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Abstract. Modern power grids are continuously monitored by trained
system operators equipped with sophisticated monitoring and control
systems. Despite such precautionary measures, large blackouts, that af-
fect more than a million consumers, occur quite frequently. To prevent
such blackouts, it is important to perform high-order contingency anal-
ysis in real time. However, contingency analysis is computationally very
expensive as many different combinations of power system component
failures must be analyzed. Analyzing several million such possible com-
binations can take inordinately long time and it is not be possible for
conventional systems to predict blackouts in time to take necessary cor-
rective actions.
To address this issue, we present a scalable parallel implementation of
a probabilistic contingency analysis scheme that processes only most se-
vere and most probable contingencies. We evaluate our implementation
by analyzing benchmark IEEE 300 bus and 118 bus test grids. We per-
form contingency analysis upto level eight (contingency chains of length
eight) and can correctly predict blackouts in real time to a high degree of
accuracy. To the best of our knowledge, this is the first implementation
of real time contingency analysis beyond level two.

1 Introduction

Electric power systems are prone to various kinds of faults or disturbances. To
withstand such disturbances, trained operators rely on computer simulations
to continuously monitor the system and take corrective actions. However, large
blackouts continue to occur across the globe[1]. For example, even in the US
power grid having sophisticated controls, the frequency of blackout, which was
about 7 per year until 1995, has grown to 36 per year in 2006[2]. Due to these
blackouts, both the utilities and the consumers incur massive losses. According



to the US Department of Energy, 2003 US blackouts resulted in losses amounting
to 6 billion USD[3]. Increasing frequency of severe blackouts indicate the need
for tools that can reliably predict and prevent blackouts in real time.

One such tool is Contingency Analysis (CA), which assesses the ability of
a grid to withstand cascading component failures/contingencies. The results of
contingency analysis provide the basis for preventive and corrective operation
actions against blackouts[1]. CA uses the current state reported by SCADA4

or EMS5 to identify possible series of component failures and check for collapse
cases. The CA schemes are usually referred to as (N−x) CA, whereN is the total
number of components (could be lines, generators and transformers) in the grid
under consideration and x is the level/order. (N −x) CA represents checking all
possible permutations of x or less components (out of the total N) for a collapse.
For example, a (N − 5) CA would evaluate all possible combinations of up to
five components failing together in a cascade.

As the number of components (N) and number of levels (x) increase, the
number of possible combinations that need to be evaluated increases exponen-
tially (

∑x
i=1

NPi). Due to this computational complexity, contingency analysis
has been traditionally limited to selected N − 1 levels. However, post event
analysis of major blackouts has shown that failing of a component leads to
additional component outages in its vicinity. Moreover, the current trend of op-
erating power grids closer to their capacity and integrating intermittent renew-
able energy sources has increased the probability of multiple component failures.
Therefore performing higher order (N−x) CA has become important. In fact, the
North American Electricity Reliability Corporation (NERC) has recommended
higher order CA as part of its Transmission Planning standards.

However, performing higher order CA for practical grids in real time is not
feasible using conventional techniques. Typically, a practical grid consists of a
few thousands of components and even performing level 5 contingency analysis
will involve a few billions of contingencies. Each contingency analysis takes about
50-100 ms on an ordinary computer. Hence, it is obvious that the computational
workload is beyond what a single personal computer can achieve for real-time
operation. This has lead researchers to turn to high performance computing plat-
forms in order to accelerate power grid contingency analysis. The contingency
analysis problem involves a large number of small independent computations.
The challenge is not merely in parallelising it, but in doing so in real time. An
important aspect here is to devise a load balancing scheme which scales to a
large number of processors so that the full capabilities of a parallel system can
be realised.

Our Contribution: In this paper, a parallel implementation of a probabilis-
tic contingency analysis scheme, that processes only the most severe and most
probable contingencies, has been developed. We have adopted search space re-
duction techniques to reduce the computational burden. We have also proposed
a novel load balancing scheme which scales to thousands of processors. To the
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best of our knowledge, this is the first effort that goes beyond (N − 2) CA and
scales well up to 8k processors.

The rest of this paper is organized as follows. Section 2 discusses previous
work in this domain. Section 3 describes the risk based probabilistic approach
and the algorithm used in this paper and the search space reduction techniques
adopted. In Section 4, we introduce our novel load balancing scheme and provide
a detailed comparison with the previous schemes. In Section 5, we present the
results of our expirements. Finally in Section 6, we conclude the paper and
propose some future work.

2 Previous work

Contingency analysis in power systems was first proposed by Ejebe et al [4] in
1979. Since then several CA methods have been developed, each varying in
methodology and complexity. However, they either employ approximate solution
techniques, or use approximate models of the grid. Moreover, these methods are
not suitable for higher order (N − x, x > 1) CA.

Recently, for higher order contingency analysis, Monte-Carlo simulation[5],
Importance Sampling[6], and Risk Index (RI)[7] have been proposed. Monte-
Carlo simulation and Importance Sampling techniques are not so efficient as they
simulate the same set of contingencies repeatedly, delaying the convergence. RI
approach, on the other hand, avoids repeated simulation and is much faster than
Monte-Carlo simulation and Importance Sampling techniques.

Researchers have proposed several schemes to improve the computational
speed of CA. Alves et al [8] proposed a parallel and distributed computing archi-
tecture for CA. For fast CA, Santos et al [9] developed a socket based client-server
model where dynamic load balancing scheme is implemented for improved per-
formance. Morante et al [10] developed a pervasive grid middleware which uses
a broker system for reserving on-demand computational resources and for auto-
matically splitting the contingency analysis task into sub-tasks and to allocate
them to reserved resources based on a master-slave computing model. However,
these and other methods focussed solely on (N − 1) analysis with a small set
of cases. For massive higher order (N − x;x ≥ 2) contingency analysis, Huang
et al [11] and Chen et al [12] proposed dynamic load balancing schemes to per-
form (N − x) CA. However, their scheme naively selects either all or, a random
subset of contingencies. Moreover, scalability remains to be an issue when more
processors are used and more cases are analyzed. Most recently, Jin et al [13][14]
proposed a CA approach using parallel betweenness centrality for contingency
selection. This method identifies the most important lines based on base case
power flow through lines and restricts higher order contingency analysis to those
lines. This approach is overly conservative because it always considers the same
set of contingencies as being critical. However, in case of multiple component
outage, sets of critical contingencies dynamically change as power flow changes
with each outage.



3 Risk based algorithm

In power grids, cascading failures happen in a chronological sequence. Therefore,
it is convenient to model them with an event tree as shown in Fig. 1, where each
node represents a state of the system and the branch between any two nodes
represents a contingency. In the tree, the root node represents the pre-fault state
of the system whereas a node with no forward branch represents an end node,
i.e. a node which is either on the last level (level x), or represents a cascade
leading to a blackout in the system.

Fig. 1: Event tree

For any real grid, it is very difficult to explore the full event tree due to
inordinately large number of possible paths. Therefore, CA schemes try to iden-
tify and traverse only those paths which may lead to a system collapse. In this
paper, an intelligent search space reduction technique based on Risk Index (RI)
is implemented. RI associated with each node is computed by multiplying the
severity and probability of any contingency. Severity of any contingency is com-
puted based on voltage instability, load loss, overload, available power margin,
and frequency deviation as proposed in[7]. During event tree exploration, less
relevant, low risk nodes are discarded at each node. This process is continued
until the desired level is reached.

We now propose a parallelization technique to make this algorithm suitable
for execution in real-time (Algorithm 1). We compute N event trees (N being
the number of lines), one for each line. Initially, the lines are (almost) equally
divided amongst the processors. The processor responsible for an event tree
begins the computation by simulating the tripping of the corresponsing line; this
corresponds to a real-life scenario wherein a natural event causes the line to trip,
thereby triggering the breakdown process. A processor, say x, then determines
the next set of elements (lines, generators, transformers) in the vicinity of this
element that are most likely to get affected by the failure of this element. These
are referred to as exposed elements. It creates a new child node in the event
tree for each of the exposed elements. The processing of these child nodes is
distributed to new processors. If there are m exposed elements, x selects m new
processors and sends them an “RI-evaluation” request, handing over to them, the
responsibility of performing the processing for each of these nodes. It then waits



Algorithm 1

Compute base case load flow for the curret system state.
Select child processor, send first lines and base case matrix to it.
MPI Irecv(RI response from children)
MPI Irecv(A new contingency to evaluate)
while(1)

Check end condition (whether all jobs completed or not)
If yes, exit program.

Test if a new contingency received for evaluation, if yes,
compute RI.
If there is a system collapse

report and put RI = ∞.
MPI Isend(RI value to parent)
MPI Irecv(go-ahead/abort message from parent)
MPI Irecv(A new contingency to evaluate)

Test if RI response received from all children for a contingency, if yes,
if(RI value is selected)

MPI Isend(go-ahead message to that child)
else if(RI value is rejected)

MPI Isend(abort message to that child)
goto beginning of while loop.

Test if (go-ahead/abort) message received from any parent, if yes,
if(abort received or max level reached)

goto beginning of while loop.
else if(go-ahead received)

find exposed elements; select children processors
send new contingency and base case solution to the children.
MPI Irecv(RI response from children)
goto beginning of while loop.

for the child nodes to compute and return the RI value for the nodes allocated
to them. Once it receives the RI values from all the nodes, it selects the most
risky elements based on a certain criteria (explained later) dependent on the RI
values. It then sends a “go-ahead” message to the processors corresponding to
nodes that are selected for further exploration and an “abort” message to the
remaining processors. This completes the processing of the current node for x. A
processor may receive four types of messages, “RI-evaluation” request, “abort”
message or “go-ahead” message or ”RI-response” message. Note that at any
point of time, a processor may have requests corresponding to multiple event-
tree nodes pending with it. These are queued by MPI; the processor receives
one request at a time from MPI and handles it as shown in Algorithm 1. The
end condition and process of selecting the children varies according to the load
balancing scheme used and is discussed in detail in the next section.

The decision of whether or not to further explore a node in the event tree
is based on the RI values. The objective here is to maximise the risk coverage,



defined as follows:

RCl =

∑k
i=1;i∈N RIi∑N

i=1 RIi
× 100 (1)

where RCl is the percentage risk coverage upto layer l, N is number of possi-
ble blackouts upto layer l, k is number of blackouts identified by the proposed
method and RIi is the risk associated with the blackout sequence i. RIi is cal-
culated as follows:

RIi = SIi ∗ pfault ×
∏

j∈tripped

pcj (2)

pcj = pj ×
∏

k∈ exposed&not tripped;k ̸=j

pk (3)

where SIi and Pri are severity and probability of the blackout i respectively,
pfault is the probability of the initiating fault, pcj is the conditional tripping
probability of exposed equipment j in the blackout sequence i, and pj is the
tripping probability of equipment j.

The risk coverage, and hence, the effectiveness of the entire analysis, is heavily
dependent on the choice of the number of event tree nodes to explore further.
Some strategies to determine this parameter are (i) select all the child nodes to
explore further, (ii) select a fixed percentage of the child nodes or (iii) select all
the child nodes above a certain threshold of RI value. While it is desirable to
explore all the child nodes, this leads to a significant computation load. It is also
very difficult to obtain a single RI value to use as a thumb rule for the threshold
as the RI values vary significantly depending on the specific contingency and the
test case under consideration. While the option of selecting a fixed percentage
looks promising, our experiments show that this strategy does not result in good
risk coverage.

To address this issue, we devise a new strategy that combines a novel exten-
sion of the perecentage selection strategy and the threshold based strategy. The
idea is based on the observation that as the event tree grows exponentially with
increasing levels (depth), we can afford to explore more nodes at lower levels
(towards the top of the event tree) but fewer nodes at higher levels (towards
the bottom of the tree). We therefore apply a linear function to determine the
percentage of nodes to select for exploration based on the RI index values; this
linear function is set up so that it returns 100% at the top level and about 20% at
the bottom-most level. Along with this, we also use a threshold value to rule out
contingencies with very small RI values. This heuristic results in very good risk
coverage (around 80%) and reduces the computation significantly (see Figure 2).

Another optimization is based on the observation that in most of the con-
tingency chains that lead to a collapse, there was at least a 15% jump in the RI
value before the tripping of the last element in the contingency sequence. For in-
stance, consider a contingency sequence L1-L2-L3-L4-L5 that leads to a collapse.
Then, there would be an at least a 15% jump in the sequence RI1, RI2, RI3,
RI4 corresponding to the risk indices for the contingencies L1, L1-L2, L1-L2-L3,
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Fig. 2: Comparison of different next-element selection schemes

L1-L2-L3-L4, respectively. This is not surprising since the tripping of the first
few lines may cause some lines to become highly overloaded or a few generators
may reach their limit leading to considerable worsening of the grid health. Since
more than 90% of the contingencies are in the last level only, incorporating this
optimization in the algorithm significantly reduces the computation load.

4 Load Balancing Schemes

The ratio of communication to computation per task should be minimised for a
scheme to achieve good performance. In case of higher order CA, the number of
tasks is huge (of the order of millions) and the task granularity (relative amount
of computation per task) is very low (of the order of milliseconds). Therefore,
any good load balancing scheme for this problem should involve minimum book
keeping and communication amongst the processors, as even a small delay can
reduce the communication to computation per task considerably.

Load balancing schemes can be broadly classified into two categories: (i)
centralized and (ii) decentralized schemes. While centralized schemes offer better
control over the load balance as all the information is available at a single node,
decentralized schemes, in contrast, are less prone to congestion, particularly
when the number of processors is very large.

Huang et al.[11] have implemented and compared several centralized load
balancing schemes. However, these schemes are not directly applicable to the
algorithm discussed in this paper due to the modular nature of our contingency
analysis scheme, where contingency selection and contingency evaluation are
performed separately (Section 2). We have implemented a modification of these
schemes for our algorithm. We first discuss them and then propose a new decen-
tralized scheme. Our decentralized scheme does not require any book keeping
and scales linearly with increasing number of processors. It is thus highly suited
for contingency analysis when there are a large number of processors and the
analysis is performed for higher levels.



4.1 Centralized Load Balancing Schemes

In the centralized schemes, a processor designated as master allocates tasks to
others processors.Whenever a processor needs to spawn some tasks (correspond-
ing to the child nodes in the event tree), it sends a request to the master indicat-
ing the number of tasks to be spawned. The master then, based on the scheme
being used, assigns a set of processors and sends a list of these processors back
to the requesting node. The master keeps track of the number of jobs spawned
in the system and sends an end signal to all processors when all jobs have com-
pleted. We now discuss some of these schemes investigated in prior work.
Static allocation: In this scheme, the master ensures that every processor gets
equal number of tasks by doing round robin based allocation. The amount of
bookkeeping done at master is minimal. This scheme should work well for small
system sizes as shown by Huang et al[11]. For larger system sizes, this scheme
is expected to underperform as the advantages gained due to the minimal book-
keeping diminish.
Dynamic allocation: This scheme tries to equalize the computation load across
the processors. In order to do this, the master maintains a list of active jobs on
every processor and assigns request for new tasks to processors that are least
loaded. This list is updated as tasks begin and finish on the processors. This
involves a considerable amount of bookkeeping and therefore results in an in-
crease in the computation time at the master. For large levels and large number
of processors, this has the affect of increasing communication delays between the
processors and the master as intermittently requests tend to get queued up at
the master. While, this scheme should outperform the static allocation scheme
on account of better load balancing, its performance deteriorates for large levels
and system sizes.
Two master allocation: Chen et al[12] proposed a variant which they referred
to as the multi counter based dynamic allocation. In this scheme, the inital task
list is divided into multiple masters which allocate processors for new tasks using
the dynamic approach. If the task list of any processor becomes empty, it steals
them from the other master(s). The observed performance of this scheme has
been found to be similar to previous scheme.

Though these schemes are expected to do well when the number of tasks is
not too large and the levels are few, they suffer from congestion issues at the
master nodes and hence do not scale to a large number of tasks and larger levels
of analysis.

4.2 Decentralized Load Balancing Scheme

Chen et al[12] suggest that if the allocation queries can be serviced instanta-
neously by the master then ideal speedup can be achieved in the centralized
scheme with dynamic allocation. However, as number of tasks increase for larger
levels, the congestion at the master causes the network queues to build up and
the service time cannot be ignored anymore. In order to address this, we propose
a decentralized load balancing scheme that aims at reducing the service time for



new task requests while continuing to balance the computation load across all
the processors. The master performs the bookkeeping primarily for two purposes;
the first is to balance the load amongst the processors and the second is to de-
clare completion of the processing. In our new scheme, we eliminate bookkeeping
alltogether in order to enable decentralized control.

To handle the load balancing, we handle task allocation as follows. When-
ever new tasks have to be spawned corresponding to the child nodes in the event
tree, the processor handling the current (parent) node selects as many proces-
sors as the number of child nodes uniformly at random from the set of available
processing nodes. It then sends the information regarding the task to be per-
formed directly to the corresponding processors. As every processor makes local
decisions regarding the set of processors to allocate the tasks to, the queries
are serviced locally and hence instantaneously. There is no master involved in
this scheme. If all the processors start with distinct initial seeds for the random
number generation, it can be shown that when the number of tasks spawned
is very large, the tasks are distributed over the processors uniformly with very
small deviation. Hence for higher levels of contingency analysis, considering the
granularity of the tasks and the number of tasks involved, the load imbalance is
not expected to be high. This scheme is therefore expected to scale linearly with
the number of processors as well as the levels of contingency analysis performed.

To detect completion of processing, the nodes perform a collective Allreduce
operation at regular interval to determine the number of unfinished tasks. Com-
pletion is declared when all the processors report that there are no unfinished
tasks remaining. The Allreduce is performed at an interval of 100t units where t
represents the units taken to perform an Allreduce. This ensures that the over-
heads of completion detection are no more than 1% of the processing time.

5 Results

In this section, we evaluate our algorithm and compare it with previously studied
algorithms.
Hardware setup. All implementations are on Blue Gene/P - IBM’s massively
parallel supercomputer; Each node of the Blue Gene/P system consists of four
850 MHz PowerPC 450 processor cores. Torus network handles the bulk of the
communication data from an application and offers the highest bandwidth in the
system. Each node supports 850 MBps bidirectional links to each of its nearest
neighbors for a total of 5.1GB/s bidirectional bandwidth per node.
Test Cases.We evaluate the performance using the IEEE Standard test cases[15]
comprising of 118 bus system containing 186 lines and 300 Bus System contain-
ing 411 lines.

We present the number of contingency chains generated using the RI based
selection technique for varying levels on IEEE 118 and IEEE 300 bus systems in
Figure 3(1). These results conform to the expected exponential increase in the
search space with increase in the number of levels explored. We observe a factor
10x increase in the number of contingency chains with every level (branching



factor in event tree). The number of contingency chains runs in tens of millions
for level 7 and hundreds of millions for level 8.

In Figure 3(2), results for comparative study of execution time of various
load balancing schemes with varying levels are presented. The results show that
the increase in execution time for our schemes is commensurate to increase in
problem size. In contrast, for centralized schemes the execution time increases
super-linearly for large problem sizes.

We study the scalability of our scheme with increase in system size in Fig-
ure 3(3). Our scheme outperforms both the centralized schemes for large system
sizes. The increase in system size has a negative effect on scaling of both the
centralized schemes. Our scheme, on the other hand, scales almost linearly. The
gap in performance increases as the problem size increases (from level 4 to level
5). For level 5, the performance of our scheme is an order of magnitude bet-
ter than the centralized schemes. These gains can be attributed to absence of
wait queues at the master node. However, for small system sizes, static scheme
outperforms both the dynamic scheme (due to large turnaround time) and our
scheme (due to inefficient allocation of jobs). For level 6, the centralized schemes
fail to complete successfully in certain cases; this is primarily attributed to the
requests piling up on the master causing the processor to run out of memory.

In Figure 3(4), we present strong scaling results for our scheme to show its
scalability to very large levels and very large system sizes. We report results for
level 6 and 7 for which real time analysis has been made possible by our scheme
even for medium system sizes like 512 and 1024 processors. Figure 3(4) shows
that our scheme scales nearly linearly for large levels for large systems with
upto 2k processors. It can also be seen that the scheme scales very well upto
8k processor systems. We obtain a factor 12 speedup for 8k processor system
relative to 512 processor system. Along with the good speed up, it is worth
noticing the fact that all these runs upto level 6 and 7 can be done in real time;
in contrast, as of today no system goes beyond level 2 for online calculations.

To test the real time nature and scalability of our scheme to highest level, we
also ran the code for level 8 on IEEE 118 bus system and it took only 259 seconds
on 8k processors. The number of contingencies evaluated in this case is nearly 150
million. A serialized, or parallel centralized scheme based, contingency analysis
version will take several days to complete this analysis. The results indicate
that our scheme scales well for large number of processors and outperforms the
other load balancing schemes. The difference between the schemes becomes more
prominent with increasing levels, due to the increasing load on the system and
with increasing system sizes, due to the increasing difficulty in load balancing.

6 Conclusions and future work

We presented a parallel implementation of probabilistic real time contingency
analysis scheme which could be used for blackout prediction in power grid. We
evaluated upto 150 million contingencies and showed real time results upto level
8. We also presented a novel load balancing scheme achieving good scalabil-



ity upto 8k processors. Future work includes incorporating transient stability
analysis into this implementation and analyzing the performance on different
machines.
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