
This work performed under the auspices of the U.S. Department of Energy by 
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551

LLNL-PRES-511461

Supercomputing	
  ‘11	
  ◆	
  November	
  17,	
  2011

Avoiding	
  hot-­‐spots	
  on	
  two-­‐level	
  direct	
  
networks
Abhinav	
  Bhatele,	
  Nikhil	
  Jain,	
  William	
  D.	
  Gropp,	
  Laxmikant	
  V.	
  Kale



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

Router 0 Router 1 Router 2 Router 31

12 nodes

Group 0 Group 1 Group 2 Group 31

0 1 2 .. 0 1 2 ..

0 1 2 .. 0 1 2 ..

Rack 0 Rack 1 Rack 582

To
 0

-1
8

To
 1

9-
37

Interconnects for exascale

2



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

Router 0 Router 1 Router 2 Router 31

12 nodes

Group 0 Group 1 Group 2 Group 31

0 1 2 .. 0 1 2 ..

0 1 2 .. 0 1 2 ..

Rack 0 Rack 1 Rack 582

To
 0

-1
8

To
 1

9-
37

Interconnects for exascale

• Multi-level direct (all-to-all connection) networks

• Higher bandwidth links at lower levels

• Low diameter: few hops on the average

2



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

Router 0 Router 1 Router 2 Router 31

12 nodes

Group 0 Group 1 Group 2 Group 31

0 1 2 .. 0 1 2 ..

0 1 2 .. 0 1 2 ..

Rack 0 Rack 1 Rack 582

To
 0

-1
8

To
 1

9-
37

Interconnects for exascale

• Multi-level direct (all-to-all connection) networks

• Higher bandwidth links at lower levels

• Low diameter: few hops on the average

• Examples: dragonfly interconnect, PERCS network

2



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

IBM’s PERCS network

• Each QCM has four 8-core POWER7 chips, 8 such QCMs 
form a drawer, 4 drawers form a supernode

• Two-level network with 512 supernodes

• Three types of links: LL (24 GB/s), LR (5 GB/s), D (10 GB/s)

3

One supernode in the PERCS topology

LL
LR
D



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

IBM’s PERCS network

• Each QCM has four 8-core POWER7 chips, 8 such QCMs 
form a drawer, 4 drawers form a supernode

• Two-level network with 512 supernodes

• Three types of links: LL (24 GB/s), LR (5 GB/s), D (10 GB/s)

3

One supernode in the PERCS topology

LL
LR
D



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

IBM’s PERCS network

• Each QCM has four 8-core POWER7 chips, 8 such QCMs 
form a drawer, 4 drawers form a supernode

• Two-level network with 512 supernodes

• Three types of links: LL (24 GB/s), LR (5 GB/s), D (10 GB/s)

3

One supernode in the PERCS topology

LL
LR
D



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

The ‘D’ link bottleneck

• Lets say we want to run a 2D Stencil on 2 
supernodes (64 QCMs)

• Application communication graph: 16 x 4

• MPI-rank ordered mapping leads to 
significant contention on the single D link

• This is true for running any application 
with O(1) communicating partners per 
MPI process

4



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

The ‘D’ link bottleneck

• Lets say we want to run a 2D Stencil on 2 
supernodes (64 QCMs)

• Application communication graph: 16 x 4

• MPI-rank ordered mapping leads to 
significant contention on the single D link

• This is true for running any application 
with O(1) communicating partners per 
MPI process

4



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

The ‘D’ link bottleneck

• Lets say we want to run a 2D Stencil on 2 
supernodes (64 QCMs)

• Application communication graph: 16 x 4

• MPI-rank ordered mapping leads to 
significant contention on the single D link

• This is true for running any application 
with O(1) communicating partners per 
MPI process

4



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

The ‘D’ link bottleneck

• Lets say we want to run a 2D Stencil on 2 
supernodes (64 QCMs)

• Application communication graph: 16 x 4

• MPI-rank ordered mapping leads to 
significant contention on the single D link

• This is true for running any application 
with O(1) communicating partners per 
MPI process

4



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

The ‘D’ link bottleneck

• Lets say we want to run a 2D Stencil on 2 
supernodes (64 QCMs)

• Application communication graph: 16 x 4

• MPI-rank ordered mapping leads to 
significant contention on the single D link

• This is true for running any application 
with O(1) communicating partners per 
MPI process

4

128 MPI 
processes



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

The ‘D’ link bottleneck

5

One supernode in the PERCS topology

LL
LR
D

Figure 1: The PERCS network – the left figure shows all to all connections within a supernode (connections originating from only two
nodes, 0 and 16, are shown to keep the diagram simple). The right figure shows second-level all to all connections across supernodes
(again D links originating from only two supernodes, colored in red, are shown).

topologies. Using traces collected by our emulation-based tech-
nique, we simulate application runs on hundreds of thousands of
cores. Non-uniform link bandwidths on different classes of links
complicate the issue of identifying the weakest links. Interesting
issues arise because of the imbalance in number of different types
of links available when using a small subset of the entire topology.
Hence, we do simulations for one quarter of the full system size
(assuming 300 supernodes) and the full system as well.

The novel contributions of this paper are:
• To the best of our knowledge, this paper has the first analysis

of congestion on a two-level direct topology due to routing
and mapping choices. We present several solutions for avoid-
ing hot-spots on such networks.

• The paper presents the largest packet-level detailed network
simulations done so far (for 307,200 cores) for several com-
munication patterns. These simulations help us analyze ap-
plication performance in great detail through performance
counter-based per-level link statistics, visualization tools and
predicted application performance.

• We present several intelligent mappings for 2D, 4D and mul-
ticast patterns and compare their performance when coupled
with direct and indirect routing on the PERCS network.

2. THE PERCS TOPOLOGY
The PERCS interconnect topology is a fully connected two-tier

network [2]. Figure 1 (left) shows one supernode of the PERCS
topology as a large circle. Within the large circle, a small circle
represents a quad chip module (QCM) which consists of four 8-
core Power7 chips. We will refer to a QCM as a node in rest of
the paper. Eight nodes in one color in each quadrant constitute a
drawer. Each node has a hub/switch which has three types of links
originating from it - LL, LR and D links. There are seven LL links
(24 GB/s) that connect a node to seven other nodes in the same
drawer. In addition, there are 24 LR links (5 GB/s) that connect
a node to the remaining 24 nodes of the supernode. LL and LR
links constitute the first tier connections that enable communication

between any two nodes in one hop. To maintain simplicity, LL and
LR links originating from only two nodes, numbered 0 and 16 are
shown in Figure 1 (left).

On the right, in Figure 1, the second tier connections between su-
pernodes are shown. Every supernode is connected to every other
supernode by a D link (10 GB/s). These inter-supernode connec-
tions originate and terminate at hub/switches connected to nodes; a
given hub/switch is directly connected to only a fraction (≤ 16) of
the 512 supernodes (full system size). For simplicity, D links orig-
inating from only two supernodes (in red) have been shown. 32
cores of a node can inject on to the network at a rate of 192 GB/s
through a hub/switch directly connected to them.

Figure 2: The number of D links reduces significantly com-
pared to that of LL and LR links as one uses fewer and fewer
supernodes in the PERCS topology.

An important thing to note about the PERCS topology is the ra-
tio of the number of first level connections to that of second level
connections. For a system with n supernodes, the number of D
links is (n× (n− 1)). There are (32× 31× n) LL and LR links
in total. Hence, there are (992/(n − 1)) first tiers links for every
second tier link as shown in Figure 2. One can observe that as the
number of supernodes used by an application gets smaller, there is

• # LL+LR links = 32 x 31 x n

• # D links = n x (n-1)



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

The ‘D’ link bottleneck

5

One supernode in the PERCS topology

LL
LR
D

Figure 1: The PERCS network – the left figure shows all to all connections within a supernode (connections originating from only two
nodes, 0 and 16, are shown to keep the diagram simple). The right figure shows second-level all to all connections across supernodes
(again D links originating from only two supernodes, colored in red, are shown).

topologies. Using traces collected by our emulation-based tech-
nique, we simulate application runs on hundreds of thousands of
cores. Non-uniform link bandwidths on different classes of links
complicate the issue of identifying the weakest links. Interesting
issues arise because of the imbalance in number of different types
of links available when using a small subset of the entire topology.
Hence, we do simulations for one quarter of the full system size
(assuming 300 supernodes) and the full system as well.

The novel contributions of this paper are:
• To the best of our knowledge, this paper has the first analysis

of congestion on a two-level direct topology due to routing
and mapping choices. We present several solutions for avoid-
ing hot-spots on such networks.

• The paper presents the largest packet-level detailed network
simulations done so far (for 307,200 cores) for several com-
munication patterns. These simulations help us analyze ap-
plication performance in great detail through performance
counter-based per-level link statistics, visualization tools and
predicted application performance.

• We present several intelligent mappings for 2D, 4D and mul-
ticast patterns and compare their performance when coupled
with direct and indirect routing on the PERCS network.

2. THE PERCS TOPOLOGY
The PERCS interconnect topology is a fully connected two-tier

network [2]. Figure 1 (left) shows one supernode of the PERCS
topology as a large circle. Within the large circle, a small circle
represents a quad chip module (QCM) which consists of four 8-
core Power7 chips. We will refer to a QCM as a node in rest of
the paper. Eight nodes in one color in each quadrant constitute a
drawer. Each node has a hub/switch which has three types of links
originating from it - LL, LR and D links. There are seven LL links
(24 GB/s) that connect a node to seven other nodes in the same
drawer. In addition, there are 24 LR links (5 GB/s) that connect
a node to the remaining 24 nodes of the supernode. LL and LR
links constitute the first tier connections that enable communication

between any two nodes in one hop. To maintain simplicity, LL and
LR links originating from only two nodes, numbered 0 and 16 are
shown in Figure 1 (left).

On the right, in Figure 1, the second tier connections between su-
pernodes are shown. Every supernode is connected to every other
supernode by a D link (10 GB/s). These inter-supernode connec-
tions originate and terminate at hub/switches connected to nodes; a
given hub/switch is directly connected to only a fraction (≤ 16) of
the 512 supernodes (full system size). For simplicity, D links orig-
inating from only two supernodes (in red) have been shown. 32
cores of a node can inject on to the network at a rate of 192 GB/s
through a hub/switch directly connected to them.

Figure 2: The number of D links reduces significantly com-
pared to that of LL and LR links as one uses fewer and fewer
supernodes in the PERCS topology.

An important thing to note about the PERCS topology is the ra-
tio of the number of first level connections to that of second level
connections. For a system with n supernodes, the number of D
links is (n× (n− 1)). There are (32× 31× n) LL and LR links
in total. Hence, there are (992/(n − 1)) first tiers links for every
second tier link as shown in Figure 2. One can observe that as the
number of supernodes used by an application gets smaller, there is

• # LL+LR links = 32 x 31 x n

• # D links = n x (n-1)



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

The ‘D’ link bottleneck

5

One supernode in the PERCS topology

LL
LR
D

Figure 1: The PERCS network – the left figure shows all to all connections within a supernode (connections originating from only two
nodes, 0 and 16, are shown to keep the diagram simple). The right figure shows second-level all to all connections across supernodes
(again D links originating from only two supernodes, colored in red, are shown).

topologies. Using traces collected by our emulation-based tech-
nique, we simulate application runs on hundreds of thousands of
cores. Non-uniform link bandwidths on different classes of links
complicate the issue of identifying the weakest links. Interesting
issues arise because of the imbalance in number of different types
of links available when using a small subset of the entire topology.
Hence, we do simulations for one quarter of the full system size
(assuming 300 supernodes) and the full system as well.

The novel contributions of this paper are:
• To the best of our knowledge, this paper has the first analysis

of congestion on a two-level direct topology due to routing
and mapping choices. We present several solutions for avoid-
ing hot-spots on such networks.

• The paper presents the largest packet-level detailed network
simulations done so far (for 307,200 cores) for several com-
munication patterns. These simulations help us analyze ap-
plication performance in great detail through performance
counter-based per-level link statistics, visualization tools and
predicted application performance.

• We present several intelligent mappings for 2D, 4D and mul-
ticast patterns and compare their performance when coupled
with direct and indirect routing on the PERCS network.

2. THE PERCS TOPOLOGY
The PERCS interconnect topology is a fully connected two-tier

network [2]. Figure 1 (left) shows one supernode of the PERCS
topology as a large circle. Within the large circle, a small circle
represents a quad chip module (QCM) which consists of four 8-
core Power7 chips. We will refer to a QCM as a node in rest of
the paper. Eight nodes in one color in each quadrant constitute a
drawer. Each node has a hub/switch which has three types of links
originating from it - LL, LR and D links. There are seven LL links
(24 GB/s) that connect a node to seven other nodes in the same
drawer. In addition, there are 24 LR links (5 GB/s) that connect
a node to the remaining 24 nodes of the supernode. LL and LR
links constitute the first tier connections that enable communication

between any two nodes in one hop. To maintain simplicity, LL and
LR links originating from only two nodes, numbered 0 and 16 are
shown in Figure 1 (left).

On the right, in Figure 1, the second tier connections between su-
pernodes are shown. Every supernode is connected to every other
supernode by a D link (10 GB/s). These inter-supernode connec-
tions originate and terminate at hub/switches connected to nodes; a
given hub/switch is directly connected to only a fraction (≤ 16) of
the 512 supernodes (full system size). For simplicity, D links orig-
inating from only two supernodes (in red) have been shown. 32
cores of a node can inject on to the network at a rate of 192 GB/s
through a hub/switch directly connected to them.

Figure 2: The number of D links reduces significantly com-
pared to that of LL and LR links as one uses fewer and fewer
supernodes in the PERCS topology.

An important thing to note about the PERCS topology is the ra-
tio of the number of first level connections to that of second level
connections. For a system with n supernodes, the number of D
links is (n× (n− 1)). There are (32× 31× n) LL and LR links
in total. Hence, there are (992/(n − 1)) first tiers links for every
second tier link as shown in Figure 2. One can observe that as the
number of supernodes used by an application gets smaller, there is



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

Software stack/runtime choices

• Job scheduler:

• Granularity of allocation: QCM (node), drawer, supernode

• Contiguous allocation, random allocation or careful topology-
aware allocation

• Routing:

• Direct versus random indirect

• Mapping

• Is it important for optimal performance?

6



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

Simulation study − BigSim

7



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

Simulation study − BigSim

• Use BigSim for emulation and simulation of a future 
machine - detailed packet-level network simulation

• Compute time prediction, trace collection, simulation

7



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

Simulation study − BigSim

• Use BigSim for emulation and simulation of a future 
machine - detailed packet-level network simulation

• Compute time prediction, trace collection, simulation

• Three different benchmarks

• 2-dimensional five-point stencil

• 4-dimensional nine-point stencil

• n-targets multicast pattern

7



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

Simulation study − BigSim

• Use BigSim for emulation and simulation of a future 
machine - detailed packet-level network simulation

• Compute time prediction, trace collection, simulation

• Three different benchmarks

• 2-dimensional five-point stencil

• 4-dimensional nine-point stencil

• n-targets multicast pattern

• Two job allocation sizes

• 64 supernodes

• 300 supernodes

7



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

Simulation study − BigSim

• Use BigSim for emulation and simulation of a future 
machine - detailed packet-level network simulation

• Compute time prediction, trace collection, simulation

• Three different benchmarks

• 2-dimensional five-point stencil

• 4-dimensional nine-point stencil

• n-targets multicast pattern

• Two job allocation sizes

• 64 supernodes

• 300 supernodes

7

WRF



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

Simulation study − BigSim

• Use BigSim for emulation and simulation of a future 
machine - detailed packet-level network simulation

• Compute time prediction, trace collection, simulation

• Three different benchmarks

• 2-dimensional five-point stencil

• 4-dimensional nine-point stencil

• n-targets multicast pattern

• Two job allocation sizes

• 64 supernodes

• 300 supernodes

7

WRF

MILC



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

Simulation study − BigSim

• Use BigSim for emulation and simulation of a future 
machine - detailed packet-level network simulation

• Compute time prediction, trace collection, simulation

• Three different benchmarks

• 2-dimensional five-point stencil

• 4-dimensional nine-point stencil

• n-targets multicast pattern

• Two job allocation sizes

• 64 supernodes

• 300 supernodes

7

WRF

MILC

NAMD



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

Prediction Methodology

• Compute time prediction: run on a 3.8 GHz Power7 
processor to get timings for sequential computation

• Emulation: obtain traces by running on 512-1360 
cores of a 1.9 GHz Power5 cluster

• Simulations on one node of a SGI Altix 1000 shared 
memory machine

8



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

Mapping and Routing

• Default mapping: MPI rank-
ordered mapping

• Blocking: at the level of 
nodes, then drawers and 
supernodes

• Random mapping on nodes

9

a scarcity of D links in comparison to LL and LR links. This may

be a bottleneck in applications with comparable intra-supernode

and inter-supernode traffic if they are running on a small subset

of supernodes. Hence, we simulate two different system sizes (64

supernodes and 300 supernodes) to compare them.

The next section will present a case study of a 2D Stencil show-

ing that a default mapping of this application with direct routing can

lead to significant congestion on the network. Hence, interesting

research questions arise with respect to reducing hot-spots on two-

level direct networks. Random versus contiguous job scheduling,

direct versus indirect routing and intelligent mapping techniques

present opportunities to minimize congestion.

3. MOTIVATION
Let us look at a relatively simple yet prevalent communication

pattern — a two-dimensional five-point stencil computation. We

will consider a case where the application uses 16 supernodes or

16, 384 cores of the machine. Placement at various levels can play

an important role for this pattern in deciding which MPI processes

to put together on one node (32 cores) on one hand to which nodes

or drawers should be placed on “virtual” supernode boundaries on

the other hand. Let us assume that the virtual cartesian topology

for this example is 128 × 128 and the communication is wrapped

around on all four sides.

The default placement of processes by the job scheduler will di-

vide the 2D topology of 128× 128 tasks along one dimension and

each supernode gets a block of 8× 128 tasks. Within a supernode,

each drawer gets a block of 2 × 128 tasks in order and each node

gets a block of 1×32 tasks. Figure 3 (left) shows the default place-

ment of the 16, 384 tasks on the 16 supernodes. As is obvious from

the diagram, 128 cores at the boundaries share a D link (shown in

red) with a capacity of 10 GB/s leading to an effective bandwidth

of 10÷ 128 GB/s.

SN 0

SN 1

SN 15

SN 0 SN 1

SN 4

SN 15

Figure 3: Default (linear) and blocked (square) mapping of
tasks performing 2D communication on 16 supernodes

A simple square decomposition of the domain at each level (su-

pernodes, drawers and nodes) can improve the utilization of links

significantly. Assigning a square block of 32 × 32 tasks to each

supernode leads to the use of more D links (see Figure 3, right) –

32 instead of 16 D links are used now. Also, each D link is used

for only one-fourth of the data in this setup and hence the effective

bandwidth per D link is 10÷ 32 GB/s.

Next, let us consider the grouping of MPI processes within a

drawer and a node, for optimizing communication further using

topology aware mapping (Figure 4). As opposed to the default

mapping, within a supernode, tasks can be grouped into blocks of

16× 16 to be placed on the four drawers and further into blocks of

4 × 8 to be placed on each node. In this case, the effective band-

width available on LR links is 5÷ 8 GB/s and that on each LL link

Figure 4: Default (linear) and blocked (square) mapping of
tasks on to drawers and nodes within a supernode

is 24 ÷ 8 GB/s. These improvements in link utilization using an

intelligent mapping are summarized in Table 1.

Link Default Mapping Good Mapping

D 10/128 = 0.078 10/32 = 0.313
LR 5/32 = 0.156 5/8 = 0.625
LL 24/32 = 0.75 24/8 = 3.0

Table 1: Effective link bandwidth (in GB/s) when using the de-
fault and an intelligent mapping for a 2D Stencil of 16K tasks

As we can see, an intelligent mapping can increase the number of

links used and reduce the load on each link. This can lead to signif-

icant performance improvements. However, it is important to note

that even a good blocked mapping utilizes only 32 D links whereas

the number of D links among 16 supernodes is 16× 15 = 240. A

random mapping at the level of nodes or drawers will increase the

number of D links used although it might lead to hot-spots. We will

look at these issues in detail in Section 6.

4. APPROACHES TO MINIMIZING CON-
GESTION ON THE NETWORK

Topology aware mapping of MPI tasks to physical cores/nodes

on a machine can minimize contention and impact application per-

formance [4, 9, 19, 20]. Intelligent mapping can be used to care-

fully distribute traffic over the various links on two-level direct net-

works. This section outlines the different mappings that we eval-

uate for minimizing hot-spots on the network. We also explore

indirect routing coupled with some of the mappings to analyze if it

can be used as an alternative to intelligent mapping.

4.1 Topology aware mapping
A default MPI rank-ordered mapping of processes on to nodes

of a two-level direct network can lead to significant hot-spots and

extremely low effective bandwidth on some links (as shown in Sec-

tion 3). Intelligent mapping of the virtual communication topology

on to such networks can spread the communication over more links

instead of concentrating it over a few and result in reduced con-

tention and better application performance. Below, we present dif-

ferent mapping techniques for near-neighbor communication pat-

terns that will be compared using simulations:

Default Mapping (DEF): Default mapping refers to a “contigu-

ous” MPI rank-ordered mapping where rank 0 is placed on the first

core in the allocated job partition, rank 1 on the second and so on.

Let us use a concrete example of mapping a 2D near-neighbor com-

munication pattern originating from a 5-point stencil on to 64 su-

pernodes of the PERCS topology to understand different mappings.

We assume a virtual topology of 256× 256 tasks for this example

since there are 65, 536 cores on 64 supernodes. The default map-

ping by the job scheduler will place the first 1024 tasks i.e. a block

a scarcity of D links in comparison to LL and LR links. This may

be a bottleneck in applications with comparable intra-supernode

and inter-supernode traffic if they are running on a small subset

of supernodes. Hence, we simulate two different system sizes (64

supernodes and 300 supernodes) to compare them.

The next section will present a case study of a 2D Stencil show-

ing that a default mapping of this application with direct routing can

lead to significant congestion on the network. Hence, interesting

research questions arise with respect to reducing hot-spots on two-

level direct networks. Random versus contiguous job scheduling,

direct versus indirect routing and intelligent mapping techniques

present opportunities to minimize congestion.

3. MOTIVATION
Let us look at a relatively simple yet prevalent communication

pattern — a two-dimensional five-point stencil computation. We

will consider a case where the application uses 16 supernodes or

16, 384 cores of the machine. Placement at various levels can play

an important role for this pattern in deciding which MPI processes

to put together on one node (32 cores) on one hand to which nodes

or drawers should be placed on “virtual” supernode boundaries on

the other hand. Let us assume that the virtual cartesian topology

for this example is 128 × 128 and the communication is wrapped

around on all four sides.

The default placement of processes by the job scheduler will di-

vide the 2D topology of 128× 128 tasks along one dimension and

each supernode gets a block of 8× 128 tasks. Within a supernode,

each drawer gets a block of 2 × 128 tasks in order and each node

gets a block of 1×32 tasks. Figure 3 (left) shows the default place-

ment of the 16, 384 tasks on the 16 supernodes. As is obvious from

the diagram, 128 cores at the boundaries share a D link (shown in

red) with a capacity of 10 GB/s leading to an effective bandwidth

of 10÷ 128 GB/s.

SN 0

SN 1

SN 15

SN 0 SN 1

SN 4

SN 15

Figure 3: Default (linear) and blocked (square) mapping of
tasks performing 2D communication on 16 supernodes

A simple square decomposition of the domain at each level (su-

pernodes, drawers and nodes) can improve the utilization of links

significantly. Assigning a square block of 32 × 32 tasks to each

supernode leads to the use of more D links (see Figure 3, right) –

32 instead of 16 D links are used now. Also, each D link is used

for only one-fourth of the data in this setup and hence the effective

bandwidth per D link is 10÷ 32 GB/s.

Next, let us consider the grouping of MPI processes within a

drawer and a node, for optimizing communication further using

topology aware mapping (Figure 4). As opposed to the default

mapping, within a supernode, tasks can be grouped into blocks of

16× 16 to be placed on the four drawers and further into blocks of

4 × 8 to be placed on each node. In this case, the effective band-

width available on LR links is 5÷ 8 GB/s and that on each LL link

Figure 4: Default (linear) and blocked (square) mapping of
tasks on to drawers and nodes within a supernode

is 24 ÷ 8 GB/s. These improvements in link utilization using an

intelligent mapping are summarized in Table 1.

Link Default Mapping Good Mapping

D 10/128 = 0.078 10/32 = 0.313
LR 5/32 = 0.156 5/8 = 0.625
LL 24/32 = 0.75 24/8 = 3.0

Table 1: Effective link bandwidth (in GB/s) when using the de-
fault and an intelligent mapping for a 2D Stencil of 16K tasks

As we can see, an intelligent mapping can increase the number of

links used and reduce the load on each link. This can lead to signif-

icant performance improvements. However, it is important to note

that even a good blocked mapping utilizes only 32 D links whereas

the number of D links among 16 supernodes is 16× 15 = 240. A

random mapping at the level of nodes or drawers will increase the

number of D links used although it might lead to hot-spots. We will

look at these issues in detail in Section 6.

4. APPROACHES TO MINIMIZING CON-
GESTION ON THE NETWORK

Topology aware mapping of MPI tasks to physical cores/nodes

on a machine can minimize contention and impact application per-

formance [4, 9, 19, 20]. Intelligent mapping can be used to care-

fully distribute traffic over the various links on two-level direct net-

works. This section outlines the different mappings that we eval-

uate for minimizing hot-spots on the network. We also explore

indirect routing coupled with some of the mappings to analyze if it

can be used as an alternative to intelligent mapping.

4.1 Topology aware mapping
A default MPI rank-ordered mapping of processes on to nodes

of a two-level direct network can lead to significant hot-spots and

extremely low effective bandwidth on some links (as shown in Sec-

tion 3). Intelligent mapping of the virtual communication topology

on to such networks can spread the communication over more links

instead of concentrating it over a few and result in reduced con-

tention and better application performance. Below, we present dif-

ferent mapping techniques for near-neighbor communication pat-

terns that will be compared using simulations:

Default Mapping (DEF): Default mapping refers to a “contigu-

ous” MPI rank-ordered mapping where rank 0 is placed on the first

core in the allocated job partition, rank 1 on the second and so on.

Let us use a concrete example of mapping a 2D near-neighbor com-

munication pattern originating from a 5-point stencil on to 64 su-

pernodes of the PERCS topology to understand different mappings.

We assume a virtual topology of 256× 256 tasks for this example

since there are 65, 536 cores on 64 supernodes. The default map-

ping by the job scheduler will place the first 1024 tasks i.e. a block

• Routing choices:

• Indirect routing w/ default mapping

• Indirect routing w/ random drawers mapping



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

4-dimensional stencil

• Representative of MILC, a Lattice QCD code

• Each MPI task has 64 x 64 x 64 x 64 elements

• Size of messages exchanged = 2 MB

10



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

Experiments

• Direct routing:

• Default MPI rank-ordered mapping (DEF)

• Blocking MPI tasks at the level of nodes (BNM)

• Blocking at the level of drawers (BDM)

• Blocking at the level of supernodes (BSM)

• Random mapping at the level of nodes (RNM)

• Random mapping at the level of drawers (RDM)

• Indirect routing

• Default MPI rank-ordered mapping (DFI)

• Random mapping at the level of drawers (RDI)

11



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11 12

Figure 6: Histograms showing link utilization in terms of number of bytes sent over different links for different mappings of a 4D

Stencil on to 64 supernodes of the PERCS Topology. Each row represents utilization of the LL, LR and D links for a different

mapping for direct routing, from top to bottom they are – default mapping, blocked nodes, blocked drawers, blocked supernodes,

random nodes and random drawers.

4D
 S

te
nc

il 
on

 6
4 

su
pe

rn
od

es



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11 12

Figure 6: Histograms showing link utilization in terms of number of bytes sent over different links for different mappings of a 4D

Stencil on to 64 supernodes of the PERCS Topology. Each row represents utilization of the LL, LR and D links for a different

mapping for direct routing, from top to bottom they are – default mapping, blocked nodes, blocked drawers, blocked supernodes,

random nodes and random drawers.

4D
 S

te
nc

il 
on

 6
4 

su
pe

rn
od

es



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11 12

Figure 6: Histograms showing link utilization in terms of number of bytes sent over different links for different mappings of a 4D

Stencil on to 64 supernodes of the PERCS Topology. Each row represents utilization of the LL, LR and D links for a different

mapping for direct routing, from top to bottom they are – default mapping, blocked nodes, blocked drawers, blocked supernodes,

random nodes and random drawers.

4D
 S

te
nc

il 
on

 6
4 

su
pe

rn
od

es



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11 12

Figure 6: Histograms showing link utilization in terms of number of bytes sent over different links for different mappings of a 4D

Stencil on to 64 supernodes of the PERCS Topology. Each row represents utilization of the LL, LR and D links for a different

mapping for direct routing, from top to bottom they are – default mapping, blocked nodes, blocked drawers, blocked supernodes,

random nodes and random drawers.

4D
 S

te
nc

il 
on

 6
4 

su
pe

rn
od

es



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11 13

Figure 6: Histograms showing link utilization in terms of number of bytes sent over different links for different mappings of a 4D

Stencil on to 64 supernodes of the PERCS Topology. Each row represents utilization of the LL, LR and D links for a different

mapping for direct routing, from top to bottom they are – default mapping, blocked nodes, blocked drawers, blocked supernodes,

random nodes and random drawers.

Figure 7: Histograms showing link utilization for mapping of a 4D Stencil on to 64 supernodes of the PERCS Topology. The two rows

represents utilization of LL, LR and D links for the default and random drawers mapping, respectively (both with indirect routing.)

LR and D links for the different mappings in Figure 8. The random
nodes mapping (RNM) and random drawers mapping (RDM) with
direct routing and random drawers mapping with indirect routing
(RDI) have the similar usage for D links and also lead to similar ex-
ecution times (Figure 9). It is important to note that indirect routing
achieves performance comparable to an intelligent mapping but at
the cost of increasing overall traffic on the network. The black hori-
zontal line in Figure 9 represents the lower bound for the execution
time assuming that each MPI task does its sequential computation
and sends its ghost messages over the lowest bandwidth LR links
in a no contention scenario. The best mappings come very close to
this lower bound.

Figure 9: Time spent in communication and overall execution

per iteration for different mappings on 64 supernodes

The BigSim simulation framework also has capabilities to output
event logs which can be visualized through a performance visual-
ization tool (Projections [14]). Figure 10 shows a histogram view
of activity added across all processors for different time bins (note,
the bin size on the top plot is 2 ms whereas on the bottom plot is
1 ms, so they are showing different time periods). The blue rep-
resents computation and green represents communication. In the
top plot, there are gaps between computation when most proces-
sors are idle, waiting for messages before they can begin the next

100

80

60

40

20

100

2345.144msms 3145.144ms

ms 2038.009ms 2538.009ms

Figure 10: Projections time profile view showing the utilization

of processors over time for the DEF and RNM mapping

iteration. In the bottom plot, by virtue of an intelligent mapping,
the wait time becomes negligible and hence, most of the idle time
disappears.

6.3 Mapping a multicast pattern

NAMD is a molecular dynamics application with a multicast
communication pattern where a subset of processors build span-
ning trees and the root of each tree sends messages along the tree
to several processors. We wrote a simple MPI benchmark to simu-
late this multicast pattern, where, in each iteration, every MPI task
builds a spanning tree with 14 other tasks whose ranks differ from
its own by ...,−2x,−x, x, 2x, 3x, ..., where, x is a parameter. For
example, for x = 5, MPI task with rank 50 sends messages to pro-
cessors with MPI ranks 20, 25, 30, 35, 40, 45, 55, 60, 65, 70, 75,
80 and 85. This benchmark performs no computation. We compare

4D
 S

te
nc

il 
on

 6
4 

su
pe

rn
od

es



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11 13

Figure 6: Histograms showing link utilization in terms of number of bytes sent over different links for different mappings of a 4D

Stencil on to 64 supernodes of the PERCS Topology. Each row represents utilization of the LL, LR and D links for a different

mapping for direct routing, from top to bottom they are – default mapping, blocked nodes, blocked drawers, blocked supernodes,

random nodes and random drawers.

Figure 7: Histograms showing link utilization for mapping of a 4D Stencil on to 64 supernodes of the PERCS Topology. The two rows

represents utilization of LL, LR and D links for the default and random drawers mapping, respectively (both with indirect routing.)

LR and D links for the different mappings in Figure 8. The random
nodes mapping (RNM) and random drawers mapping (RDM) with
direct routing and random drawers mapping with indirect routing
(RDI) have the similar usage for D links and also lead to similar ex-
ecution times (Figure 9). It is important to note that indirect routing
achieves performance comparable to an intelligent mapping but at
the cost of increasing overall traffic on the network. The black hori-
zontal line in Figure 9 represents the lower bound for the execution
time assuming that each MPI task does its sequential computation
and sends its ghost messages over the lowest bandwidth LR links
in a no contention scenario. The best mappings come very close to
this lower bound.

Figure 9: Time spent in communication and overall execution

per iteration for different mappings on 64 supernodes

The BigSim simulation framework also has capabilities to output
event logs which can be visualized through a performance visual-
ization tool (Projections [14]). Figure 10 shows a histogram view
of activity added across all processors for different time bins (note,
the bin size on the top plot is 2 ms whereas on the bottom plot is
1 ms, so they are showing different time periods). The blue rep-
resents computation and green represents communication. In the
top plot, there are gaps between computation when most proces-
sors are idle, waiting for messages before they can begin the next

100

80

60

40

20

100

2345.144msms 3145.144ms

ms 2038.009ms 2538.009ms

Figure 10: Projections time profile view showing the utilization

of processors over time for the DEF and RNM mapping

iteration. In the bottom plot, by virtue of an intelligent mapping,
the wait time becomes negligible and hence, most of the idle time
disappears.

6.3 Mapping a multicast pattern

NAMD is a molecular dynamics application with a multicast
communication pattern where a subset of processors build span-
ning trees and the root of each tree sends messages along the tree
to several processors. We wrote a simple MPI benchmark to simu-
late this multicast pattern, where, in each iteration, every MPI task
builds a spanning tree with 14 other tasks whose ranks differ from
its own by ...,−2x,−x, x, 2x, 3x, ..., where, x is a parameter. For
example, for x = 5, MPI task with rank 50 sends messages to pro-
cessors with MPI ranks 20, 25, 30, 35, 40, 45, 55, 60, 65, 70, 75,
80 and 85. This benchmark performs no computation. We compare

4D
 S

te
nc

il 
on

 6
4 

su
pe

rn
od

es



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11 13

Figure 6: Histograms showing link utilization in terms of number of bytes sent over different links for different mappings of a 4D

Stencil on to 64 supernodes of the PERCS Topology. Each row represents utilization of the LL, LR and D links for a different

mapping for direct routing, from top to bottom they are – default mapping, blocked nodes, blocked drawers, blocked supernodes,

random nodes and random drawers.

Figure 7: Histograms showing link utilization for mapping of a 4D Stencil on to 64 supernodes of the PERCS Topology. The two rows

represents utilization of LL, LR and D links for the default and random drawers mapping, respectively (both with indirect routing.)

LR and D links for the different mappings in Figure 8. The random
nodes mapping (RNM) and random drawers mapping (RDM) with
direct routing and random drawers mapping with indirect routing
(RDI) have the similar usage for D links and also lead to similar ex-
ecution times (Figure 9). It is important to note that indirect routing
achieves performance comparable to an intelligent mapping but at
the cost of increasing overall traffic on the network. The black hori-
zontal line in Figure 9 represents the lower bound for the execution
time assuming that each MPI task does its sequential computation
and sends its ghost messages over the lowest bandwidth LR links
in a no contention scenario. The best mappings come very close to
this lower bound.

Figure 9: Time spent in communication and overall execution

per iteration for different mappings on 64 supernodes

The BigSim simulation framework also has capabilities to output
event logs which can be visualized through a performance visual-
ization tool (Projections [14]). Figure 10 shows a histogram view
of activity added across all processors for different time bins (note,
the bin size on the top plot is 2 ms whereas on the bottom plot is
1 ms, so they are showing different time periods). The blue rep-
resents computation and green represents communication. In the
top plot, there are gaps between computation when most proces-
sors are idle, waiting for messages before they can begin the next

100

80

60

40

20

100

2345.144msms 3145.144ms

ms 2038.009ms 2538.009ms

Figure 10: Projections time profile view showing the utilization

of processors over time for the DEF and RNM mapping

iteration. In the bottom plot, by virtue of an intelligent mapping,
the wait time becomes negligible and hence, most of the idle time
disappears.

6.3 Mapping a multicast pattern

NAMD is a molecular dynamics application with a multicast
communication pattern where a subset of processors build span-
ning trees and the root of each tree sends messages along the tree
to several processors. We wrote a simple MPI benchmark to simu-
late this multicast pattern, where, in each iteration, every MPI task
builds a spanning tree with 14 other tasks whose ranks differ from
its own by ...,−2x,−x, x, 2x, 3x, ..., where, x is a parameter. For
example, for x = 5, MPI task with rank 50 sends messages to pro-
cessors with MPI ranks 20, 25, 30, 35, 40, 45, 55, 60, 65, 70, 75,
80 and 85. This benchmark performs no computation. We compare

4D
 S

te
nc

il 
on

 6
4 

su
pe

rn
od

es



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11 13

Figure 6: Histograms showing link utilization in terms of number of bytes sent over different links for different mappings of a 4D

Stencil on to 64 supernodes of the PERCS Topology. Each row represents utilization of the LL, LR and D links for a different

mapping for direct routing, from top to bottom they are – default mapping, blocked nodes, blocked drawers, blocked supernodes,

random nodes and random drawers.

Figure 7: Histograms showing link utilization for mapping of a 4D Stencil on to 64 supernodes of the PERCS Topology. The two rows

represents utilization of LL, LR and D links for the default and random drawers mapping, respectively (both with indirect routing.)

LR and D links for the different mappings in Figure 8. The random
nodes mapping (RNM) and random drawers mapping (RDM) with
direct routing and random drawers mapping with indirect routing
(RDI) have the similar usage for D links and also lead to similar ex-
ecution times (Figure 9). It is important to note that indirect routing
achieves performance comparable to an intelligent mapping but at
the cost of increasing overall traffic on the network. The black hori-
zontal line in Figure 9 represents the lower bound for the execution
time assuming that each MPI task does its sequential computation
and sends its ghost messages over the lowest bandwidth LR links
in a no contention scenario. The best mappings come very close to
this lower bound.

Figure 9: Time spent in communication and overall execution

per iteration for different mappings on 64 supernodes

The BigSim simulation framework also has capabilities to output
event logs which can be visualized through a performance visual-
ization tool (Projections [14]). Figure 10 shows a histogram view
of activity added across all processors for different time bins (note,
the bin size on the top plot is 2 ms whereas on the bottom plot is
1 ms, so they are showing different time periods). The blue rep-
resents computation and green represents communication. In the
top plot, there are gaps between computation when most proces-
sors are idle, waiting for messages before they can begin the next

100

80

60

40

20

100

2345.144msms 3145.144ms

ms 2038.009ms 2538.009ms

Figure 10: Projections time profile view showing the utilization

of processors over time for the DEF and RNM mapping

iteration. In the bottom plot, by virtue of an intelligent mapping,
the wait time becomes negligible and hence, most of the idle time
disappears.

6.3 Mapping a multicast pattern

NAMD is a molecular dynamics application with a multicast
communication pattern where a subset of processors build span-
ning trees and the root of each tree sends messages along the tree
to several processors. We wrote a simple MPI benchmark to simu-
late this multicast pattern, where, in each iteration, every MPI task
builds a spanning tree with 14 other tasks whose ranks differ from
its own by ...,−2x,−x, x, 2x, 3x, ..., where, x is a parameter. For
example, for x = 5, MPI task with rank 50 sends messages to pro-
cessors with MPI ranks 20, 25, 30, 35, 40, 45, 55, 60, 65, 70, 75,
80 and 85. This benchmark performs no computation. We compare

4D
 S

te
nc

il 
on

 6
4 

su
pe

rn
od

es



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11 13

Figure 6: Histograms showing link utilization in terms of number of bytes sent over different links for different mappings of a 4D

Stencil on to 64 supernodes of the PERCS Topology. Each row represents utilization of the LL, LR and D links for a different

mapping for direct routing, from top to bottom they are – default mapping, blocked nodes, blocked drawers, blocked supernodes,

random nodes and random drawers.

Figure 7: Histograms showing link utilization for mapping of a 4D Stencil on to 64 supernodes of the PERCS Topology. The two rows

represents utilization of LL, LR and D links for the default and random drawers mapping, respectively (both with indirect routing.)

LR and D links for the different mappings in Figure 8. The random
nodes mapping (RNM) and random drawers mapping (RDM) with
direct routing and random drawers mapping with indirect routing
(RDI) have the similar usage for D links and also lead to similar ex-
ecution times (Figure 9). It is important to note that indirect routing
achieves performance comparable to an intelligent mapping but at
the cost of increasing overall traffic on the network. The black hori-
zontal line in Figure 9 represents the lower bound for the execution
time assuming that each MPI task does its sequential computation
and sends its ghost messages over the lowest bandwidth LR links
in a no contention scenario. The best mappings come very close to
this lower bound.

Figure 9: Time spent in communication and overall execution

per iteration for different mappings on 64 supernodes

The BigSim simulation framework also has capabilities to output
event logs which can be visualized through a performance visual-
ization tool (Projections [14]). Figure 10 shows a histogram view
of activity added across all processors for different time bins (note,
the bin size on the top plot is 2 ms whereas on the bottom plot is
1 ms, so they are showing different time periods). The blue rep-
resents computation and green represents communication. In the
top plot, there are gaps between computation when most proces-
sors are idle, waiting for messages before they can begin the next

100

80

60

40

20

100

2345.144msms 3145.144ms

ms 2038.009ms 2538.009ms

Figure 10: Projections time profile view showing the utilization

of processors over time for the DEF and RNM mapping

iteration. In the bottom plot, by virtue of an intelligent mapping,
the wait time becomes negligible and hence, most of the idle time
disappears.

6.3 Mapping a multicast pattern

NAMD is a molecular dynamics application with a multicast
communication pattern where a subset of processors build span-
ning trees and the root of each tree sends messages along the tree
to several processors. We wrote a simple MPI benchmark to simu-
late this multicast pattern, where, in each iteration, every MPI task
builds a spanning tree with 14 other tasks whose ranks differ from
its own by ...,−2x,−x, x, 2x, 3x, ..., where, x is a parameter. For
example, for x = 5, MPI task with rank 50 sends messages to pro-
cessors with MPI ranks 20, 25, 30, 35, 40, 45, 55, 60, 65, 70, 75,
80 and 85. This benchmark performs no computation. We compare

4D
 S

te
nc

il 
on

 6
4 

su
pe

rn
od

es



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11 14

DEF BNM BDM BSM RNM RDM DFI RDI

481.70 481.74 480.07 480.90 480.71 481.03 480.07 479.74

Table 4: Execution time per iteration (in ms) for 2D Stencil for different mappings on 64 supernodes

Mapping Node Drawer Supernode

DEF 16× 2× 1× 1 16× 16× 1× 1 16× 16× 4× 1
BNM 4× 2× 2× 2 16× 4× 2× 2 16× 16× 2× 2
BDM 4× 2× 2× 2 4× 4× 4× 4 16× 4× 4× 4
BSM 4× 2× 2× 2 4× 4× 4× 4 8× 8× 4× 4

Table 5: Dimensions of blocks at different levels (node, drawer and supernode) for different mappings of 4D Stencil

that mapping can result in significant improvements when commu-

nication is higher, in the next few sections.

6.2 Mapping a 4D 9-point Stencil
A four-dimensional nine-point stencil is representative of the

communication pattern in MILC, a Lattice QCD code. For the same

amount of data assigned to each task in a two- and four-dimensional

stencil computation, say x4
, the computation is 5x4

in 2D versus

9x4
in 4D and the size of each message is x2

in 2D and x3
in 4D.

Hence, we expect more congestion, given larger messages and bet-

ter improvement from mapping for 4D Stencil.

For 4D Stencil simulations, we consider an array of 1024 ×
1024 × 1024 × 1024 doubles. The 4D array is distributed among

MPI tasks by recursively dividing along all four dimensions, with

each task being assigned 64 × 64 × 64 × 64 elements. This leads

to a logical 4D grid of MPI tasks of dimensions 16×16×16×16.

In each iteration, every MPI task sends eight messages of size 64×
64 × 64 elements to its eight neighbors. Table 5 lists the dimen-

sions of the blocks of tasks placed on a node, drawer and supernode

for different mappings. For the random nodes mapping, we place

4×2×2×2 tasks on a node and for the random drawers mapping,

we place 4× 4× 4× 4 tasks on a drawer.

Figure 6 shows histograms based on the amount of data (in bytes)

sent over the LL, LR and D links (note, that the bin sizes and y-

axis ranges for the LL, LR and D link plots are different). The

counts only include links with non-zero utilization. The amount

of data being sent over D links is much higher (bin size of 108.3

MB) and hence, we expect that lowering the amount of data sent

on D links will have a positive impact on the performance. Let

us focus on the right column first which shows the D link usage

for different mappings. For the default mapping, a large number

of links are in the last bin i.e. they are heavily utilized. As we

progressively block tasks using different mappings (BNM, BDM

and BSM), number of links in the lower numbered bins increases,

signifying fewer bytes passing through each link and fewer hot-

spots. Random nodes mapping (RNM) is successful in spreading

the load evenly on more D links and also in reducing the maximum

number of bytes passing through any given link. Even though the

random nodes and random drawer mappings increase the usage of

LL and LR links, since the data being sent over them is small, this

does not have an adverse affect on performance.

Figure 7 presents similar histograms for indirect routing coupled

with default mapping and random drawers mapping. These present

the best scenarios for link usage – for the D link histograms, more

D links are used but the amount of data being sent over each link

reduces further compared to direct routing (Figure 6). The random

drawers mapping with indirect routing (RDI) reduces the maximum

LL and LR link utilization also (which the other mappings are un-

Figure 8: Average number of bytes sent over LL, LR and D
links for 4D Stencil on 64 supernodes

successful at).

The information presented in these histograms is summarized as

average, minimum and maximum number of bytes sent over LL,

4D
 S

te
nc

il 
on

 6
4 

su
pe

rn
od

es



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11 14

DEF BNM BDM BSM RNM RDM DFI RDI

481.70 481.74 480.07 480.90 480.71 481.03 480.07 479.74

Table 4: Execution time per iteration (in ms) for 2D Stencil for different mappings on 64 supernodes

Mapping Node Drawer Supernode

DEF 16× 2× 1× 1 16× 16× 1× 1 16× 16× 4× 1
BNM 4× 2× 2× 2 16× 4× 2× 2 16× 16× 2× 2
BDM 4× 2× 2× 2 4× 4× 4× 4 16× 4× 4× 4
BSM 4× 2× 2× 2 4× 4× 4× 4 8× 8× 4× 4

Table 5: Dimensions of blocks at different levels (node, drawer and supernode) for different mappings of 4D Stencil

that mapping can result in significant improvements when commu-

nication is higher, in the next few sections.

6.2 Mapping a 4D 9-point Stencil
A four-dimensional nine-point stencil is representative of the

communication pattern in MILC, a Lattice QCD code. For the same

amount of data assigned to each task in a two- and four-dimensional

stencil computation, say x4
, the computation is 5x4

in 2D versus

9x4
in 4D and the size of each message is x2

in 2D and x3
in 4D.

Hence, we expect more congestion, given larger messages and bet-

ter improvement from mapping for 4D Stencil.

For 4D Stencil simulations, we consider an array of 1024 ×
1024 × 1024 × 1024 doubles. The 4D array is distributed among

MPI tasks by recursively dividing along all four dimensions, with

each task being assigned 64 × 64 × 64 × 64 elements. This leads

to a logical 4D grid of MPI tasks of dimensions 16×16×16×16.

In each iteration, every MPI task sends eight messages of size 64×
64 × 64 elements to its eight neighbors. Table 5 lists the dimen-

sions of the blocks of tasks placed on a node, drawer and supernode

for different mappings. For the random nodes mapping, we place

4×2×2×2 tasks on a node and for the random drawers mapping,

we place 4× 4× 4× 4 tasks on a drawer.

Figure 6 shows histograms based on the amount of data (in bytes)

sent over the LL, LR and D links (note, that the bin sizes and y-

axis ranges for the LL, LR and D link plots are different). The

counts only include links with non-zero utilization. The amount

of data being sent over D links is much higher (bin size of 108.3

MB) and hence, we expect that lowering the amount of data sent

on D links will have a positive impact on the performance. Let

us focus on the right column first which shows the D link usage

for different mappings. For the default mapping, a large number

of links are in the last bin i.e. they are heavily utilized. As we

progressively block tasks using different mappings (BNM, BDM

and BSM), number of links in the lower numbered bins increases,

signifying fewer bytes passing through each link and fewer hot-

spots. Random nodes mapping (RNM) is successful in spreading

the load evenly on more D links and also in reducing the maximum

number of bytes passing through any given link. Even though the

random nodes and random drawer mappings increase the usage of

LL and LR links, since the data being sent over them is small, this

does not have an adverse affect on performance.

Figure 7 presents similar histograms for indirect routing coupled

with default mapping and random drawers mapping. These present

the best scenarios for link usage – for the D link histograms, more

D links are used but the amount of data being sent over each link

reduces further compared to direct routing (Figure 6). The random

drawers mapping with indirect routing (RDI) reduces the maximum

LL and LR link utilization also (which the other mappings are un-

Figure 8: Average number of bytes sent over LL, LR and D
links for 4D Stencil on 64 supernodes

successful at).

The information presented in these histograms is summarized as

average, minimum and maximum number of bytes sent over LL,

Figure 7: Histograms showing link utilization for mapping of a 4D Stencil on to 64 supernodes of the PERCS Topology. The two rows

represents utilization of LL, LR and D links for the default and random drawers mapping, respectively (both with indirect routing.)

LR and D links for the different mappings in Figure 8. The random
nodes mapping (RNM) and random drawers mapping (RDM) with
direct routing and random drawers mapping with indirect routing
(RDI) have the similar usage for D links and also lead to similar ex-
ecution times (Figure 9). It is important to note that indirect routing
achieves performance comparable to an intelligent mapping but at
the cost of increasing overall traffic on the network. The black hori-
zontal line in Figure 9 represents the lower bound for the execution
time assuming that each MPI task does its sequential computation
and sends its ghost messages over the lowest bandwidth LR links
in a no contention scenario. The best mappings come very close to
this lower bound.

Figure 9: Time spent in communication and overall execution

per iteration for different mappings on 64 supernodes

The BigSim simulation framework also has capabilities to output
event logs which can be visualized through a performance visual-
ization tool (Projections [14]). Figure 10 shows a histogram view
of activity added across all processors for different time bins (note,
the bin size on the top plot is 2 ms whereas on the bottom plot is
1 ms, so they are showing different time periods). The blue rep-
resents computation and green represents communication. In the
top plot, there are gaps between computation when most proces-
sors are idle, waiting for messages before they can begin the next

100

80

60

40

20

100

2345.144msms 3145.144ms

ms 2038.009ms 2538.009ms

Figure 10: Projections time profile view showing the utilization

of processors over time for the DEF and RNM mapping

iteration. In the bottom plot, by virtue of an intelligent mapping,
the wait time becomes negligible and hence, most of the idle time
disappears.

6.3 Mapping a multicast pattern

NAMD is a molecular dynamics application with a multicast
communication pattern where a subset of processors build span-
ning trees and the root of each tree sends messages along the tree
to several processors. We wrote a simple MPI benchmark to simu-
late this multicast pattern, where, in each iteration, every MPI task
builds a spanning tree with 14 other tasks whose ranks differ from
its own by ...,−2x,−x, x, 2x, 3x, ..., where, x is a parameter. For
example, for x = 5, MPI task with rank 50 sends messages to pro-
cessors with MPI ranks 20, 25, 30, 35, 40, 45, 55, 60, 65, 70, 75,
80 and 85. This benchmark performs no computation. We compare

4D
 S

te
nc

il 
on

 6
4 

su
pe

rn
od

es



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11 14

DEF BNM BDM BSM RNM RDM DFI RDI

481.70 481.74 480.07 480.90 480.71 481.03 480.07 479.74

Table 4: Execution time per iteration (in ms) for 2D Stencil for different mappings on 64 supernodes

Mapping Node Drawer Supernode

DEF 16× 2× 1× 1 16× 16× 1× 1 16× 16× 4× 1
BNM 4× 2× 2× 2 16× 4× 2× 2 16× 16× 2× 2
BDM 4× 2× 2× 2 4× 4× 4× 4 16× 4× 4× 4
BSM 4× 2× 2× 2 4× 4× 4× 4 8× 8× 4× 4

Table 5: Dimensions of blocks at different levels (node, drawer and supernode) for different mappings of 4D Stencil

that mapping can result in significant improvements when commu-

nication is higher, in the next few sections.

6.2 Mapping a 4D 9-point Stencil
A four-dimensional nine-point stencil is representative of the

communication pattern in MILC, a Lattice QCD code. For the same

amount of data assigned to each task in a two- and four-dimensional

stencil computation, say x4
, the computation is 5x4

in 2D versus

9x4
in 4D and the size of each message is x2

in 2D and x3
in 4D.

Hence, we expect more congestion, given larger messages and bet-

ter improvement from mapping for 4D Stencil.

For 4D Stencil simulations, we consider an array of 1024 ×
1024 × 1024 × 1024 doubles. The 4D array is distributed among

MPI tasks by recursively dividing along all four dimensions, with

each task being assigned 64 × 64 × 64 × 64 elements. This leads

to a logical 4D grid of MPI tasks of dimensions 16×16×16×16.

In each iteration, every MPI task sends eight messages of size 64×
64 × 64 elements to its eight neighbors. Table 5 lists the dimen-

sions of the blocks of tasks placed on a node, drawer and supernode

for different mappings. For the random nodes mapping, we place

4×2×2×2 tasks on a node and for the random drawers mapping,

we place 4× 4× 4× 4 tasks on a drawer.

Figure 6 shows histograms based on the amount of data (in bytes)

sent over the LL, LR and D links (note, that the bin sizes and y-

axis ranges for the LL, LR and D link plots are different). The

counts only include links with non-zero utilization. The amount

of data being sent over D links is much higher (bin size of 108.3

MB) and hence, we expect that lowering the amount of data sent

on D links will have a positive impact on the performance. Let

us focus on the right column first which shows the D link usage

for different mappings. For the default mapping, a large number

of links are in the last bin i.e. they are heavily utilized. As we

progressively block tasks using different mappings (BNM, BDM

and BSM), number of links in the lower numbered bins increases,

signifying fewer bytes passing through each link and fewer hot-

spots. Random nodes mapping (RNM) is successful in spreading

the load evenly on more D links and also in reducing the maximum

number of bytes passing through any given link. Even though the

random nodes and random drawer mappings increase the usage of

LL and LR links, since the data being sent over them is small, this

does not have an adverse affect on performance.

Figure 7 presents similar histograms for indirect routing coupled

with default mapping and random drawers mapping. These present

the best scenarios for link usage – for the D link histograms, more

D links are used but the amount of data being sent over each link

reduces further compared to direct routing (Figure 6). The random

drawers mapping with indirect routing (RDI) reduces the maximum

LL and LR link utilization also (which the other mappings are un-

Figure 8: Average number of bytes sent over LL, LR and D
links for 4D Stencil on 64 supernodes

successful at).

The information presented in these histograms is summarized as

average, minimum and maximum number of bytes sent over LL,

Figure 7: Histograms showing link utilization for mapping of a 4D Stencil on to 64 supernodes of the PERCS Topology. The two rows

represents utilization of LL, LR and D links for the default and random drawers mapping, respectively (both with indirect routing.)

LR and D links for the different mappings in Figure 8. The random
nodes mapping (RNM) and random drawers mapping (RDM) with
direct routing and random drawers mapping with indirect routing
(RDI) have the similar usage for D links and also lead to similar ex-
ecution times (Figure 9). It is important to note that indirect routing
achieves performance comparable to an intelligent mapping but at
the cost of increasing overall traffic on the network. The black hori-
zontal line in Figure 9 represents the lower bound for the execution
time assuming that each MPI task does its sequential computation
and sends its ghost messages over the lowest bandwidth LR links
in a no contention scenario. The best mappings come very close to
this lower bound.

Figure 9: Time spent in communication and overall execution

per iteration for different mappings on 64 supernodes

The BigSim simulation framework also has capabilities to output
event logs which can be visualized through a performance visual-
ization tool (Projections [14]). Figure 10 shows a histogram view
of activity added across all processors for different time bins (note,
the bin size on the top plot is 2 ms whereas on the bottom plot is
1 ms, so they are showing different time periods). The blue rep-
resents computation and green represents communication. In the
top plot, there are gaps between computation when most proces-
sors are idle, waiting for messages before they can begin the next

100

80

60

40

20

100

2345.144msms 3145.144ms

ms 2038.009ms 2538.009ms

Figure 10: Projections time profile view showing the utilization

of processors over time for the DEF and RNM mapping

iteration. In the bottom plot, by virtue of an intelligent mapping,
the wait time becomes negligible and hence, most of the idle time
disappears.

6.3 Mapping a multicast pattern

NAMD is a molecular dynamics application with a multicast
communication pattern where a subset of processors build span-
ning trees and the root of each tree sends messages along the tree
to several processors. We wrote a simple MPI benchmark to simu-
late this multicast pattern, where, in each iteration, every MPI task
builds a spanning tree with 14 other tasks whose ranks differ from
its own by ...,−2x,−x, x, 2x, 3x, ..., where, x is a parameter. For
example, for x = 5, MPI task with rank 50 sends messages to pro-
cessors with MPI ranks 20, 25, 30, 35, 40, 45, 55, 60, 65, 70, 75,
80 and 85. This benchmark performs no computation. We compare

4D
 S

te
nc

il 
on

 6
4 

su
pe

rn
od

es

84%



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11 14

DEF BNM BDM BSM RNM RDM DFI RDI

481.70 481.74 480.07 480.90 480.71 481.03 480.07 479.74

Table 4: Execution time per iteration (in ms) for 2D Stencil for different mappings on 64 supernodes

Mapping Node Drawer Supernode

DEF 16× 2× 1× 1 16× 16× 1× 1 16× 16× 4× 1
BNM 4× 2× 2× 2 16× 4× 2× 2 16× 16× 2× 2
BDM 4× 2× 2× 2 4× 4× 4× 4 16× 4× 4× 4
BSM 4× 2× 2× 2 4× 4× 4× 4 8× 8× 4× 4

Table 5: Dimensions of blocks at different levels (node, drawer and supernode) for different mappings of 4D Stencil

that mapping can result in significant improvements when commu-

nication is higher, in the next few sections.

6.2 Mapping a 4D 9-point Stencil
A four-dimensional nine-point stencil is representative of the

communication pattern in MILC, a Lattice QCD code. For the same

amount of data assigned to each task in a two- and four-dimensional

stencil computation, say x4
, the computation is 5x4

in 2D versus

9x4
in 4D and the size of each message is x2

in 2D and x3
in 4D.

Hence, we expect more congestion, given larger messages and bet-

ter improvement from mapping for 4D Stencil.

For 4D Stencil simulations, we consider an array of 1024 ×
1024 × 1024 × 1024 doubles. The 4D array is distributed among

MPI tasks by recursively dividing along all four dimensions, with

each task being assigned 64 × 64 × 64 × 64 elements. This leads

to a logical 4D grid of MPI tasks of dimensions 16×16×16×16.

In each iteration, every MPI task sends eight messages of size 64×
64 × 64 elements to its eight neighbors. Table 5 lists the dimen-

sions of the blocks of tasks placed on a node, drawer and supernode

for different mappings. For the random nodes mapping, we place

4×2×2×2 tasks on a node and for the random drawers mapping,

we place 4× 4× 4× 4 tasks on a drawer.

Figure 6 shows histograms based on the amount of data (in bytes)

sent over the LL, LR and D links (note, that the bin sizes and y-

axis ranges for the LL, LR and D link plots are different). The

counts only include links with non-zero utilization. The amount

of data being sent over D links is much higher (bin size of 108.3

MB) and hence, we expect that lowering the amount of data sent

on D links will have a positive impact on the performance. Let

us focus on the right column first which shows the D link usage

for different mappings. For the default mapping, a large number

of links are in the last bin i.e. they are heavily utilized. As we

progressively block tasks using different mappings (BNM, BDM

and BSM), number of links in the lower numbered bins increases,

signifying fewer bytes passing through each link and fewer hot-

spots. Random nodes mapping (RNM) is successful in spreading

the load evenly on more D links and also in reducing the maximum

number of bytes passing through any given link. Even though the

random nodes and random drawer mappings increase the usage of

LL and LR links, since the data being sent over them is small, this

does not have an adverse affect on performance.

Figure 7 presents similar histograms for indirect routing coupled

with default mapping and random drawers mapping. These present

the best scenarios for link usage – for the D link histograms, more

D links are used but the amount of data being sent over each link

reduces further compared to direct routing (Figure 6). The random

drawers mapping with indirect routing (RDI) reduces the maximum

LL and LR link utilization also (which the other mappings are un-

Figure 8: Average number of bytes sent over LL, LR and D
links for 4D Stencil on 64 supernodes

successful at).

The information presented in these histograms is summarized as

average, minimum and maximum number of bytes sent over LL,

Figure 7: Histograms showing link utilization for mapping of a 4D Stencil on to 64 supernodes of the PERCS Topology. The two rows

represents utilization of LL, LR and D links for the default and random drawers mapping, respectively (both with indirect routing.)

LR and D links for the different mappings in Figure 8. The random
nodes mapping (RNM) and random drawers mapping (RDM) with
direct routing and random drawers mapping with indirect routing
(RDI) have the similar usage for D links and also lead to similar ex-
ecution times (Figure 9). It is important to note that indirect routing
achieves performance comparable to an intelligent mapping but at
the cost of increasing overall traffic on the network. The black hori-
zontal line in Figure 9 represents the lower bound for the execution
time assuming that each MPI task does its sequential computation
and sends its ghost messages over the lowest bandwidth LR links
in a no contention scenario. The best mappings come very close to
this lower bound.

Figure 9: Time spent in communication and overall execution

per iteration for different mappings on 64 supernodes

The BigSim simulation framework also has capabilities to output
event logs which can be visualized through a performance visual-
ization tool (Projections [14]). Figure 10 shows a histogram view
of activity added across all processors for different time bins (note,
the bin size on the top plot is 2 ms whereas on the bottom plot is
1 ms, so they are showing different time periods). The blue rep-
resents computation and green represents communication. In the
top plot, there are gaps between computation when most proces-
sors are idle, waiting for messages before they can begin the next

100

80

60

40

20

100

2345.144msms 3145.144ms

ms 2038.009ms 2538.009ms

Figure 10: Projections time profile view showing the utilization

of processors over time for the DEF and RNM mapping

iteration. In the bottom plot, by virtue of an intelligent mapping,
the wait time becomes negligible and hence, most of the idle time
disappears.

6.3 Mapping a multicast pattern

NAMD is a molecular dynamics application with a multicast
communication pattern where a subset of processors build span-
ning trees and the root of each tree sends messages along the tree
to several processors. We wrote a simple MPI benchmark to simu-
late this multicast pattern, where, in each iteration, every MPI task
builds a spanning tree with 14 other tasks whose ranks differ from
its own by ...,−2x,−x, x, 2x, 3x, ..., where, x is a parameter. For
example, for x = 5, MPI task with rank 50 sends messages to pro-
cessors with MPI ranks 20, 25, 30, 35, 40, 45, 55, 60, 65, 70, 75,
80 and 85. This benchmark performs no computation. We compare

4D
 S

te
nc

il 
on

 6
4 

su
pe

rn
od

es

84%

39%



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11 14

DEF BNM BDM BSM RNM RDM DFI RDI

481.70 481.74 480.07 480.90 480.71 481.03 480.07 479.74

Table 4: Execution time per iteration (in ms) for 2D Stencil for different mappings on 64 supernodes

Mapping Node Drawer Supernode

DEF 16× 2× 1× 1 16× 16× 1× 1 16× 16× 4× 1
BNM 4× 2× 2× 2 16× 4× 2× 2 16× 16× 2× 2
BDM 4× 2× 2× 2 4× 4× 4× 4 16× 4× 4× 4
BSM 4× 2× 2× 2 4× 4× 4× 4 8× 8× 4× 4

Table 5: Dimensions of blocks at different levels (node, drawer and supernode) for different mappings of 4D Stencil

that mapping can result in significant improvements when commu-

nication is higher, in the next few sections.

6.2 Mapping a 4D 9-point Stencil
A four-dimensional nine-point stencil is representative of the

communication pattern in MILC, a Lattice QCD code. For the same

amount of data assigned to each task in a two- and four-dimensional

stencil computation, say x4
, the computation is 5x4

in 2D versus

9x4
in 4D and the size of each message is x2

in 2D and x3
in 4D.

Hence, we expect more congestion, given larger messages and bet-

ter improvement from mapping for 4D Stencil.

For 4D Stencil simulations, we consider an array of 1024 ×
1024 × 1024 × 1024 doubles. The 4D array is distributed among

MPI tasks by recursively dividing along all four dimensions, with

each task being assigned 64 × 64 × 64 × 64 elements. This leads

to a logical 4D grid of MPI tasks of dimensions 16×16×16×16.

In each iteration, every MPI task sends eight messages of size 64×
64 × 64 elements to its eight neighbors. Table 5 lists the dimen-

sions of the blocks of tasks placed on a node, drawer and supernode

for different mappings. For the random nodes mapping, we place

4×2×2×2 tasks on a node and for the random drawers mapping,

we place 4× 4× 4× 4 tasks on a drawer.

Figure 6 shows histograms based on the amount of data (in bytes)

sent over the LL, LR and D links (note, that the bin sizes and y-

axis ranges for the LL, LR and D link plots are different). The

counts only include links with non-zero utilization. The amount

of data being sent over D links is much higher (bin size of 108.3

MB) and hence, we expect that lowering the amount of data sent

on D links will have a positive impact on the performance. Let

us focus on the right column first which shows the D link usage

for different mappings. For the default mapping, a large number

of links are in the last bin i.e. they are heavily utilized. As we

progressively block tasks using different mappings (BNM, BDM

and BSM), number of links in the lower numbered bins increases,

signifying fewer bytes passing through each link and fewer hot-

spots. Random nodes mapping (RNM) is successful in spreading

the load evenly on more D links and also in reducing the maximum

number of bytes passing through any given link. Even though the

random nodes and random drawer mappings increase the usage of

LL and LR links, since the data being sent over them is small, this

does not have an adverse affect on performance.

Figure 7 presents similar histograms for indirect routing coupled

with default mapping and random drawers mapping. These present

the best scenarios for link usage – for the D link histograms, more

D links are used but the amount of data being sent over each link

reduces further compared to direct routing (Figure 6). The random

drawers mapping with indirect routing (RDI) reduces the maximum

LL and LR link utilization also (which the other mappings are un-

Figure 8: Average number of bytes sent over LL, LR and D
links for 4D Stencil on 64 supernodes

successful at).

The information presented in these histograms is summarized as

average, minimum and maximum number of bytes sent over LL,

Figure 7: Histograms showing link utilization for mapping of a 4D Stencil on to 64 supernodes of the PERCS Topology. The two rows

represents utilization of LL, LR and D links for the default and random drawers mapping, respectively (both with indirect routing.)

LR and D links for the different mappings in Figure 8. The random
nodes mapping (RNM) and random drawers mapping (RDM) with
direct routing and random drawers mapping with indirect routing
(RDI) have the similar usage for D links and also lead to similar ex-
ecution times (Figure 9). It is important to note that indirect routing
achieves performance comparable to an intelligent mapping but at
the cost of increasing overall traffic on the network. The black hori-
zontal line in Figure 9 represents the lower bound for the execution
time assuming that each MPI task does its sequential computation
and sends its ghost messages over the lowest bandwidth LR links
in a no contention scenario. The best mappings come very close to
this lower bound.

Figure 9: Time spent in communication and overall execution

per iteration for different mappings on 64 supernodes

The BigSim simulation framework also has capabilities to output
event logs which can be visualized through a performance visual-
ization tool (Projections [14]). Figure 10 shows a histogram view
of activity added across all processors for different time bins (note,
the bin size on the top plot is 2 ms whereas on the bottom plot is
1 ms, so they are showing different time periods). The blue rep-
resents computation and green represents communication. In the
top plot, there are gaps between computation when most proces-
sors are idle, waiting for messages before they can begin the next

100

80

60

40

20

100

2345.144msms 3145.144ms

ms 2038.009ms 2538.009ms

Figure 10: Projections time profile view showing the utilization

of processors over time for the DEF and RNM mapping

iteration. In the bottom plot, by virtue of an intelligent mapping,
the wait time becomes negligible and hence, most of the idle time
disappears.

6.3 Mapping a multicast pattern

NAMD is a molecular dynamics application with a multicast
communication pattern where a subset of processors build span-
ning trees and the root of each tree sends messages along the tree
to several processors. We wrote a simple MPI benchmark to simu-
late this multicast pattern, where, in each iteration, every MPI task
builds a spanning tree with 14 other tasks whose ranks differ from
its own by ...,−2x,−x, x, 2x, 3x, ..., where, x is a parameter. For
example, for x = 5, MPI task with rank 50 sends messages to pro-
cessors with MPI ranks 20, 25, 30, 35, 40, 45, 55, 60, 65, 70, 75,
80 and 85. This benchmark performs no computation. We compare

Figure 7: Histograms showing link utilization for mapping of a 4D Stencil on to 64 supernodes of the PERCS Topology. The two rows

represents utilization of LL, LR and D links for the default and random drawers mapping, respectively (both with indirect routing.)

LR and D links for the different mappings in Figure 8. The random
nodes mapping (RNM) and random drawers mapping (RDM) with
direct routing and random drawers mapping with indirect routing
(RDI) have the similar usage for D links and also lead to similar ex-
ecution times (Figure 9). It is important to note that indirect routing
achieves performance comparable to an intelligent mapping but at
the cost of increasing overall traffic on the network. The black hori-
zontal line in Figure 9 represents the lower bound for the execution
time assuming that each MPI task does its sequential computation
and sends its ghost messages over the lowest bandwidth LR links
in a no contention scenario. The best mappings come very close to
this lower bound.

Figure 9: Time spent in communication and overall execution

per iteration for different mappings on 64 supernodes

The BigSim simulation framework also has capabilities to output
event logs which can be visualized through a performance visual-
ization tool (Projections [14]). Figure 10 shows a histogram view
of activity added across all processors for different time bins (note,
the bin size on the top plot is 2 ms whereas on the bottom plot is
1 ms, so they are showing different time periods). The blue rep-
resents computation and green represents communication. In the
top plot, there are gaps between computation when most proces-
sors are idle, waiting for messages before they can begin the next

100

80

60

40

20

100

2345.144msms 3145.144ms

ms 2038.009ms 2538.009ms

Figure 10: Projections time profile view showing the utilization

of processors over time for the DEF and RNM mapping

iteration. In the bottom plot, by virtue of an intelligent mapping,
the wait time becomes negligible and hence, most of the idle time
disappears.

6.3 Mapping a multicast pattern

NAMD is a molecular dynamics application with a multicast
communication pattern where a subset of processors build span-
ning trees and the root of each tree sends messages along the tree
to several processors. We wrote a simple MPI benchmark to simu-
late this multicast pattern, where, in each iteration, every MPI task
builds a spanning tree with 14 other tasks whose ranks differ from
its own by ...,−2x,−x, x, 2x, 3x, ..., where, x is a parameter. For
example, for x = 5, MPI task with rank 50 sends messages to pro-
cessors with MPI ranks 20, 25, 30, 35, 40, 45, 55, 60, 65, 70, 75,
80 and 85. This benchmark performs no computation. We compare

4D
 S

te
nc

il 
on

 6
4 

su
pe

rn
od

es

84%

39%



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

n-targets multicast pattern

• Similar to the communication pattern in NAMD

• Each MPI task sends messages to 14 others

• Message size = 1 MB

15



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

n-targets multicast pattern

16

the default mapping of MPI tasks with four mapping and routing

configurations – BNM, BDM, DFI and RDI.

Figure 11: Average number of bytes sent over LL, LR and D

links for the multicast pattern on 64 supernodes

In Figure 11, we present link usage statistics for the three types

of links. This is a different communication pattern from the 2D

and 4D near-neighbor patterns we have seen so far. The random

nodes and random drawers mapping with direct routing do not get

better link utilization compared to the default mapping because it is

difficult to find a blocking that is optimized for this multicast pat-

tern. However, the indirect routing cases (DFI and RDI) succeed

in lowering the average and maximum usage on the D links signifi-

cantly compared to the other mappings. This is also reflected in the

reduction in the execution time per iteration as shown in Table 6.

7. SIMULATIONS FOR 300 SUPERNODES

Predictions for the sustained Petaflop/s Blue Waters machine, to

be installed at Illinois, indicated that the machine would have more

DEF RNM RDM DFI RDI

54.64 87.73 44.24 17.81 17.64

Table 6: Execution time per iteration (in ms) for the multicast

pattern for different mappings on 64 supernodes

than 300 supernodes connected by the PERCS network (the actual

number is not public). We now present results of running a 4D

Stencil on 307,200 cores using a detailed packet-level PERCS net-

work simulation. To the best of our knowledge, this is the first

attempt at simulating a parallel machine at this scale.

Figure 12: Average number of bytes sent over LL, LR and D

links for 4D Stencil on 300 supernodes

For 300 supernode simulations, we consider a data array of 512×
512 × 1024 × 4800 doubles. The 4D array is distributed among

307, 200 MPI tasks with each task being assigned 32×32×64×64
elements. This leads to a logical 4D grid of MPI tasks of dimen-

sions 16 × 16 × 16 × 75. We use mapping configurations similar

the default mapping of MPI tasks with four mapping and routing

configurations – BNM, BDM, DFI and RDI.

Figure 11: Average number of bytes sent over LL, LR and D

links for the multicast pattern on 64 supernodes

In Figure 11, we present link usage statistics for the three types

of links. This is a different communication pattern from the 2D

and 4D near-neighbor patterns we have seen so far. The random

nodes and random drawers mapping with direct routing do not get

better link utilization compared to the default mapping because it is

difficult to find a blocking that is optimized for this multicast pat-

tern. However, the indirect routing cases (DFI and RDI) succeed

in lowering the average and maximum usage on the D links signifi-

cantly compared to the other mappings. This is also reflected in the

reduction in the execution time per iteration as shown in Table 6.

7. SIMULATIONS FOR 300 SUPERNODES

Predictions for the sustained Petaflop/s Blue Waters machine, to

be installed at Illinois, indicated that the machine would have more

DEF RNM RDM DFI RDI

54.64 87.73 44.24 17.81 17.64

Table 6: Execution time per iteration (in ms) for the multicast

pattern for different mappings on 64 supernodes

than 300 supernodes connected by the PERCS network (the actual

number is not public). We now present results of running a 4D

Stencil on 307,200 cores using a detailed packet-level PERCS net-

work simulation. To the best of our knowledge, this is the first

attempt at simulating a parallel machine at this scale.

Figure 12: Average number of bytes sent over LL, LR and D

links for 4D Stencil on 300 supernodes

For 300 supernode simulations, we consider a data array of 512×
512 × 1024 × 4800 doubles. The 4D array is distributed among

307, 200 MPI tasks with each task being assigned 32×32×64×64
elements. This leads to a logical 4D grid of MPI tasks of dimen-

sions 16 × 16 × 16 × 75. We use mapping configurations similar



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

n-targets multicast pattern

16

the default mapping of MPI tasks with four mapping and routing

configurations – BNM, BDM, DFI and RDI.

Figure 11: Average number of bytes sent over LL, LR and D

links for the multicast pattern on 64 supernodes

In Figure 11, we present link usage statistics for the three types

of links. This is a different communication pattern from the 2D

and 4D near-neighbor patterns we have seen so far. The random

nodes and random drawers mapping with direct routing do not get

better link utilization compared to the default mapping because it is

difficult to find a blocking that is optimized for this multicast pat-

tern. However, the indirect routing cases (DFI and RDI) succeed

in lowering the average and maximum usage on the D links signifi-

cantly compared to the other mappings. This is also reflected in the

reduction in the execution time per iteration as shown in Table 6.

7. SIMULATIONS FOR 300 SUPERNODES

Predictions for the sustained Petaflop/s Blue Waters machine, to

be installed at Illinois, indicated that the machine would have more

DEF RNM RDM DFI RDI

54.64 87.73 44.24 17.81 17.64

Table 6: Execution time per iteration (in ms) for the multicast

pattern for different mappings on 64 supernodes

than 300 supernodes connected by the PERCS network (the actual

number is not public). We now present results of running a 4D

Stencil on 307,200 cores using a detailed packet-level PERCS net-

work simulation. To the best of our knowledge, this is the first

attempt at simulating a parallel machine at this scale.

Figure 12: Average number of bytes sent over LL, LR and D

links for 4D Stencil on 300 supernodes

For 300 supernode simulations, we consider a data array of 512×
512 × 1024 × 4800 doubles. The 4D array is distributed among

307, 200 MPI tasks with each task being assigned 32×32×64×64
elements. This leads to a logical 4D grid of MPI tasks of dimen-

sions 16 × 16 × 16 × 75. We use mapping configurations similar

the default mapping of MPI tasks with four mapping and routing

configurations – BNM, BDM, DFI and RDI.

Figure 11: Average number of bytes sent over LL, LR and D

links for the multicast pattern on 64 supernodes

In Figure 11, we present link usage statistics for the three types

of links. This is a different communication pattern from the 2D

and 4D near-neighbor patterns we have seen so far. The random

nodes and random drawers mapping with direct routing do not get

better link utilization compared to the default mapping because it is

difficult to find a blocking that is optimized for this multicast pat-

tern. However, the indirect routing cases (DFI and RDI) succeed

in lowering the average and maximum usage on the D links signifi-

cantly compared to the other mappings. This is also reflected in the

reduction in the execution time per iteration as shown in Table 6.

7. SIMULATIONS FOR 300 SUPERNODES

Predictions for the sustained Petaflop/s Blue Waters machine, to

be installed at Illinois, indicated that the machine would have more

DEF RNM RDM DFI RDI

54.64 87.73 44.24 17.81 17.64

Table 6: Execution time per iteration (in ms) for the multicast

pattern for different mappings on 64 supernodes

than 300 supernodes connected by the PERCS network (the actual

number is not public). We now present results of running a 4D

Stencil on 307,200 cores using a detailed packet-level PERCS net-

work simulation. To the best of our knowledge, this is the first

attempt at simulating a parallel machine at this scale.

Figure 12: Average number of bytes sent over LL, LR and D

links for 4D Stencil on 300 supernodes

For 300 supernode simulations, we consider a data array of 512×
512 × 1024 × 4800 doubles. The 4D array is distributed among

307, 200 MPI tasks with each task being assigned 32×32×64×64
elements. This leads to a logical 4D grid of MPI tasks of dimen-

sions 16 × 16 × 16 × 75. We use mapping configurations similar

0

22.5

45

67.5

90

DEF RNM RDM DFI RDIIt
er

at
io

n 
T

im
e 

(m
s)



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

n-targets multicast pattern

16

the default mapping of MPI tasks with four mapping and routing

configurations – BNM, BDM, DFI and RDI.

Figure 11: Average number of bytes sent over LL, LR and D

links for the multicast pattern on 64 supernodes

In Figure 11, we present link usage statistics for the three types

of links. This is a different communication pattern from the 2D

and 4D near-neighbor patterns we have seen so far. The random

nodes and random drawers mapping with direct routing do not get

better link utilization compared to the default mapping because it is

difficult to find a blocking that is optimized for this multicast pat-

tern. However, the indirect routing cases (DFI and RDI) succeed

in lowering the average and maximum usage on the D links signifi-

cantly compared to the other mappings. This is also reflected in the

reduction in the execution time per iteration as shown in Table 6.

7. SIMULATIONS FOR 300 SUPERNODES

Predictions for the sustained Petaflop/s Blue Waters machine, to

be installed at Illinois, indicated that the machine would have more

DEF RNM RDM DFI RDI

54.64 87.73 44.24 17.81 17.64

Table 6: Execution time per iteration (in ms) for the multicast

pattern for different mappings on 64 supernodes

than 300 supernodes connected by the PERCS network (the actual

number is not public). We now present results of running a 4D

Stencil on 307,200 cores using a detailed packet-level PERCS net-

work simulation. To the best of our knowledge, this is the first

attempt at simulating a parallel machine at this scale.

Figure 12: Average number of bytes sent over LL, LR and D

links for 4D Stencil on 300 supernodes

For 300 supernode simulations, we consider a data array of 512×
512 × 1024 × 4800 doubles. The 4D array is distributed among

307, 200 MPI tasks with each task being assigned 32×32×64×64
elements. This leads to a logical 4D grid of MPI tasks of dimen-

sions 16 × 16 × 16 × 75. We use mapping configurations similar

the default mapping of MPI tasks with four mapping and routing

configurations – BNM, BDM, DFI and RDI.

Figure 11: Average number of bytes sent over LL, LR and D

links for the multicast pattern on 64 supernodes

In Figure 11, we present link usage statistics for the three types

of links. This is a different communication pattern from the 2D

and 4D near-neighbor patterns we have seen so far. The random

nodes and random drawers mapping with direct routing do not get

better link utilization compared to the default mapping because it is

difficult to find a blocking that is optimized for this multicast pat-

tern. However, the indirect routing cases (DFI and RDI) succeed

in lowering the average and maximum usage on the D links signifi-

cantly compared to the other mappings. This is also reflected in the

reduction in the execution time per iteration as shown in Table 6.

7. SIMULATIONS FOR 300 SUPERNODES

Predictions for the sustained Petaflop/s Blue Waters machine, to

be installed at Illinois, indicated that the machine would have more

DEF RNM RDM DFI RDI

54.64 87.73 44.24 17.81 17.64

Table 6: Execution time per iteration (in ms) for the multicast

pattern for different mappings on 64 supernodes

than 300 supernodes connected by the PERCS network (the actual

number is not public). We now present results of running a 4D

Stencil on 307,200 cores using a detailed packet-level PERCS net-

work simulation. To the best of our knowledge, this is the first

attempt at simulating a parallel machine at this scale.

Figure 12: Average number of bytes sent over LL, LR and D

links for 4D Stencil on 300 supernodes

For 300 supernode simulations, we consider a data array of 512×
512 × 1024 × 4800 doubles. The 4D array is distributed among

307, 200 MPI tasks with each task being assigned 32×32×64×64
elements. This leads to a logical 4D grid of MPI tasks of dimen-

sions 16 × 16 × 16 × 75. We use mapping configurations similar

0

22.5

45

67.5

90

DEF RNM RDM DFI RDIIt
er

at
io

n 
T

im
e 

(m
s)

68%



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

• Largest detailed network 
simulation so far = 
307,200 MPI tasks

• Non-power-of-2 leads to 
more complex mapping

• Message size = 1 MB

17

the default mapping of MPI tasks with four mapping and routing

configurations – BNM, BDM, DFI and RDI.

Figure 11: Average number of bytes sent over LL, LR and D

links for the multicast pattern on 64 supernodes

In Figure 11, we present link usage statistics for the three types

of links. This is a different communication pattern from the 2D

and 4D near-neighbor patterns we have seen so far. The random

nodes and random drawers mapping with direct routing do not get

better link utilization compared to the default mapping because it is

difficult to find a blocking that is optimized for this multicast pat-

tern. However, the indirect routing cases (DFI and RDI) succeed

in lowering the average and maximum usage on the D links signifi-

cantly compared to the other mappings. This is also reflected in the

reduction in the execution time per iteration as shown in Table 6.

7. SIMULATIONS FOR 300 SUPERNODES

Predictions for the sustained Petaflop/s Blue Waters machine, to

be installed at Illinois, indicated that the machine would have more

DEF RNM RDM DFI RDI

54.64 87.73 44.24 17.81 17.64

Table 6: Execution time per iteration (in ms) for the multicast

pattern for different mappings on 64 supernodes

than 300 supernodes connected by the PERCS network (the actual

number is not public). We now present results of running a 4D

Stencil on 307,200 cores using a detailed packet-level PERCS net-

work simulation. To the best of our knowledge, this is the first

attempt at simulating a parallel machine at this scale.

Figure 12: Average number of bytes sent over LL, LR and D

links for 4D Stencil on 300 supernodes

For 300 supernode simulations, we consider a data array of 512×
512 × 1024 × 4800 doubles. The 4D array is distributed among

307, 200 MPI tasks with each task being assigned 32×32×64×64
elements. This leads to a logical 4D grid of MPI tasks of dimen-

sions 16 × 16 × 16 × 75. We use mapping configurations similar

4D
 S

te
nc

il 
on

 3
00

 s
up

er
no

de
s

Text



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

• Largest detailed network 
simulation so far = 
307,200 MPI tasks

• Non-power-of-2 leads to 
more complex mapping

• Message size = 1 MB

17

the default mapping of MPI tasks with four mapping and routing

configurations – BNM, BDM, DFI and RDI.

Figure 11: Average number of bytes sent over LL, LR and D

links for the multicast pattern on 64 supernodes

In Figure 11, we present link usage statistics for the three types

of links. This is a different communication pattern from the 2D

and 4D near-neighbor patterns we have seen so far. The random

nodes and random drawers mapping with direct routing do not get

better link utilization compared to the default mapping because it is

difficult to find a blocking that is optimized for this multicast pat-

tern. However, the indirect routing cases (DFI and RDI) succeed

in lowering the average and maximum usage on the D links signifi-

cantly compared to the other mappings. This is also reflected in the

reduction in the execution time per iteration as shown in Table 6.

7. SIMULATIONS FOR 300 SUPERNODES

Predictions for the sustained Petaflop/s Blue Waters machine, to

be installed at Illinois, indicated that the machine would have more

DEF RNM RDM DFI RDI

54.64 87.73 44.24 17.81 17.64

Table 6: Execution time per iteration (in ms) for the multicast

pattern for different mappings on 64 supernodes

than 300 supernodes connected by the PERCS network (the actual

number is not public). We now present results of running a 4D

Stencil on 307,200 cores using a detailed packet-level PERCS net-

work simulation. To the best of our knowledge, this is the first

attempt at simulating a parallel machine at this scale.

Figure 12: Average number of bytes sent over LL, LR and D

links for 4D Stencil on 300 supernodes

For 300 supernode simulations, we consider a data array of 512×
512 × 1024 × 4800 doubles. The 4D array is distributed among

307, 200 MPI tasks with each task being assigned 32×32×64×64
elements. This leads to a logical 4D grid of MPI tasks of dimen-

sions 16 × 16 × 16 × 75. We use mapping configurations similar

4D
 S

te
nc

il 
on

 3
00

 s
up

er
no

de
s

to those used for the 64 supernode case (see Table 5, Section 6.2).
Since one dimension is a non-power-of-2 and significantly bigger
than the other three, mapping on 300 supernodes is more challeng-
ing than on 64 supernodes. It is also impossible to pack all the su-
pernodes exactly as per the mappings in the table. To handle this,
we continue to map MPI tasks in the described shapes as long as it
is possible to pack them neatly within the supernodes, and for the
remaining supernodes (that are generally small in number), we do
a random drawer assignment. For random nodes and random draw-
ers mappings, we choose the node dimensions to be 4× 4× 2× 1
tasks and the drawer dimensions to be 8× 8× 4× 1 tasks.

Figure 12 presents the average, minimum and maximum data
sent over the LL, LR and D links. Similar to the the 2D and 4D
mappings on 64 supernodes, the default mapping leads to heavy
traffic on all types of links. We observe similar LL and LR link us-
age for all mappings but the differences are significant for the usage
of D links. Again, it is important to note that the communication
volume on D links is almost ten times higher than the communica-
tion on LL and LR links (see y-axis). One difference from the 64
supernode mapping of 4D Stencil is that the blocked node mapping
does not lower link utilization as compared to the default mapping.
Also, the random drawers mapping does not perform as well as the
random nodes mapping. The random nodes mapping and the map-
pings with indirect routing lead to the lowest D link usage which
also translates to improvements in performance (Figure 13).

Figure 13: Time spent in communication and overall execution

per iteration for different mappings on 300 supernodes

The performance results, in terms of execution time per iteration
are as expected (Figure 13). As observed for the 64 supernode
mapping of 4D Stencil, random nodes mapping and indirect routing
cases give the best performance, followed closely by the random
drawers mapping. The benefit is substantial, not only in terms of
the communication time (which is reduced by 75% for the best
mapping), but also for the per iteration time. We see a reduction of
42% in the application run time relative to the default mapping. The
best mapping is worse by 24% when compared to the lower bound
which indicates that there is still some room for improvement.

8. RELATED WORK

Mapping of guest graphs on to host graphs has been a subject of
interest in mathematics, VLSI design and parallel computing since
the 1980s. In parallel computing, several techniques were devel-
oped to map communication graphs to hypercubes in the 1980s [7,
18, 19] and to torus networks in the early 2000s [4, 20]. More
recently, several application and runtime system developers have
studied techniques for mapping [1, 5, 8, 10] to three-dimensional

torus topologies with the emergence of supercomputers like the
IBM Blue Gene and Cray XT/XE series.

Two-level direct networks were proposed recently by indepen-
dent groups [2, 15, 16] and are being considered as an alternative
to the more popular torus and fat-tree designs for building exascale
machines. Hoefler et al. discuss mapping algorithms to minimize
contention and demonstrate their applicability to the PERCS net-
work through mapping simulations of sparse matrix-vector multi-
plication up to 1, 792 nodes [11]. Our work considers both regular
and irregular communication graphs and presents simulation results
on up to 307, 200 cores. Use of the BigSim simulation framework
allows us to present detailed link utilization and timing information
for different applications. We also discuss the interplay of mapping
and routing and present best choices for both.

In this paper, we did not consider hybrid codes (MPI + OpenMP
or pthreads). Mapping of hybrid codes is a specific instance of the
general mapping problem since one can assume one core per node
and one MPI task being mapped to each core. We also restricted our
discussion to static communication patterns in this work. Changes
in communication within an application can be handled by a dy-
namic load balancer, which in turn can deploy the discussed map-
ping algorithms. Considering inter-job contention, both static and
dynamic is beyond the scope of this work and will be discussed in
a future publication.

9. CONCLUSION

Multi-level direct networks have emerged as a new technology
to connect a large number of processing elements together. De-
fault MPI rank-ordered mapping with direct routing on such net-
works leads to significant hot-spots, even for simple two and four-
dimensional near-neighbor communication patterns. This paper
discusses techniques and analyzes various choices for congestion
control on these networks.

We use detailed packet-level network simulations for up to three
hundred thousand MPI tasks and three different communication
patterns to compare various mappings – default mapping, blocked
mapping to nodes, drawers, or supernodes and mapping to random
nodes and drawers. We also compare direct versus indirect routing
for some of the mappings. We show performance improvements
of up to 42% for some mapping and routing combinations. For
the communication patterns simulated in this paper, we find that
if direct routing is used, mapping blocks of MPI tasks to random
nodes gives the best performance and evenly distributed usage of
D links. We also observe that indirect routing can achieve perfor-
mance comparable to an intelligent mapping and obviates the need
for mapping, at the cost of increasing overall traffic on the network.

This paper also highlights the utility of simulation-based predic-
tions to analyze algorithms and make design choices before a par-
allel machine is installed and available for use. This will become
increasingly important as machine sizes grow, making it essential
to do application and hardware co-design.

Acknowledgments

This research was supported in part by the Blue Waters sustained-
petascale computing project (which is supported by the NSF grant
OCI 07-25070 and the state of Illinois) and by a DOE Grant DE-
SC0001845 for HPC Colony II. Runs for this paper were done on
Blue Print and Ember, resources at NCSA. The authors would like
to thank Ryan Mokos for building the Blue Waters network sim-
ulation model used in this paper. This document was released by
Lawrence Livermore National Laboratory for an external audience
as LLNL-CONF-491454.

Text



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

• Largest detailed network 
simulation so far = 
307,200 MPI tasks

• Non-power-of-2 leads to 
more complex mapping

• Message size = 1 MB

17

the default mapping of MPI tasks with four mapping and routing

configurations – BNM, BDM, DFI and RDI.

Figure 11: Average number of bytes sent over LL, LR and D

links for the multicast pattern on 64 supernodes

In Figure 11, we present link usage statistics for the three types

of links. This is a different communication pattern from the 2D

and 4D near-neighbor patterns we have seen so far. The random

nodes and random drawers mapping with direct routing do not get

better link utilization compared to the default mapping because it is

difficult to find a blocking that is optimized for this multicast pat-

tern. However, the indirect routing cases (DFI and RDI) succeed

in lowering the average and maximum usage on the D links signifi-

cantly compared to the other mappings. This is also reflected in the

reduction in the execution time per iteration as shown in Table 6.

7. SIMULATIONS FOR 300 SUPERNODES

Predictions for the sustained Petaflop/s Blue Waters machine, to

be installed at Illinois, indicated that the machine would have more

DEF RNM RDM DFI RDI

54.64 87.73 44.24 17.81 17.64

Table 6: Execution time per iteration (in ms) for the multicast

pattern for different mappings on 64 supernodes

than 300 supernodes connected by the PERCS network (the actual

number is not public). We now present results of running a 4D

Stencil on 307,200 cores using a detailed packet-level PERCS net-

work simulation. To the best of our knowledge, this is the first

attempt at simulating a parallel machine at this scale.

Figure 12: Average number of bytes sent over LL, LR and D

links for 4D Stencil on 300 supernodes

For 300 supernode simulations, we consider a data array of 512×
512 × 1024 × 4800 doubles. The 4D array is distributed among

307, 200 MPI tasks with each task being assigned 32×32×64×64
elements. This leads to a logical 4D grid of MPI tasks of dimen-

sions 16 × 16 × 16 × 75. We use mapping configurations similar

4D
 S

te
nc

il 
on

 3
00

 s
up

er
no

de
s

to those used for the 64 supernode case (see Table 5, Section 6.2).
Since one dimension is a non-power-of-2 and significantly bigger
than the other three, mapping on 300 supernodes is more challeng-
ing than on 64 supernodes. It is also impossible to pack all the su-
pernodes exactly as per the mappings in the table. To handle this,
we continue to map MPI tasks in the described shapes as long as it
is possible to pack them neatly within the supernodes, and for the
remaining supernodes (that are generally small in number), we do
a random drawer assignment. For random nodes and random draw-
ers mappings, we choose the node dimensions to be 4× 4× 2× 1
tasks and the drawer dimensions to be 8× 8× 4× 1 tasks.

Figure 12 presents the average, minimum and maximum data
sent over the LL, LR and D links. Similar to the the 2D and 4D
mappings on 64 supernodes, the default mapping leads to heavy
traffic on all types of links. We observe similar LL and LR link us-
age for all mappings but the differences are significant for the usage
of D links. Again, it is important to note that the communication
volume on D links is almost ten times higher than the communica-
tion on LL and LR links (see y-axis). One difference from the 64
supernode mapping of 4D Stencil is that the blocked node mapping
does not lower link utilization as compared to the default mapping.
Also, the random drawers mapping does not perform as well as the
random nodes mapping. The random nodes mapping and the map-
pings with indirect routing lead to the lowest D link usage which
also translates to improvements in performance (Figure 13).

Figure 13: Time spent in communication and overall execution

per iteration for different mappings on 300 supernodes

The performance results, in terms of execution time per iteration
are as expected (Figure 13). As observed for the 64 supernode
mapping of 4D Stencil, random nodes mapping and indirect routing
cases give the best performance, followed closely by the random
drawers mapping. The benefit is substantial, not only in terms of
the communication time (which is reduced by 75% for the best
mapping), but also for the per iteration time. We see a reduction of
42% in the application run time relative to the default mapping. The
best mapping is worse by 24% when compared to the lower bound
which indicates that there is still some room for improvement.

8. RELATED WORK

Mapping of guest graphs on to host graphs has been a subject of
interest in mathematics, VLSI design and parallel computing since
the 1980s. In parallel computing, several techniques were devel-
oped to map communication graphs to hypercubes in the 1980s [7,
18, 19] and to torus networks in the early 2000s [4, 20]. More
recently, several application and runtime system developers have
studied techniques for mapping [1, 5, 8, 10] to three-dimensional

torus topologies with the emergence of supercomputers like the
IBM Blue Gene and Cray XT/XE series.

Two-level direct networks were proposed recently by indepen-
dent groups [2, 15, 16] and are being considered as an alternative
to the more popular torus and fat-tree designs for building exascale
machines. Hoefler et al. discuss mapping algorithms to minimize
contention and demonstrate their applicability to the PERCS net-
work through mapping simulations of sparse matrix-vector multi-
plication up to 1, 792 nodes [11]. Our work considers both regular
and irregular communication graphs and presents simulation results
on up to 307, 200 cores. Use of the BigSim simulation framework
allows us to present detailed link utilization and timing information
for different applications. We also discuss the interplay of mapping
and routing and present best choices for both.

In this paper, we did not consider hybrid codes (MPI + OpenMP
or pthreads). Mapping of hybrid codes is a specific instance of the
general mapping problem since one can assume one core per node
and one MPI task being mapped to each core. We also restricted our
discussion to static communication patterns in this work. Changes
in communication within an application can be handled by a dy-
namic load balancer, which in turn can deploy the discussed map-
ping algorithms. Considering inter-job contention, both static and
dynamic is beyond the scope of this work and will be discussed in
a future publication.

9. CONCLUSION

Multi-level direct networks have emerged as a new technology
to connect a large number of processing elements together. De-
fault MPI rank-ordered mapping with direct routing on such net-
works leads to significant hot-spots, even for simple two and four-
dimensional near-neighbor communication patterns. This paper
discusses techniques and analyzes various choices for congestion
control on these networks.

We use detailed packet-level network simulations for up to three
hundred thousand MPI tasks and three different communication
patterns to compare various mappings – default mapping, blocked
mapping to nodes, drawers, or supernodes and mapping to random
nodes and drawers. We also compare direct versus indirect routing
for some of the mappings. We show performance improvements
of up to 42% for some mapping and routing combinations. For
the communication patterns simulated in this paper, we find that
if direct routing is used, mapping blocks of MPI tasks to random
nodes gives the best performance and evenly distributed usage of
D links. We also observe that indirect routing can achieve perfor-
mance comparable to an intelligent mapping and obviates the need
for mapping, at the cost of increasing overall traffic on the network.

This paper also highlights the utility of simulation-based predic-
tions to analyze algorithms and make design choices before a par-
allel machine is installed and available for use. This will become
increasingly important as machine sizes grow, making it essential
to do application and hardware co-design.

Acknowledgments

This research was supported in part by the Blue Waters sustained-
petascale computing project (which is supported by the NSF grant
OCI 07-25070 and the state of Illinois) and by a DOE Grant DE-
SC0001845 for HPC Colony II. Runs for this paper were done on
Blue Print and Ember, resources at NCSA. The authors would like
to thank Ryan Mokos for building the Blue Waters network sim-
ulation model used in this paper. This document was released by
Lawrence Livermore National Laboratory for an external audience
as LLNL-CONF-491454.

75%

Text



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

• Largest detailed network 
simulation so far = 
307,200 MPI tasks

• Non-power-of-2 leads to 
more complex mapping

• Message size = 1 MB

17

the default mapping of MPI tasks with four mapping and routing

configurations – BNM, BDM, DFI and RDI.

Figure 11: Average number of bytes sent over LL, LR and D

links for the multicast pattern on 64 supernodes

In Figure 11, we present link usage statistics for the three types

of links. This is a different communication pattern from the 2D

and 4D near-neighbor patterns we have seen so far. The random

nodes and random drawers mapping with direct routing do not get

better link utilization compared to the default mapping because it is

difficult to find a blocking that is optimized for this multicast pat-

tern. However, the indirect routing cases (DFI and RDI) succeed

in lowering the average and maximum usage on the D links signifi-

cantly compared to the other mappings. This is also reflected in the

reduction in the execution time per iteration as shown in Table 6.

7. SIMULATIONS FOR 300 SUPERNODES

Predictions for the sustained Petaflop/s Blue Waters machine, to

be installed at Illinois, indicated that the machine would have more

DEF RNM RDM DFI RDI

54.64 87.73 44.24 17.81 17.64

Table 6: Execution time per iteration (in ms) for the multicast

pattern for different mappings on 64 supernodes

than 300 supernodes connected by the PERCS network (the actual

number is not public). We now present results of running a 4D

Stencil on 307,200 cores using a detailed packet-level PERCS net-

work simulation. To the best of our knowledge, this is the first

attempt at simulating a parallel machine at this scale.

Figure 12: Average number of bytes sent over LL, LR and D

links for 4D Stencil on 300 supernodes

For 300 supernode simulations, we consider a data array of 512×
512 × 1024 × 4800 doubles. The 4D array is distributed among

307, 200 MPI tasks with each task being assigned 32×32×64×64
elements. This leads to a logical 4D grid of MPI tasks of dimen-

sions 16 × 16 × 16 × 75. We use mapping configurations similar

4D
 S

te
nc

il 
on

 3
00

 s
up

er
no

de
s

to those used for the 64 supernode case (see Table 5, Section 6.2).
Since one dimension is a non-power-of-2 and significantly bigger
than the other three, mapping on 300 supernodes is more challeng-
ing than on 64 supernodes. It is also impossible to pack all the su-
pernodes exactly as per the mappings in the table. To handle this,
we continue to map MPI tasks in the described shapes as long as it
is possible to pack them neatly within the supernodes, and for the
remaining supernodes (that are generally small in number), we do
a random drawer assignment. For random nodes and random draw-
ers mappings, we choose the node dimensions to be 4× 4× 2× 1
tasks and the drawer dimensions to be 8× 8× 4× 1 tasks.

Figure 12 presents the average, minimum and maximum data
sent over the LL, LR and D links. Similar to the the 2D and 4D
mappings on 64 supernodes, the default mapping leads to heavy
traffic on all types of links. We observe similar LL and LR link us-
age for all mappings but the differences are significant for the usage
of D links. Again, it is important to note that the communication
volume on D links is almost ten times higher than the communica-
tion on LL and LR links (see y-axis). One difference from the 64
supernode mapping of 4D Stencil is that the blocked node mapping
does not lower link utilization as compared to the default mapping.
Also, the random drawers mapping does not perform as well as the
random nodes mapping. The random nodes mapping and the map-
pings with indirect routing lead to the lowest D link usage which
also translates to improvements in performance (Figure 13).

Figure 13: Time spent in communication and overall execution

per iteration for different mappings on 300 supernodes

The performance results, in terms of execution time per iteration
are as expected (Figure 13). As observed for the 64 supernode
mapping of 4D Stencil, random nodes mapping and indirect routing
cases give the best performance, followed closely by the random
drawers mapping. The benefit is substantial, not only in terms of
the communication time (which is reduced by 75% for the best
mapping), but also for the per iteration time. We see a reduction of
42% in the application run time relative to the default mapping. The
best mapping is worse by 24% when compared to the lower bound
which indicates that there is still some room for improvement.

8. RELATED WORK

Mapping of guest graphs on to host graphs has been a subject of
interest in mathematics, VLSI design and parallel computing since
the 1980s. In parallel computing, several techniques were devel-
oped to map communication graphs to hypercubes in the 1980s [7,
18, 19] and to torus networks in the early 2000s [4, 20]. More
recently, several application and runtime system developers have
studied techniques for mapping [1, 5, 8, 10] to three-dimensional

torus topologies with the emergence of supercomputers like the
IBM Blue Gene and Cray XT/XE series.

Two-level direct networks were proposed recently by indepen-
dent groups [2, 15, 16] and are being considered as an alternative
to the more popular torus and fat-tree designs for building exascale
machines. Hoefler et al. discuss mapping algorithms to minimize
contention and demonstrate their applicability to the PERCS net-
work through mapping simulations of sparse matrix-vector multi-
plication up to 1, 792 nodes [11]. Our work considers both regular
and irregular communication graphs and presents simulation results
on up to 307, 200 cores. Use of the BigSim simulation framework
allows us to present detailed link utilization and timing information
for different applications. We also discuss the interplay of mapping
and routing and present best choices for both.

In this paper, we did not consider hybrid codes (MPI + OpenMP
or pthreads). Mapping of hybrid codes is a specific instance of the
general mapping problem since one can assume one core per node
and one MPI task being mapped to each core. We also restricted our
discussion to static communication patterns in this work. Changes
in communication within an application can be handled by a dy-
namic load balancer, which in turn can deploy the discussed map-
ping algorithms. Considering inter-job contention, both static and
dynamic is beyond the scope of this work and will be discussed in
a future publication.

9. CONCLUSION

Multi-level direct networks have emerged as a new technology
to connect a large number of processing elements together. De-
fault MPI rank-ordered mapping with direct routing on such net-
works leads to significant hot-spots, even for simple two and four-
dimensional near-neighbor communication patterns. This paper
discusses techniques and analyzes various choices for congestion
control on these networks.

We use detailed packet-level network simulations for up to three
hundred thousand MPI tasks and three different communication
patterns to compare various mappings – default mapping, blocked
mapping to nodes, drawers, or supernodes and mapping to random
nodes and drawers. We also compare direct versus indirect routing
for some of the mappings. We show performance improvements
of up to 42% for some mapping and routing combinations. For
the communication patterns simulated in this paper, we find that
if direct routing is used, mapping blocks of MPI tasks to random
nodes gives the best performance and evenly distributed usage of
D links. We also observe that indirect routing can achieve perfor-
mance comparable to an intelligent mapping and obviates the need
for mapping, at the cost of increasing overall traffic on the network.

This paper also highlights the utility of simulation-based predic-
tions to analyze algorithms and make design choices before a par-
allel machine is installed and available for use. This will become
increasingly important as machine sizes grow, making it essential
to do application and hardware co-design.

Acknowledgments

This research was supported in part by the Blue Waters sustained-
petascale computing project (which is supported by the NSF grant
OCI 07-25070 and the state of Illinois) and by a DOE Grant DE-
SC0001845 for HPC Colony II. Runs for this paper were done on
Blue Print and Ember, resources at NCSA. The authors would like
to thank Ryan Mokos for building the Blue Waters network sim-
ulation model used in this paper. This document was released by
Lawrence Livermore National Laboratory for an external audience
as LLNL-CONF-491454.

75%

42%

Text



LLNL-PRES-511461 Abhinav Bhatele @ Supercomputing ‘11

Summary

• Default MPI rank-ordered mapping on multi-level direct 
networks can lead to hot-spots

• Packet-level simulation to assist machine architects and 
application developers in making routing and mapping 
choices

• Conclusions:

• With direct routing, random mapping at node granularity is best

• With indirect routing, default mapping is good enough

• Utility of simulation-based analysis to analyze algorithms 
and design choices for future machines

18



This work performed under the auspices of the U.S. Department of Energy by 
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551

LLNL-PRES-511461

Supercomputing	
  ‘11	
  ◆	
  November	
  17,	
  2011

Questions?
More	
  information	
  at:	
  http://charm.cs.illinois.edu/research/topology

Thanks	
  to	
  Ryan	
  Mokos	
  (PPL)	
  for	
  implementing	
  the	
  PERCS	
  network	
  model.
Funding	
  support:	
  NSF	
  grant	
  OCI	
  07-­‐25070,	
  DOE	
  grant	
  DE-­‐SC0001845

http://charm.cs.illinois.edu/research/topology
http://charm.cs.illinois.edu/research/topology

