message size increases,
the message latency in uGNI-based CHARM++ with mem-
ory pool gets quite close to that in pure uGNI.

C. Intra-node Communication

The Cray XE6 system has 24 cores per node. Intra-
node communication is crucial to the overall performance.
One can choose to let the runtime send outgoing mes-
sages through the uGNI communication library regardless
of whether it is an intra-node or inter-node message. This
implementation is quite efficient in a pingpong test, as shown
in the first curve of Figure 8(c). However, in the scenario
when there are lots of intra-node and inter-node messages,
the uGNI hardware can be a bottleneck and may cause
contention.

MPI implementations usually offer a user-space double-
copy based intra-node communication strategy, which is
very efficient for small messages. For large messages,
some MPI implementations (including Cray MPI) utilize
the XPMEM [?] driver to do single copy, which supports
single copy message transfers between two processes within
the same host. During job startup, MPI uses the XPMEM
driver (via the xpmem kernel module) to map memory from
one MPI process to another, which allows each process to
directly access memory from the address space of another
process. Enabling single copy transfers may result in better
performance; however, it may introduce additional synchro-
nization points, which can reduce application performance
in some cases.

Compared with MPI, the CHARM++ runtime manages
the message buffer completely. Messages are delivered from
runtime to the application without copying. This model is
flexible for the runtime to adopt intra-node optimizations
without having to rely on the special XPMEM driver, which
is only available on certain platforms.

CHARM++ initially adopted a similar user-space double-
copy intra-node communication scheme (pxshm). It is based

on POSIX shared memory, an efficient means of passing data
between processes. In this scheme, at start-up time, each core
on a node sets up a POSIX shared memory for transferring
data between processes on the same node. A sender first
allocates a memory region in the shared memory with the
receiver, and then copies its data from user-space to the
shared memory, and notifies the receiver about the incoming
message. On the receiver side, the network progress engine
periodically checks any incoming message in the shared
memory. When a message arrives, the receiver copies the
message out of the shared memory. In this scheme, the
sender and receiver work in a producer-consumer like pattern
on the shared memory; a lock or memory fence is needed.

This scheme has the advantage of simplicity. After the
message is copied out of the shared memory, the shared
memory region is immediately marked free for receiving
messages. However, for the same reason as in MPI, this
scheme is not efficient for large messages due to double
copies.

The single copy optimization in CHARM++ is a sender
side copy scheme. The sender allocates a message without
the runtime knowing where the messages will be sent. If
the message is actually sent as an intra-node message, it
is copied to the shared memory. On the receiver side, the
received message in the shared memory is delivered directly
to the user program without copying.

Figure 8(c) compares intra-node pingpong performance
in MPI with that in uGNI-based CHARM++ using the
single/double copy optimization. With double copy in the
pxshm-based scheme, CHARM++ achieves very close per-
formance to MPI for message size below 16KB, however,
it performs worse beyond that. With the single copy op-
timization, overall CHARM++ achieves better performance
than MPI. As explained earlier, although uGNI performance
is superior than our implementation, one should not use
uGNI for intra-node communication since this interferes
with uGNI handling inter-node communication.

 1

 2

 4

 8

 16

 32

8 32 128 512 1K 4K 16K 64K

T
im

e(
u
s)

Message bytes

uGNI-based Charm++
MPI-based CHARM++

MPI(same send/recv buffer)
MPI(different send/recv buffer)

pure uGNI

(a) Latency comparison

 1000

 2000

 3000

 4000

 5000

 6000

16K 64K 128K 256K 512K 1M 4M

B
an

d
w

it
h
(M

B
/s

ec
)

Message bytes

uGNI-based CHARM++
MPI-based CHARM++

(b) Bandwidth comparison

 1

 4

 16

 64

 256

 1024

32 512 1K 4K 8K 16K 64K 1M

T
im

e(
u
s)

Message bytes

uGNI-based Charm++
MPI-based Charm++

(c) Latency comparison in one-to-all benchmark

Figure 9. Comparison of message latency and bandwidth running on MPI-based and uGNI-based CHARM++

V. PERFORMANCE

As demonstrated above, the uGNI-based CHARM++ run-
time with various optimization techniques enables better
point-to-point communication performance on various sizes
of messages than the MPI-based CHARM++ implementa-
tion. This section compares the uGNI-based CHARM++
performance with the MPI-based CHARM++ using two
micro-benchmarks and two real world applications. All the
following benchmark programs and applications are written
in CHARM++, but linked with either MPI- or uGNI-based
message-driven runtime for comparison. The flexibility pro-
vided by the LRTS interface allows the application to change
its underlying LRTS implementation transparently.

All the experiments are done on Hopper, a peta-flop
Cray XE6 system at National Energy Scientific Computing
Center (NERSC) at Lawrence Berkeley National Laboratory.
The whole system has 6,384 nodes with 153,216 cores,
217TB of memory and 2 Petabytes of online disk storage.
Each node consists of 2 twelve-core AMD “MagnyCours”
processors and 32 GB DDR3 1333 MHz memory. All the
compute nodes are connected via a “3D torus” Cray Gemini
Interconnect.

A. Message latency and bandwidth

In the first micro-benchmark, we compare the one-way
latency performance among uGNI, MPI, and CHARM++.
In the benchmark, for each iteration, processor 0 sends a
message of a certain size to processor 1 on a different
node. Processor 1 receives the message and sends the
same message back to processor 0. The average one-way
latency is calculated after measuring a thousand iterations.
In this benchmark, the message buffer is reused; that is,
when a processor receives a message, it sends the same
message to the other processor. This is to eliminate the
overhead of memory allocation and registration so that the
latency measured by this benchmark is as close as the best
performance the runtime system can achieve.

Three versions of this benchmark are written: the first is
written in native uGNI API; the second is written in MPI
with two variants, one with same send/recv buffer, the other

with different buffers; and the third is written in CHARM++
which can be linked either with a MPI-based or uGNI-based
runtime for comparison. Figure 9(a) illustrates the latencies
for various sizes of messages using these benchmarks.

For small messages ranging from 8 bytes to 1024 bytes,
both uGNI-based CHARM++ runtime and MPI use the
SMSG protocol. It can be seen from the Figure 9(a) that the
uGNI-based CHARM++ runtime system obtains a latency
as low as 1.6us for an 8-byte message, which is close to
the case with the pure uGNI (1.2us) and pure MPI. It is
much better than the case of MPI-based CHARM++. This is
mainly due to the reduction in runtime overhead caused by
both CHARM++ runtime and MPI library.

Notice that between 512 bytes and 1024 bytes, while the
pure uGNI latency is slowly increasing, there is a sudden
jump in both cases of pure MPI and uGNI-based CHARM++.
It is due to the runtimes switching to FMA/BTE read proto-
col, where the latency is now composes of a one-way SMSG
latency and FMA/BTE message transfer time. After 1024
bytes, both MPI and MPI-based CHARM++ runtime switch
to an eager message protocol while uGNI-based CHARM++
adopts FMA/BTE read protocol for messages allocated from
memory pool. The figure shows that uGNI-based CHARM++
outperforms both pure MPI and MPI-based CHARM++
systems. This is due to the use of memory pool technique in
the uGNI-based CHARM++ runtime, which helps to avoid
the extra memory copy between the user space and runtime
as MPI does in its implementation.

After 8192 bytes, the performance of the MPI bench-
mark that uses same send and recv buffer and the uGNI-
based CHARM++ become close because MPI switches to
rendezvous protocol for large messages, in which case
MPI sends message directly from the sender buffer to the
receiver without memory copy. Note that in the case of MPI
benchmarks, if a same user buffer is used in both sending
and receiving, the MPI performance is much better than the
case of using different buffers. Since using different buffers
is the use case in the implementation of the MPI-based
CHARM++, its performance is worse than the uGNI-based
CHARM++.

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

32 512 1K 4K 16K 64K 1M

T
im

e(
u
s)

Message bytes

uGNI-based Charm++
MPI-based Charm++

Figure 10. Comparison of kNeighbor performance on uGNI-based and
MPI-based charm++

Figure 9(b) shows the bandwidth achieved with messages
of sizes larger than 16K bytes. The gap between the uGNI-
based and the MPI-based CHARM++ for message sizes
smaller than 1M bytes is mainly due to the overhead of the
MPI layer in the MPI-based implementation. As the message
sizes increase, the performance becomes similar.

While the previous ping-pong benchmark is useful, it
does not represent the real scenarios in applications. This
motivated us to the next benchmark which is a one-to-all
benchmark. In this benchmark, processor 0 sends a message
to one core on each remote node, and each destination core
sends an ack message back. The results of running this
benchmark on 16 nodes of Hopper are shown in Figure 9(c).
As expected, for small messages, uGNI-based CHARM++
outperforms MPI-based CHARM++ by a large margin. While
message sizes increase, the gap closes. The large difference
for small messages is due to the difference in how much
CPU-time used in different implementations.

B. kNeighbor

An even more realistic scenario is when all processors
send and receive messages concurrently that possibly leads
to network contention. We use a synthetic kNeighbor bench-
mark for this purpose. In this benchmark, each core sends
messages to its k left and k right neighbors in a ring virtual
topology. When each core receives all the 2 ∗ k messages,
it proceeds to the next iteration. We measure the total time
for sending 2 ∗ k messages and receiving 2 ∗ k ping-back
messages. When one message is received, the same message
buffer is used to send the ack back to the sender.

We tested 3 cores on 3 different nodes doing 1-Neighbor
communication. In each round-trip iteration, each core sends
a total of 4 messages and receives 4 messages. Figure 10
compares the performance of the uGNI-based and MPI-
based CHARM++. The latency on uGNI-based CHARM++
is only half of that on the MPI-based CHARM++ even
for 1M byte message, even though it has similar one-way

 32

 64

 128

 256

 512

 1024

 2048

 32 64 128 256 512 1024 2048

S
p
ee

d
u
p

Number of cores

uGNI-based Charm++
MPI-based Charm++

Figure 11. Strong scaling results of 17-Queens with uGNI-based and
MPI-based CHARM++

latency in our ping-pong test. This is because in MPI-
based CHARM++, once a MPI IProbe returns true, the
progress engine calls blocking MPI Recv to receive the
large message, which prevents the progress engine from
doing any other work. However, in uGNI-based CHARM++,
the progress engine is free to continue working when the
underlying BTE is receiving message.

C. N-Queens

N-Queens problem is a classical backtracking search prob-
lem, in which N queens must be placed on an N ×N chess
board so that no queens are in the same rows, columns and
diagonals. In this benchmark, we aim to find all solutions. A
task-based parallelization scheme is used, wherein each task
is responsible for the exploration of some states and spawn
new tasks if necessary. After a new task is dynamically
created, it is randomly assigned to a processor. The grain
size of each task is controlled by a user-defined threshold.
For example, the threshold of 6 to a 17-Queens problem
means that only the first 6 queens are treated as parallel
tasks, while the problem of placing the remaining 11 queens
is done sequentially. Increasing the threshold decreases the
grain size and increases the parallelism. However, it also
causes more overhead due to communication and scheduling
in runtime system. In this problem, the size of messages are
quite small (around 88 bytes), but the number of messages
is large.

We used an N-Queens implementation based on the state
space search framework described in [?]. We demonstrated
how improving communication and reducing runtime over-
head in the uGNI-based CHARM++ improves its perfor-
mance. Figure 11 compares the speedup of 17-Queens
problem running on uGNI-based and MPI-based CHARM++.
With uGNI-based CHARM++, the 17-Queens problem keeps
scaling almost perfectly up to 3840 cores using threshold
of 7 (which is optimal). In comparison, with MPI-based
CHARM++ implementation, the same program stops scaling

Queens 14 15 16 17 18 19
Cores(uGNI-CHARM++) 256 480 1536 3840 7680 15360
Cores(MPI-CHARM++) 48 120 384 1536 3840 7680
Time(sec)uGNI-CHARM++ 0.005 0.007 0.014 0.029 0.09 0.33
Time(sec)MPI-CHARM++ 0.02 0.03 0.056 0.19 0.35 1.42

Table I
BEST PERFORMANCE ON DIFFERENT NUMBER OF CORES FOR VARIOUS QUEENS PROBLEMS WITH UGNI- AND MPI-BASED CHARM++

at around 384 cores using threshold of 6. Using threshold
of 7 only makes the MPI case worse as explained next.

Figure 12 compares the sum of the CPU utilization on
all 384 cores as it varies over time for three 17-Queens
cases with different thresholds on MPI- and uGNI-based
CHARM++. These figures are generated by the performance
analysis tool Projections [?]. The yellow portion stands for
the useful computation, while idle is shown in white, and
runtime overhead is depicted in black. In the case of MPI-
based CHARM++ (Figure 12(a)), with threshold of 6, the
program generates a total of 15K messages. The long tail
is caused by load imbalance at the end, where only some
processors still have tasks. In the case of the uGNI-based
CHARM++, using higher threshold of 7, it achieves best
performance due to more messages (about 123K) and more
finer-grain tasks, which results in better load balance even at
the end of the execution. For the case of MPI, however, when
we increase the threshold to 7, as shown in Figure 12(b), the
performance turned out to be even worse due to the large
communication overhead shown in the black portion.

Table I compares for a number of queens problems, the
maximum cores and the corresponding performance that
uGNI-based and MPI-based CHARM++ scales to. It is clear
that for the same N-Queens problem, uGNI-based Charm++
scales to more cores with much less time. In particular, the
19-Queens problem on the uGNI-based CHARM++ scales
up to 15, 360 cores using 70% less execution time than the
MPI-based CHARM++.

D. NAMD
NAMD [?], [?] is a scalable parallel application for

molecular dynamics simulations written in CHARM++. It is
widely used for the simulation of biomolecules to understand
their structures. The dynamic measurement-based load bal-
ancing framework in CHARM++ is deployed in NAMD for
balancing computation across processors. Objects migrate
between processors periodically according to load balancing
decisions that explicitly takes communication into account.
Thanks to the dynamic load balancing, and asynchronous
communication which allows dynamic overlapping of com-
munication and computation, NAMD is built tolerant to
message latency to a certain extent.

One challenge in NAMD is how to improve performance
when the communication-to-computation ratio is high, e.g.,
when the number of atoms on each core is low. Moreover,
calculating both short-range and long-range forces (PME)
every step imposes more challenges because of the global

(a) 17-Queens of threshold 6 on MPI-based CHARM++

(b) 17-Queens of threshold 7 on MPI-based CHARM++

(c) 17-Queens of threshold 7 on uGNI-based CHARM++

Figure 12. Time profile of running 17-Queens on 384 cores using MPI-
and uGNI-based CHARM++

communication involved in the PME calculation. Compared
to the small messages in the N -Queens problem above, the
message sizes in NAMD is typically ranged from 1K to
16K bytes. In the following experiments, we run NAMD
with long-range force calculation every step, and compare
the performance of uGNI- and MPI-based CHARM++ to
demonstrate the benefit of the uGNI-based implementation.

We first evaluate the strong scaling of NAMD on Hopper
using both uGNI-based and MPI-based CHARM++. We ran
NAMD with the standard molecular system used by bio-
physicists for benchmarking, Apolipoprotein-A1 (ApoA1), a
92,224 atom benchmark. The results are shown in Table II.
As we can see, uGNI-based NAMD outperforms the MPI-
based NAMD in all cases by about 10%.

Weak scaling is also evaluated by showing the compu-

Number of Cores 2 12 48 120 240 480 1920 3840
MPI-based CHARM++ 987 172 45.1 20.2 10.8 6.2 3.3 3.06
uGNI-based CHARM++ 979 168 38.2 16.7 8.8 5.1 2.7 2.78

Table II
APOA1 TIME(MS/STEP) RUNNING NAMD ON MPI-BASED AND UGNI-BASED CHARM++

 0.0

 0.5

 1.0

 1.5

 2.0

IAPP(960) DHFR(3,840) Apoa1(7,680)

S
te

p
 T

im
e

(m
s)

System (# Cores)

MPI−based

uGNI−based

Figure 13. NAMD weak scaling results

tation time varying as a function of processor count for
a fixed problem size per processor. This is to study the
performance of NAMD for various simulation sizes that
grow proportionally to the number of processors. Figure 13
shows the results of the weak scaling tests on Hopper using
several relatively small benchmarks using both uGNI-based
and MPI-based CHARM++. The benchmarks used are IAPP
(5570 atoms), DHFR (23,558 atoms) and Apoa1 (92,224
atoms). We ran PME every time step and compared the
benchmark time between the uGNI-based and MPI-based
implementations. We observed about 10% improvement on
IAPP and Apoa1 by using the new uGNI machine layer. As
much as 18% improvement is achieved on DHFR system.
Considering the fact that the timestep was already as low
as 1.5 ms/step, a 10% improvement by using uGNI-based
CHARM++ is an encouraging result.

VI. RELATED WORK

The importance of MPI has ensured a variety of re-
search approaches focused on improving performance. Many
times, these optimizations involve compiler support. Such
approaches are typically tightly-coupled to a specific target
network, and may involve strategies to improve resource
utilization such as reusing communication buffers; an ex-
ample is OMPI [?]. Friedley and Lumsdaine describe a
compiler approach to transforming MPI calls to a one-sided
communication model [?]. They report a 40% increase over
MPI by using a simpler one-sided communication model.

Gravel is a communication library that provides several
message passing protocols to provide better communication-
computation overlap; this is combined with compiler anal-
ysis and transformations for improvements [?]. In a similar

vein, Small and Yuan proposed multiple protocols to im-
prove performance [?].

Partitioned Global Address Space (PGAS) languages like
UPC [?], Global Arrays [?], and Co-Array FORTRAN [?]
are optimized to use one-sided communication protocols like
we have developed.

Finally, Cray’s Gemini interconnect, the network we uti-
lized for our measurements in this paper, is described in
[?].

The work presented in this paper is different from existing
work in that it does not rely on compiler transformations.
In addition, it benefits from its incorporation into the
CHARM++ runtime system. We believe our techniques to be
general in nature and suitable to other target networks with
one-sided capabilities. Our approach differs from the above
PGAS languages in its object-based virtualization strategy
which has been demonstrated to provide helpful adaptive
load balancing and fault tolerance optimizations. Further, the
message-driven model in CHARM++ runtime is not as well-
supported by the RDMA interfaces of uGNI as the PGAS
languages.

VII. CONCLUSION AND FUTURE WORK

Cray Gemini interconnect as the network for the new
Cray XE/XK systems is characterized by low latency, high
bandwidth and strong scalability, thanks to the powerful
yet flexible Generic Network Interface (GNI). With the
Cray XE/XK supercomputers becoming one of the major
platforms for running large scale parallel applications, this
paper tackles the challenging problem of designing an asyn-
chronous message-driven runtime system, CHARM++ on
uGNI, and scaling its applications including NAMD. Several
approaches are explored to optimize the communication to
best utilize the Gemini capability. These include reduc-
ing memory copy and registration overhead using memory
pool; exploiting persistent communication for one-sided
communication; and improving intra-node communication
via POSIX shared memory. These optimization techniques
leverage the message driven programming model where
message buffers are managed by the runtime itself. Our
micro-benchmarks show that this run-time system outper-
forms MPI-based implementation by up to 50% on a Cray
XE machine. For an irregular program N-Queens, the uGNI-
based implementation scales up to 15, 360 cores using 70%
less execution time than MPI-based implementation. In
NAMD, a full-fledged molecular dynamics application, the
performance is significantly improved by as much as 18%
in a fine-grain parallel run. To the best of our knowledge,

the uGNI-based CHARM++ runtime is the first public third-
party runtime ported on uGNI, which achieves scalability up
to tens of thousands of cores on a Cray XE machine.

Although optimized, the intra-node communication via
POSIX shared memory is still quite slow due to memory
copy. We plan to investigate the SMP mode of CHARM++
(as described in [?]) on uGNI to further optimize the intra-
node communication.

ACKNOWLEDGMENTS

This work was supported in part by a NIH Grant PHS
5 P41 RR05969-04, by NSF grant OCI-0725070 for Blue
Waters, and by the Institute for Advanced Computing Ap-
plications and Technologies (IACAT) at the University of
Illinois at Urbana-Champaign. Major funding was provided
by the HPC Colony Project, an effort supported by the
DOE Office of Advanced Scientific Computing Research.
This work used machine resources from NERSC (Hopper)
through an ERCAP award to the HPC Colony Project.

REFERENCES

[1] R. Alverson, D. Roweth, and L. Kaplan. The Gemini System
Interconnect. In 2010 IEEE 18th Annual Symposium on High
Performance Interconnects (HOTI), 2011.

[2] A. Bhatele, S. Kumar, C. Mei, J. C. Phillips, G. Zheng, and
L. V. Kale. Overcoming scaling challenges in biomolecu-
lar simulations across multiple platforms. In Proceedings
of IEEE International Parallel and Distributed Processing
Symposium 2008, April 2008.

[3] B. Chamberlain, D. Callahan, and H. Zima. Parallel pro-
grammability and the chapel language. Int. J. High Perform.
Comput. Appl., 21:291–312, August 2007.

[4] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. In
OOPSLA ’05: Proceedings of the 20th annual ACM SIG-
PLAN conference on Object-oriented programming, systems,
languages, and applications, pages 519–538, New York, NY,
USA, 2005. ACM.

[5] Cray Inc. Using the GNI and DMAPP APIs, 2010.
http://docs.cray.com/books/S-2446-3103/S-2446-3103.pdf.

[6] A. Danalis, L. Pollock, M. Swany, and J. Cavazos. Mpi-
aware compiler optimizations for improving communication-
computation overlap. In Proceedings of the 23rd international
conference on Supercomputing, ICS ’09, pages 316–325, New
York, NY, USA, 2009. ACM.

[7] A. Friedley and A. Lumsdaine. Communication optimization
beyond mpi. In Parallel and Distributed Processing Work-
shops and Phd Forum (IPDPSW), 2011 IEEE International
Symposium on, pages 2018 –2021, may 2011.

[8] C. Huang, G. Zheng, S. Kumar, and L. V. Kalé. Perfor-
mance Evaluation of Adaptive MPI. In Proceedings of ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming 2006, March 2006.

[9] L. V. Kale and G. Zheng. Charm++ and AMPI: Adaptive Run-
time Strategies via Migratable Objects. In M. Parashar, editor,
Advanced Computational Infrastructures for Parallel and
Distributed Applications, pages 265–282. Wiley-Interscience,
2009.

[10] L. V. Kale, G. Zheng, C. W. Lee, and S. Kumar. Scaling
applications to massively parallel machines using projections
performance analysis tool. In Future Generation Computer
Systems Special Issue on: Large-Scale System Performance
Modeling and Analysis, volume 22, pages 347–358, February
2006.

[11] C. Mei, Y. Sun, G. Zheng, E. J. Bohm, L. V. Kalé,
J. C.Phillips, and C. Harrison. Enabling and scaling biomolec-
ular simulations of 100 million atoms on petascale machines
with a multicore-optimized message-driven runtime. In Pro-
ceedings of the 2011 ACM/IEEE conference on Supercomput-
ing, Seattle, WA, November 2011.

[12] S. Moreaud, B. Goglin, D. Goodell, and R. Namyst. Op-
timizing MPI Communication within large Multicore nodes
with Kernel assistance. In IEEE, editor, Workshop on Com-
munication Architecture for Clusters, held in conjunction with
IPDPS 2010, page 7 p., Atlanta, États-Unis, Apr. 2010.

[13] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global
arrays: A nonuniform memory access programming model
for high-performance computers. The Journal of Supercom-
puting, 10:169–189, 1996. 10.1007/BF00130708.

[14] R. W. Numrich and J. Reid. Co-arrays in the next fortran
standard. SIGPLAN Fortran Forum, 24:4–17, August 2005.

[15] H. Ogawa and S. Matsuoka. Ompi: Optimizing mpi programs
using partial evaluation. SC Conference, 0:37, 1996.

[16] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé. NAMD:
Biomolecular simulation on thousands of processors. In
Proceedings of the 2002 ACM/IEEE conference on Super-
computing, pages 1–18, Baltimore, MD, September 2002.

[17] H. Pritchard, I. Gorodetsky, and D. Buntinas. A ugni-based
mpich2 nemesis network module for the cray xe. 6960:110–
119, 2011.

[18] M. Small and X. Yuan. Maximizing mpi point-to-point
communication performance on rdma-enabled clusters with
customized protocols. In Proceedings of the 23rd interna-
tional conference on Supercomputing, ICS ’09, pages 306–
315, New York, NY, USA, 2009. ACM.

[19] Y. Sun, G. Zheng, P. Jetley, and L. V. Kalé. ParSSSE:
An Adaptive Parallel State Space Search Engine. Parallel
Processing Letters, 21(3):319–338, September 2011.

[20] T. S. Tarek El-Ghazawi, William Carlson and K. Yelick.
UPC: Distributed Shared Memory Programming. John Wiley
& Sons, Inc., Hoboken, NJ, USA, 2005.

[21] P. Wyckoff and J. Wu. Memory registration caching correct-
ness. Cluster Computing and the Grid, IEEE International
Symposium on, 2:1008–1015, 2005.

