Avoiding hot-spots on two-level direct networks

Abhinav Bhatele, Nikhil Jain, William D. Gropp, Laxmikant V. Kale

LLNL-PRES-511461

Supercomputing '11 November 17, 2011

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Interconnects for exascale

Abhinav Bhatele @ Supercomputing 'I I

Interconnects for exascale

- Multi-level direct (all-to-all connection) networks
 - Higher bandwidth links at lower levels
 - Low diameter: few hops on the average

LLNL-PRES-511461

Interconnects for exascale

- Multi-level direct (all-to-all connection) networks
 - Higher bandwidth links at lower levels
 - Low diameter: few hops on the average

IBM's PERCS network

- Each QCM has four 8-core POWER7 chips, 8 such QCMs form a drawer, 4 drawers form a supernode
- Two-level network with 512 supernodes
- Three types of links: LL (24 GB/s), LR (5 GB/s), D (10 GB/s)

One supernode in the PERCS topology

IBM's PERCS network

- Each QCM has four 8-core POWER7 chips, 8 such QCMs form a drawer, 4 drawers form a supernode
- Two-level network with 512 supernodes
- Three types of links: LL (24 GB/s), LR (5 GB/s), D (10 GB/s)

One supernode in the PERCS topology

IBM's PERCS network

- Each QCM has four 8-core POWER7 chips, 8 such QCMs form a drawer, 4 drawers form a supernode
- Two-level network with 512 supernodes
- Three types of links: LL (24 GB/s), LR (5 GB/s), D (10 GB/s)

Abhinav Bhatele @ Supercomputing 'I I

- Lets say we want to run a 2D Stencil on 2 supernodes (64 QCMs)
- Application communication graph: 16 x 4
- MPI-rank ordered mapping leads to significant contention on the single D link
- This is true for running any application with O(I) communicating partners per MPI process

- Lets say we want to run a 2D Stencil on 2 supernodes (64 QCMs)
- Application communication graph: 16 x 4
- MPI-rank ordered mapping leads to significant contention on the single D link
- This is true for running any application with O(I) communicating partners per MPI process

- Lets say we want to run a 2D Stencil on 2 supernodes (64 QCMs)
- Application communication graph: 16 x 4
- MPI-rank ordered mapping leads to significant contention on the single D link
- This is true for running any application with O(I) communicating partners per MPI process

- Lets say we want to run a 2D Stencil on 2 supernodes (64 QCMs)
- Application communication graph: 16 x 4
- MPI-rank ordered mapping leads to significant contention on the single D link
- This is true for running any application with O(I) communicating partners per MPI process

- Lets say we want to run a 2D Stencil on 2 supernodes (64 QCMs)
- Application communication graph: 16 x 4
- MPI-rank ordered mapping leads to significant contention on the single D link
- This is true for running any application with O(I) communicating partners per MPI process

Abhinav Bhatele @ Supercomputing 'I I

Number of supernodes

Software stack/runtime choices

• Job scheduler:

- Granularity of allocation: QCM (node), drawer, supernode
- Contiguous allocation, random allocation or careful topologyaware allocation
- Routing:
 - Direct versus random indirect
- Mapping
 - Is it important for optimal performance?

- Use BigSim for emulation and simulation of a future machine detailed packet-level network simulation
 - Compute time prediction, trace collection, simulation

- Use BigSim for emulation and simulation of a future machine detailed packet-level network simulation
 - Compute time prediction, trace collection, simulation
- Three different benchmarks
 - 2-dimensional five-point stencil
 - 4-dimensional nine-point stencil
 - n-targets multicast pattern

- Use BigSim for emulation and simulation of a future machine detailed packet-level network simulation
 - Compute time prediction, trace collection, simulation
- Three different benchmarks
 - 2-dimensional five-point stencil
 - 4-dimensional nine-point stencil
 - n-targets multicast pattern
- Two job allocation sizes
 - 64 supernodes
 - 300 supernodes

- Use BigSim for emulation and simulation of a future machine detailed packet-level network simulation
 - Compute time prediction, trace collection, simulation
- Three different benchmarks
 - 2-dimensional five-point stencil WRF
 - 4-dimensional nine-point stencil
 - n-targets multicast pattern
- Two job allocation sizes
 - 64 supernodes
 - 300 supernodes

- Use BigSim for emulation and simulation of a future machine - detailed packet-level network simulation
 - Compute time prediction, trace collection, simulation
- Three different benchmarks
 - 2-dimensional five-point stencil WRF
 - 4-dimensional nine-point stencil MILC
 - n-targets multicast pattern
- Two job allocation sizes
 - 64 supernodes
 - 300 supernodes

- Use BigSim for emulation and simulation of a future machine - detailed packet-level network simulation
 - Compute time prediction, trace collection, simulation
- Three different benchmarks
 - 2-dimensional five-point stencil WRF
 - 4-dimensional nine-point stencil MILC
 - n-targets multicast pattern
 NAMD
- Two job allocation sizes
 - 64 supernodes
 - 300 supernodes

Abhinav Bhatele @ Supercomputing 'I I

Prediction Methodology

- Compute time prediction: run on a 3.8 GHz Power7 processor to get timings for sequential computation
- Emulation: obtain traces by running on 512-1360 cores of a 1.9 GHz Power5 cluster
- Simulations on one node of a SGI Altix 1000 shared memory machine

Mapping and Routing

- Default mapping: MPI rankordered mapping
- Blocking: at the level of nodes, then drawers and supernodes
- Random mapping on nodes
- Routing choices:
 - Indirect routing w/ default mapping
 - Indirect routing w/ random drawers mapping

4-dimensional stencil

- Representative of MILC, a Lattice QCD code
- Each MPI task has $64 \times 64 \times 64 \times 64$ elements
- Size of messages exchanged = 2 MB

Experiments

• Direct routing:

- Default MPI rank-ordered mapping (DEF)
- Blocking MPI tasks at the level of nodes (BNM)
- Blocking at the level of drawers (BDM)
- Blocking at the level of supernodes (BSM)
- Random mapping at the level of nodes (RNM)
- Random mapping at the level of drawers (RDM)
- Indirect routing
 - Default MPI rank-ordered mapping (DFI)
 - Random mapping at the level of drawers (RDI)

LLNL-PRES-511461

LLNL-PRES-511461

Stencil on 64

LLNL-PRES-511461

Abhinav Bhatele @ Supercomputing 'I I

LLNL-PRES-511461

Abhinav Bhatele @ Supercomputing 'I I

BOUDDRESTON Directorate LLNL-PRES-511461

Abhinav Bhatele @ Supercomputing 'I I

LLNL-PRES-511461

Abhinav Bhatele @ Supercomputing 'I I

CONDICTOR

Abhinav Bhatele @ Supercomputing 'I I

Abhinav Bhatele @ Supercomputing 'I I

LLNL-PRES-511461

4D Stencil on 64 supernodes (LL links)

Performance of 4D Stencil on 64 supernodes

L,

4D Stencil on 64 supernodes (LL links)

Performance of 4D Stencil on 64 supernodes

O Stencil on 64 supernodes

Abhinav Bhatele @ Supercomputing 'I I

LLNL-PRES-511461

4D Stencil on 64 supernodes (LL links)

Performance of 4D Stencil on 64 supernodes

LLNL-PRES-511461

Abhinav Bhatele @ Supercomputing 'I I

- Similar to the communication pattern in NAMD
- Each MPI task sends messages to 14 others
- Message size = I MB

Multicast pattern on 64 supernodes (D links)

Abhinav Bhatele @ Supercomputing 'I I

CONDUCTOR

Abhinav Bhatele @ Supercomputing 'I I

- Largest detailed network simulation so far = 307,200 MPI tasks
- Non-power-of-2 leads to more complex mapping
- Message size = I MB

LLNL-PRES-511461

Abhinav Bhatele @ Supercomputing 'I I

Total

DFI

RFI

D Stencil on 300 supernodes

LLNL-PRES-511461

Abhinav Bhatele @ Supercomputing 'I I

Total

RFI

D Stencil on 300 supernodes

LLNL-PRES-511461

Abhinav Bhatele @ Supercomputing 'I I

Communication

Lower bound •

42%

75

DFI

RFI

RDM

Total

Summary

- Default MPI rank-ordered mapping on multi-level direct networks can lead to hot-spots
- Packet-level simulation to assist machine architects and application developers in making routing and mapping choices
- Conclusions:
 - With direct routing, random mapping at node granularity is best
 - With indirect routing, default mapping is good enough
- Utility of simulation-based analysis to analyze algorithms and design choices for future machines

Questions?

LLNL-PRES-511461

More information at: <u>http://charm.cs.illinois.edu/research/topology</u>

Thanks to Ryan Mokos (PPL) for implementing the PERCS network model. Funding support: NSF grant OCI 07-25070, DOE grant DE-SC0001845

Supercomputing '11 November 17, 2011

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344