
Exploring Partial Synchrony in an Asynchronous
Environment Using Dense LU

Jonathan Lifflander, Phil Miller,
Ramprasad Venkataraman, Anshu Arya

University of Illinois
Urbana, IL 61801

{jliffl2, mille121, ramv, arya3}@illinois.edu

Terry Jones
Oak Ridge

National Laboratory
Mailstop 5164

Oak Ridge, TN 37831
trj@ornl.gov

Laxmikant V. Kalé
University of Illinois
Urbana, IL 61801

kale@illinois.edu

ABSTRACT
Recent forecasts in high-performance computing predict that
programming models of the future will be asynchronous in
nature. However, opportunistic execution of available work
can lead to interference with segments of the computation
that should execute synchronously.

This paper describes a scheduling methodology that tightly
synchronizes parts of an otherwise asynchronous parallel al-
gorithm to obtain higher performance. Specifically, we apply
exclusive scheduling classes to both asynchronous collectives
and application-specific work units.

Our exploration of exclusive scheduling classes and other
techniques arises from implementing a dense LU solver in a
message-driven programming model and scaling it on mod-
ern supercomputers. The other techniques include map-
ping schemes beyond the traditional block-cyclic distribu-
tion and a method for decreasing network contention by
ad-hoc agglomeration of data requests. Our findings sug-
gest that future programming models will be hybrid mod-
els: asynchrony is beneficial, but these models must incorpo-
rate mechanisms that allow highly synchronous operations
to perform efficiently.

1. INTRODUCTION
It is widely posited within high-performance computing

that the predominant parallel programming models of to-
day need to evolve to perform well in the peta/exascale era.
Leaders in the field have suggested that new techniques be-
yond the bulk synchronous model are needed to scale appli-
cations to tomorrow’s supercomputers.

Many have predicted that upcoming parallel models will
use asynchrony and possibly message-driven computation to
obtain high performance. Murphy, Sterling, and Dekate [23]
assert that new system software needs to incorporate the
following for the exacale era: message-driven computation,
lightweight control objects for eliminating global synchro-
nization, dynamic scheduling, allocation, and resource man-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

agement. Brightwell, et. al., [6] predict that future exascale
systems will need to be asynchronous and dynamic; they ex-
plain that the current bulk synchronous approach is suscep-
tible to scaling limitations due to synchronization. Keyes, in
the context of PDE solvers [19], suggests that new program-
ming models are needed that postpone synchronizations, but
that exploiting asynchronous algorithms requires prioritiza-
tion much like in operating systems.

In many asynchronous and message-driven programming
models, work is decomposed into work units that are sched-
uled on a processor from a local queue of available work
units to maximize processor utilization. Some examples of
systems that use this method are TBB [25], Charm++ [17],
ParalleX [14], and Concurrent Collections [9]. To obtain
higher performance, work units are often prioritized by the
application, suggesting a preferred execution order to the
runtime system in the presence of a choice between multi-
ple pending work units. Execution decisions are then based
solely on the work units pending in each processor’s local
queue.

This opportunistic execution of work units hides commu-
nication latencies in many circumstances. However, if the
disparity in the size of the work units becomes too large,
a greedy approach to maximizing processor utilization can
lead to an overall degradation of performance. For instance,
if the highest priority work unit in the queue is a large grain
but has lower priority compared to the critical path work
that has not arrived, executing the large grain can delay the
critical path work that may become available soon. Hence, it
may be beneficial to delay execution of an unsuitable work
unit if a more fitting work unit, in terms of grain size or
priority, will arrive soon.

Given that scheduling is complex in an asynchronous model
but required in some contexts to achieve high performance,
we implement a dense LU solver, a traditionally bulk syn-
chronous application that relies on synchrony to obtain high
performance, in a message-driven, asynchronous program-
ming model. This allows us to evaluate the message-driven,
asynchronous model for an application that can range be-
tween highly synchronous and asynchronous behavior.

Dense LU factorization is well understood and widely es-
tablished as a supercomputer benchmark used to rank sys-
tems for the top500 list [1]. Its performance is primarily
computation bound, but it presents distinct challenges in
memory usage, scheduling, and communication to obtain
high efficiency.

In developing an efficient dense LU implementation in a

message-driven context, this paper makes the following con-
tributions:

• Exclusive scheduling classes: This paper describes a
work-unit classification scheme that enables tight syn-
chronization for a subset of processors in a message-
driven, asynchronous environment. The concept of
exclusive scheduling classes can be applied to general
scheduling policies for asynchronous collectives, or ap-
plication specific scheduling to stratify work units into
scheduling classes to improve performance.
• Mapping : This paper describes variations to the tradi-

tional block-cyclic mapping scheme that improve per-
formance. Several variants of this traditional mapping
scheme, such as row rotation or striding within a tile,
are described and empirically tested.
• Limiting network contention: Although dense LU is

not typically communication bound, when using a mes-
sage driven model, the ‘bursty’ communication pattern
found in dense LU may saturate network resources.
When using a pull-based scheme to constrain memory,
which uses point-to-point communication to transfer
L or U block data, blocks in high demand introduce
this problem. To ameliorate these effects, we limit the
injection rate of blocks onto the network and dynam-
ically agglomerate requesters of the same block into
multicasts.
• Trailing submatrix updates: This paper expands on the

previous theoretical work in describing a deadlock-free
scheduling order for the trailing submatrix updates,
which are the bulk of the computation in a dense LU
solver. By scheduling work beyond step-order, the crit-
ical path computation in dense LU can be accelerated
in a message-driven context.

We present a high-performance dense LU implementa-
tion1, benchmarked on modern supercomputers, and demon-
strate scalability to thousands of processors. The efficacy of
our techniques is empirically tested and shown to substan-
tially improve performance, making this LU implementation
competitive with similar libraries. Our findings suggest that
programming models of the future will be hybrid models:
asynchrony seems beneficial in many contexts, but these
models need to incorporate mechanisms that allow highly
synchronous operations to perform efficiently.

2. ALGORITHM AND DESIGN
This paper describes a solver for a set of n linear equations

in n variables: it performs LU factorization, solves the sys-
tem of equations, and validates the solution by calculating
the scaled residual (as described by the HPC Challenge spec-
ifications [11] and implemented in HPL). The LU factoriza-
tion phase uses Crout’s algorithm, which performs in-place
factorization with partial pivoting for numerical stability.

To parallelize the process, the matrix is decomposed into
square blocks of size b2 (shown in figure 1) distributed across
a set of processors. Blocks are assigned to processors at
startup according to a mapping scheme, which is discussed
in section 5, and are not reassigned during the course of
execution. Typically, there will be tens to hundreds of blocks
assigned to each processor core.

1The source code for our implementation is available from
git://charm.cs.illinois.edu/charmlu.git

The factorization process can be described as follows:

for step in 0..n/b− 1:

Active panel blocks are those at/below diagonal block step

1. for column in 0..b: (on each active panel block)

(a) Each block identifies its maximum value below
the diagonal in the current column within that
block and contributes to a reduction among the
active panel blocks.

(b) The result of the reduction identifies the pivot
row, which is swapped to the diagonal position
and broadcast to all of the active panel blocks.

(c) Each active panel block performs a rank-1 update
of the section after column with multipliers from
column and the pivot row.

2. The sequence of pivot exchanges is broadcast to the
blocks of U and the trailing submatrix, which commu-
nicate to apply the same swaps as the active panel.

3. Active panel blocks send their contents, each a portion
of L, to the blocks to their right.

4. U blocks to the right of the diagonal each perform
a triangular solve, and send the result to the blocks
below them.

5. Blocks in the trailing submatrix each compute a trail-
ing update as the product of the L and U blocks they
have received.

2.1 Grain Size
The trailing updates comprise the bulk of the computa-

tion that is performed in a dense LU solver. Each trailing
update is a O(b3) matrix-matrix multiplication (i.e. a call
to the dgemm() level-3 BLAS routine). The triangular solves
(via dtrsm()) are similarly computationally intensive. Each
trailing update or triangular solve takes a few tens of mil-
liseconds on the block sizes and processors used here. In
contrast, the active panel is communication intensive, with
b reductions and broadcasts occurring in rapid succession,
each nominally taking hundreds of microseconds to single
digit milliseconds.

2.2 Prioritization
On each processor, the work units for which input data

has arrived are placed in a priority queue. The priorities are
set by the type of work a unit represents and the index of its
target block in the matrix. The basic priority scheme gives
high priority to active panel work and U triangular solves
(to generate work quickly), and lower priority to trailing
updates.

2.3 Decomposition
In our implementation, each block is placed in a message-

driven object, driven by coordination code written in Struc-
tured Dagger [18]. The coordination code describes the mes-
sage dependencies and control flow for each block. Thus,
every block can independently work its way through these
steps, advancing as input data arrives in messages. With
many blocks per processor, the Charm++ [17] runtime sys-
tem inherently provides dynamic overlap of communication
and computation by allowing blocks that have received their
input to do work while blocks lacking data wait. In general,
this arrangement ensures high utilization, since some block

A0

A1

A2

A3

A4

U0

T0,0

T1,0

T2,0

T3,0

U1

T0,1

T1,1

T2,1

T3,1

U2

T0,2

T1,2

T2,2

T3,2

U3

T0,3

T1,3

T2,3

T3,3 Column being
factored

AkActive panel block

UiU block

Tm,nTrailing submatrix block

Previously factored block

Figure 1: The matrix is decomposed into square blocks, which take on different roles as the factorization
proceeds.

on each processor should always have work. The flexibility
of a block-object decomposition is illustrated by the experi-
ments described in sections 4 and 5.

This style of message-driven programming allows a clear
and concise representation of the algorithm without explicit
buffering of messages. When a message arrives, the Charm++
runtime system invokes a method on an object or buffers it
if the object is not ready to execute the message.

By representing each matrix block as a separate object,
the description of the parallel algorithm is separated from
the particular details of its execution. Additionally, the con-
trol flow executed for each block is directly visible in the
code; it is linear and effectively independent of other activ-
ity on its host processor.

Due to the simplicity of expression in the locally message-
driven style, our code is approximately 2,550 lines long.2

This is shorter than HPL, which is around 12,000 lines and
the UPC implementation [16], which is around 4,000 lines
of code.

2.4 Overlap
Ideally, every processor would remain busy during the en-

tire factorization process. However, in each step, only a
subset of processors will own blocks that are participating in
the active panel. Thus, to avoid idling processors, work from
multiple steps should be overlapped. The extent of the over-
lap (specifically, the number of steps the active panel runs
ahead of trailing updates) in an implementation of dense LU
is known as its lookahead depth [26].

Bulk synchronous implementations, such as HPL [24], re-
quire a fixed lookahead depth and restrict the overlap of
steps to that amount. This restriction is due to memory lim-
its of the machine; delaying the computation by increasing
the lookahead depth means that memory for input blocks
accumulates and then must be controlled. Due to imple-
mentation complexity and performance portability issues,
the ScaLAPACK library [10] does no lookahead (i.e. its
lookahead depth is 0).

In an asynchronous, dataflow parallel programming model,
the availability of input data immediately triggers the next
steps in the algorithm that depend on it. For typical, it-
erative, scientific algorithms, the amount of parallelism in
the computations remains more or less steady as the algo-
rithm progresses. Such algorithms can be expressed in pure
dataflow semantics and can exploit asynchronous execution
models without other concerns. However, the LU factoriza-

2As counted by David Wheeler’s SLOCcount.

tion has varying amounts of parallelism at different stages
of the computation. When expressed in the dataflow model,
it can cause unbridled spikes in memory usage because early
steps in the algorithm trigger large amounts of data move-
ment to feed the subsequent steps. For factorizations involv-
ing large matrices in limited memory environments, this can
cause premature and unsuccessful termination of the execu-
tion. Hence, although lookahead is a natural consequence of
using the dataflow model, it still needs to be moderated by
a continuous awareness of memory and bandwidth utiliza-
tion. This leads to a reality where the dataflow semantics
are adaptively throttled by a system that monitors memory
usage and other system parameters.

In a message-driven, asynchronous environment, LU can
be implemented to allow dynamic lookahead: the diagonal
can progress without a bound before the rest of the matrix
finishes updating. Our solver implements dynamic looka-
head, using a dynamic pull-based scheme to constrain mem-
ory consumption below a given threshold.

To implement the pull-based scheme, each processor has
a distinguished scheduler object in addition to its assigned
blocks. The scheduler maintains a list of the blocks assigned
to its processor, and tracks what step they have reached.
Within the bounds of the memory threshold, it requests
blocks from remote processors that are needed for local tri-
angular solves and trailing updates. To eliminate the pos-
sibility of deadlock, the order in which operations are exe-
cuted, and hence remote blocks requested, must be carefully
selected. Husbands and Yelick point out [16] that select-
ing updates in step order is deadlock-free, but suggest that
there may be a general solution for finding a deadlock-free
selection order of trailing updates using the dependencies
between blocks. Section 7 describes the dependencies be-
tween the blocks and uses this to safely reorder the selection
of trailing updates to execute.

3. OVERALL RESULTS

3.1 Performance
The percentage of peak obtained by an LU solver is cor-

related to the performance of the DGEMM implementa-
tion that it invokes. The performance of a DGEMM of-
ten varies with the size of the matrix that it operates on; a
larger DGEMM can normally execute more efficiently than
a smaller one. Therefore, when decomposing the matrix be-
ing factorized, there is a tradeoff between coarse grains that
aid in higher DGEMM efficiency and smaller ones that may

(a)

Time

Proc 1

Proc 2

Proc n

...

(b)

Trailing Update Active Panel Contribute to
reduction Reduction up tree

Rank 1
update

Reduction
root

Proc 1

Proc 2

Proc n

...

Figure 3: Two different time progressions of dense LU: (a) displays execution with interleaving of various
grain sizes; (b) shows execution with isolation. If the smaller grains are interleaved with larger grains, the
critical path is prolonged.

 0.1

 1

 10

 100

 128 1024 8192

T
o
ta

l
T

F
lo

p
/s

Number of Cores

Theoretical peak on XT5
Weak scaling on XT5

Theoretical peak on BG/P
Strong scaling on BG/P

Figure 2: Weak scaling (memory usage of matrix is
constant around 75%) from 120 to 8064 processors
on Jaguar, a Cray XT5 machine with 12 cores per
node. Strong scaling (n = 96, 000) from 256 to 4096
processors on Intrepid, an IBM BG/P machine with
4 cores per node.

Block size 450 500 504 525 560 700

DGEMM (%) 78.2 81.9 82.3 81.8 81.6 83.6
LU (%) 65.5 66.6 67.0 66.5 65.5 65.0

Table 1: Percent of peak achieved by DGEMM and
LU factorization on Cray XT5 with 120 cores and
n = 126000

Library Peak Cores n Architecture

UPC [16] 76.6 512 229K XT3
DPLASMA [4] 58.3 3072 454K XT5
ScalaPack [10] 59 3072 454K XT5
HPCC [3] HPL 65.8 224220 3936K XT5

Jaguar top500 [1] 75.5 224162 5474K XT5
CharmLU 67.4 2112 528K XT5

Table 2: Percent of peak achieved by various linear
algebra libraries. CharmLU is the implementation
presented in this paper.

allow more overlap of communication and computation. Ta-
ble 1 shows this tradeoff.

Table 2 compares our implementation with other dense
LU solvers. Note that the architectures and matrix sizes
vary, so it is difficult to provide an exact comparison, but
the values imply that our implementation is competitive.

3.2 Scaling
To demonstrate the scalability of the dense LU solver de-

scribed in this paper, we weak scale this solver to over 8000
processors. Using approximately 75% of memory3 our LU
solver obtains over 67% of peak on Jaguar, a Cray XT5
supercomputer. In addition, we demonstrate that our LU
solver also strong scales up to 2048 processors4 on Intrepid,
an IBM Bluegene/P supercomputer, with over 50% parallel
efficiency. Figure 2 shows both sets of results.

4. EXCLUSIVE SCHEDULING CLASSES
3This represents about 530 blocks of 500 × 500 doubles for
each processor, yielding a matrix size of 132000 on 132 pro-
cessors, up to 985000 on 8064 processors.
4With a matrix size of 96000, in blocks ranging from 300 to
150 doubles.

In applications that mix large grains of sequential execu-
tion with latency-sensitive communication operations, there
is a tension between computational throughput and respon-
siveness: a single processor’s work tends to execute most effi-
ciently when presented in large chunks; however, when such
compute kernels are running, reacting to incoming messages
is difficult or impossible.

In many asynchronous programming models, work is de-
composed into units and each processor draws from a local
queue of available work units. When a processor finishes ex-
ecuting a work unit, it will select the highest priority work
unit available in its queue as the next. In general, as long
as work units are available it is beneficial to execute them
to avoid idle time and maintain high utilization. However,
if the highest priority work unit available is not on the crit-
ical path and is relatively long, it may delay execution of a
critical work unit that will arrive soon. Therefore, it may be
beneficial for that processor to idle briefly, waiting for the
higher priority in-flight work unit, rather than opportunis-
tically executing the already available work unit.

In any asynchronous execution model that is opportunis-
tic, ensuring that specific classes of work execute uninter-
rupted is a challenging problem. The problem is exacer-
bated if there are large grain size variations across these
classes. Decreasing the interleaving of a critical class with
grains from other classes may be important for ensuring that
the critical path computation or communication proceeds
quickly.

Existing applications and runtime environments resolve
this tension using a variety of methods:

• Interrupts/Preemption: Long stretches of execution
can be interrupted when a latency-sensitive event oc-
curs, with the reaction preempting the ongoing com-
putation. This method can achieve excellent respon-
siveness, but requires low-level hardware or runtime
support, may be overhead prone, and is difficult to
program.

• Polling : The code for a long stretch of work can be
adapted to explicitly poll for the arrival of a critical
message and respond to it before resuming execution.
This in-line interruption introduces overhead, but it
also presents deeper issues of determining polling fre-
quency. Moreover, it is not always desirable or possi-
ble to poll from within optimized compute kernels like
those found in BLAS libraries.

• RDMA: If the critical operation is purely a data trans-
fer operation on precomputed data, this problem can
be resolved using remote direct memory access. With
hardware support, this can be very efficient, since the
ongoing computation can continue executing unaffected.
However, only very simple operations are possible. Hard-
ware and programming environment support are also
necessary, limiting its portability

A straightforward message-driven implementation of dense
LU factorization exhibits this problem because it carries a
mix of latency-sensitive messages on the active panel, and
mostly latency-insensitive work in the trailing submatrix.
The former take microseconds to single-digit milliseconds
per matrix column, whereas the latter take tens of millisec-
onds each.

When work on the active panel is available on a proces-
sor, it is given priority over all other parts of the factor-
ization process. However, because new active panel work
only arrives after the previous one has been completed, the
intervening gap between these units gives the processor an
opportunity to schedule large grain trailing updates or tri-
angular solves. If such large grains are scheduled, the pro-
cessor’s participation in the next unit of active panel work is
delayed, affecting all the processors involved in the panel fac-
torization. This considerably slows down this class of work
which lies on the critical path. With sufficient delays, pro-
cessors will exhaust their backlog of trailing updates before
the current panel is factorized and data for the next batch
becomes available.

A possible method to decrease this interference is to sep-
arate work units into exclusive scheduling classes. During
execution, the scheduler is set to some exclusive schedul-
ing class. Work units of lower classes in the local queue
will be held back in favor of higher class work units. Such
stratification of work units allows the scheduler to selectively
choose only the work units that are suitable for execution,
depending on the currently active scheduling class. The ac-
tive scheduling class is determined by the application; it in-
structs the scheduler to transition to a different scheduling
class when appropriate.

This methodology has the advantage of maintaining the
desired variation in grain sizes while using a general schedul-
ing methodology to solve the problem, thereby improving
performance. Moreover, the intricacies of using application-
specific polling or interruption/preemption can be avoided
by segmenting work into scheduling classes.

To achieve high overall performance in dense LU, we sim-
ulate a scheduling-class scheme on top of the Charm++ run-
time’s priority-based scheduler. When work of one class is
selected for execution on a processor, other work in lower
scheduling classes is held back to avoid introducing unnec-
essary latency. This technique is analogous to scheduling
classes in realtime systems and microprocessor interrupt lev-
els: the delay or preemption of the latency-sensitive factor-
ization is prevented by temporarily disabling execution of
lower-class large grain work. Figure 3 shows two different
possible executions, both with and without isolation using
exclusive scheduling classes enabled.

4.1 Isolation of Active Panel
The most apparent class distinction in dense LU is be-

tween the active panel factorization and the bulk work (tri-
angular solves and trailing updates). This separation is en-
forced by keeping a processor-local counter of the blocks cur-
rently participating in the active panel. When this counter is
non-zero, bulk work is not enqueued into the runtime sched-
uler’s queue. Instead, it is placed into an application-level
queue, to be re-scheduled when the active panel completes.
Bulk work units that are waiting in the runtime’s queue are
removed and placed in the same application-level queue. To
maintain this counter, each block on the active panel incre-
ments this counter after contributing to the first column’s
pivot reduction and receiving the broadcast that results.5

They decrement the counter when active panel work is com-

5The increment must wait for the first column to finish to
prevent deadlock: some other block on a processor may need
to perform a trailing update before it can participate in the
active panel.

 5

 5.5

 6

 6.5

 7

 7.5

 132 528 2112

G
F

lo
p
s
/c

o
re

Number of processors

Active panel and reduction callback isolated
Active panel isolated

Active panel and U triangular solves isolated
No isolation

Figure 4: Performance effects of enforcing various
exclusive scheduling classes on XT5 with weak scal-
ing.

 0.5

 1

 1.5

 2

 2.5

 256 512 1024 2048

T
o
ta

l
T

F
lo

p
/s

Number of Cores

Active panel and pivot reduction isolated
Active panel isolated

Figure 5: Performance effects of enforcing the pivot
reduction exclusive scheduling class on BG/P with
strong scaling from 256 to 2048 processors. As we
scale, isolation has a greater impact on performance.

plete.
The benefits of isolating the active panel from the bulk

work can be seen in figure 4. As the application weak scales
with the active panel isolated, performance remains consis-
tently high. However, without isolation, performance drops
sharply.

4.2 Isolation of Triangular Solves
Among the larger work units, there are two different tasks:

triangular solves on U blocks and trailing updates. Because
triangular solves generate additional concurrent work, we
generally prefer to perform triangular solves before trailing
updates. Thus, we have also considered delaying trailing up-
dates when the data to perform triangular solves is expected
to be available. This occurs when an active panel is com-
pleted, and the diagonal block and all pivoting instructions
have been broadcast. As figure 4 shows, this separation is
actually slightly detrimental to performance. Performance
degrades in this configuration because each triangular solve
depends on pivot data from one or more blocks in the trailing
submatrix below it, some of which may not have completed
their updates for the previous step. Thus, the triangular

solves wait longer than the execution time of several trailing
updates before becoming ready to execute, and the proces-
sor idles.

Instead of a class separation, simple prioritization of ready-
to-execute triangular solves ahead of any trailing updates
provides the best performance. A more elaborate prioritiza-
tion scheme might still prefer some trailing updates, such as
to blocks that are in the next active panel, over triangular
solves, especially those far to the right in the matrix.

4.3 Isolation of Asynchronous Reductions
The final work class distinction considered in this paper

lies within each active panel process. Our steps for the fac-
torization of each column of the matrix include: pivot iden-
tification via asynchronous reduction amongst all the par-
ticipants in the active panel factorization; broadcast of a
fragment of the pivot row to all participants; and a rank-1
update of the remaining unfactorized sub-blocks that are on
the active panel. Performance gains were realized by split-
ting the rank-1 update into two separate updates: one for
the immediate next matrix column and the other for the re-
maining sub-block. This allows earlier participation in the
next pivot identification which is critical to progress and
overlaps this communication with the rank-1 update com-
putations.

The runtime performs the pivot reductions by construct-
ing a spanning tree amongst the participant processors. These
reduction operations along the spanning tree are fine-grain,
while the rank-1 updates are large in comparison. When
these rank-1 updates were scheduled on a processor before
the reduction moved past it along the spanning tree, the
overall progress was impaired by the delay in the reduction
(inset of figure 3(a)). Thus, we place the reductions in a
higher class than the rank-1 updates.

We modified Charm++’s reduction mechanism to signal
a callback on each processor after a reduction has propa-
gated past that processor’s position in the tree. This signals
a transition out of the pivot identification work class, and
pending rank-1 updates can then be executed (inset of fig-
ure 3(b)). Figure 5 shows that this yields an increasing per-
formance improvement as we strong-scale. This gulf appears
because strong scaling LU leads to a growing proportion of
execution time spent in active panel factorizations.

We believe such a notification mechanism can be a general
technique for scheduling around asynchronous sender-driven
collectives. This directly aids in transitioning between ex-
clusive scheduling classes.

4.4 Synchrony Amidst Asynchrony
By partitioning work into exclusive scheduling classes, we

demonstrate that ideally highly synchronous workflows can
run without interference from large-grain latency-insensitive
asynchronous computation. Moreover, by placing an asyn-
chronous collective in a separate scheduling class, fine-grained
critical path work runs unaffected by larger grains, which are
deferred by the scheduler’s transition into a higher schedul-
ing class. For dense LU, we describe an application-specific
implementation of such a scheme and show that it substan-
tially improves performance.

Our methodology attempts to increase the efficiency of
synchronous operations in an asynchronous programming
model. This suggests that for some parallel algorithms,
purely asynchronous programming models may have disad-

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0.1 1 10

G
F

lo
p
/s

/c
o
re

Aspect ratio

132 cores
528 cores

2112 cores

wideroo taller //

Figure 6: Various aspect ratios for the tile of a
row-major block-cyclic distribution. Approximately
square tiles perform the best. Tall tiles decrease per-
formance because they lack parallelism in U. Wide
tiles decrease performance because they slow down
the active panel. Results are from weak scaling on
XT5.

vantages. For instance, if highly synchronous work is on
the critical path, ensuring that it executes early, uninter-
rupted by other work, may be essential to obtaining high
performance. Hence, it seems that while asynchrony may
be required to effectively program on the next generation
of supercomputers, methodologies and runtime tools that
increase the efficiency of synchronous operations, allowing
them to execute without interruption, will also be necessary
for the programming models of the future.

5. MAPPING

The traditional mapping scheme used in dense LU factor-
ization is a block-cyclic distribution of blocks to processors.
Figure 7(a) shows a typical block-cyclic layout with a proces-
sor tile of dimension 6×4. This paper describes variations to
the traditional block-cyclic mapping, rotation and striding,
that improve performance and may be generally beneficial to
other implementations. The variations arise from addressing
the following considerations:

• Computational parallelism in the active panel

• Locality among processors computing the active panel

• Memory contention between multiple active-panel pro-
cessors on a node

• Communication parallelism in distributing blocks of U

These concerns are closely interrelated, and hence there are
tradeoffs between them.

Within the block-cyclic mapping scheme the tile dimen-
sions may be adjusted to vary the aspect ratio of the tile.
There is a tradeoff between a tall tile, which increases the
number of processors working on the active panel, and a
wide tile, which allows for more U parallelism. Although
the triangular solve work is slight compared to the trailing
update work, parallelizing them further spreads the requests
for that block of data over more processors. In addition,
there is a tradeoff between a row- or column-major tile: a

row-major tile spreads the processors working on the ac-
tive panel across many nodes, reducing network locality but
minimizing contention within each included node; whereas
a column-major tile improves locality, but may introduce
memory bandwidth contention.

Formulas for the traditional block-cyclic mapping of a
block (x, y) to a processor with tiles of length l and width
w are as follows:6

m1 = x mod l (x in tile)

n1 = y mod w (y in tile)

frow(x, y, l, w) = m1w + n1 (1)

fcol(x, y, l, w) = n1l +m1 (2)

If all the processors are to be used, lw must equal the number
of processors. Our testing and existing benchmarks show
that a row-major tile tends to perform better. Hence, all
the performance measurements presented use a row-major
tile.

Figure 6 shows that a tile that is overly tall or wide de-
creases performance. From this figure it is apparent that an
approximately square tile yields the best performance. How-
ever, performance analysis reveals that while a square tile
yields the best performance, a tall tile (which increases the
number of processors on the active panel) causes the active
panel to compute faster, which might enable better over-
all performance with further modifications. To combine the
benefits of a fast active panel and sufficient U parallelism,
we use a tall tile but apply rotation to each tile depending
on its location.

The rotation parameter r cycles the tile in the x direction
by r rows in each new tile across the matrix in the y di-
rection. Intuitively, the rotate parameter has the following
effect: a relatively large r that is a factor of l causes a small
increase in U parallelism; a relatively small r that is a factor
of l causes a large increase in U parallelism; r as a co-prime
of l or r = 1 causes the maximum amount of U parallelism.

p =
⌊ y
w

⌋
(tile y index)

m2 = (x+ pr) mod l (x in tile)

n2 = y mod w (y in tile)

frotRow(x, y, l, w, r) = m2w + n2 (3)

frotCol(x, y, l, w, r) = n2l +m2 (4)

Figure 7(b) shows a tall tile with a rotation of 2, the result
of frotRow(x, y, 6, 4, 2).

The performance effects of applying rotation to a tall
tile are shown in figure 8. In figure 6 performance de-
grades below 6 GFlops/core when a relatively tall tile is used
(right side of the graph). However, by applying an adequate
amount of rotation (obtaining sufficient U parallelism) the
performance for tall tiles increases to over 6 GFlops/core as
shown in figure 8. If rotation is used excessively, it can cre-
ate an abundance of U parallelism, which increases network
traffic beyond its capability. Therefore, it is important to
tune this parameter to the system configuration and net-
work that is being used.

The choice of row- or column-major tiling represents a
tradeoff between network locality from keeping the active
panel on fewer nodes (favoring column-major) and contention
within each node among the processors performing memory-

6The mod operator used in the following formulas is the
typical C % operator.

y //

x

��

0 1 2 3 0 1 2 3 0

4 5 6 7 4 5 6 7 4

8 9 10 11 8 9 10 11 8

12 13 14 15 12 13 14 15 12

16 17 18 19 16 17 18 19 16

20 21 22 23 20 21 22 23 20

0 1 2 3 0 1 2 3 0

4 5 6 7 4 5 6 7 4

8 9 10 11 8 9 10 11 8

(a) 32 PEs, 6x4 tall tile. Uses
equation 1, frow(x, y, 6, 4).

0 1 2 3 8 9 10 11 16

4 5 6 7 12 13 14 15 20

8 9 10 11 16 17 18 19 0

12 13 14 15 20 21 22 23 4

16 17 18 19 0 1 2 3 8

20 21 22 23 4 5 6 7 12

0 1 2 3 8 9 10 11 16

4 5 6 7 12 13 14 15 20

8 9 10 11 16 17 18 19 0

(b) 32 PEs, 6x4 tall tile, ro-
tate 2. Uses equation 3,
frotRow(x, y, 6, 4, 2).

0 1 12 13 4 5 16 17 8

2 3 14 15 6 7 18 19 10

4 5 16 17 8 9 20 21 0

6 7 18 19 10 11 22 23 2

8 9 20 21 0 1 12 13 4

10 11 22 23 2 3 14 15 6

0 1 12 13 4 5 16 17 8

2 3 14 15 6 7 18 19 10

4 5 16 17 8 9 20 21 0

(c) 32 PEs, 6x4 tall tile, rotate
2, stride 2. Uses equation 5,
fstride(x, y, 6, 4, 2, 2).

Figure 7: Block-cyclic mapping scheme using a tall tile and applying rotation and stride to increase perfor-
mance. Rotation increases the amount of U parallelism and striding increases active panel locality.

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0.5 1 10

G
F

lo
p
/s

/c
o
re

Cores performing triangluar solves / sqrt(P)

132 cores
528 cores

2112 cores

Figure 8: The effect of adding rotation to a tall tile
to gain the benefits of a fast active panel, which
is provided by a tall tile, and U parallelism which is
recovered by rotating the tile in the x direction. The
x-axis is scaled by

√
P to illustrate that the ideal U

parallelism matches the amount given by a square
tile. Results are from weak scaling on XT5.

access intensive rank-1 updates as part of the active panel
(favoring row-major).

In order to explore intermediate points between these ex-
tremes, we introduce the notion of a stride in the y direc-
tion. The stride parameter s is a generalization of control-
ling whether the tile is column- or row-major. When it is
between column- and row-major, it changes the number of
processors per node that work on the active panel. When
s = 1 the tiling is effectively column-major; when s = w the
tiling is row-major. The domain of s is 1 ≤ s ≤ w where s
is a factor of w.

p =
⌊ y
w

⌋
(tile y index)

m3 =(x+ pr) mod l (x in tile)

n3 =y mod s (y in tile)

q =

⌊
y mod w

s

⌋
(subtile y)

fstride(x, y, l, w, r, s) =m3s+ n3 + lsq (5)

Figure 7(c) shows the a tall tile with a rotation of 2 and a
stride of 2, the result of fstride(x, y, 6, 4, 2, 2).

The optimal stride parameter will vary depending on the
memory bandwidth of a node, the width of the node, and the
prevalence of noise on the machine. If the machine is noisy,
spreading the active panel over more nodes may decrease
performance due to a potential loss of synchronization.

Figure 9 demonstrates the trade-off between active panel
locality and memory bandwidth. With many active panel
processors per node (a low stride, to the right on the graph)
performance is low due to memory bandwidth limits. This
maps the active panel on the smallest set of nodes possible
(the same as a column-major tiling). A larger stride (the
left side of the graph) approximates a row-major tile which
spreads the active panel across many nodes and provides
locality to the U blocks. By mapping U blocks close to-
gether, this causes contention for network bandwidth along
with non-locality for the active panel.

 6.2

 6.3

 6.4

 6.5

 6.6

 6.7

 6.8

 6.9

 7

 7.1

 0 2 4 6 8 10 12

G
F

lo
p
/s

/c
o
re

Active panel cores/node

132 cores
528 cores

2112 cores

Figure 9: Performance effects of striding the block-
cyclic mapping with rotation and a tall tile. 1 PE per
node is effectively row-major (stride = tile width),
while 12 PEs per node is effectively column major
(stride = 1). Results are from weak scaling on XT5.

By varying aspect ratio, rotation, and striding we explic-
itly consider the degree of parallelism, locality, and memory
contention. These considerations yield performance beyond
that observed by using the originally optimal square tile.

6. LIMITING NETWORK CONTENTION
Dense LU factorization is not generally considered a network-

intensive parallel operation, since its computation asymptot-
ically dominates its communication. However, it presents
communication patterns that involve moving large volumes
of data (matrix blocks) in a ‘bursty’ fashion from a few
source processors to many recipients. In a synchronous im-
plementation, these bursts of communication can be imple-
mented as efficient collective broadcasts to statically known
subsets of processors (e.g. the ‘process rows’ and ‘process
columns’ in HPL). In a pull-based implementation, however,
recipient processors may request blocks at any time, and the
owner of a block will need to respond quickly enough that
the requester does not run out of work and idle.

Testing shows that responding to these requests one-by-
one as they arrive leads to network saturation on processors
owning blocks that are in high demand. This saturation
stretches the time the sender spends responding, and delays
arrival of the response on requesting processors.

To address network saturation, we dynamically batch block
requests to efficiently broadcast blocks and spread the net-
work load. Requests for a block arriving before that block is
ready are batched and sent in a single broadcast when the
block’s computation is complete. However, requests arriving
later have no inherent method for batching into broadcast
groups. Thus, we limit the number of large outgoing mes-
sages that each processor may have in flight at a time. When
a request for a block arrives, the requesting processor is put
on a list of requesters for the block, and the block puts itself
in a send queue. Eventually, as sends complete, each queued
block will reach the head of the queue.

When a block reaches the head of the send queue, it will
have accumulated a list of several processors that have re-
quested the block since the last time that block was sent.
The list of requesting processors participating in a broad-
cast is transmitted by constructing a binary spanning tree

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 132 528 2112

G
F

lo
p
/s

/c
o
re

Number of Cores

Multicast
No multicast

Figure 10: Performance effects of agglomerating
work and multicasting it on-the-fly to destinations.
The 2112 point of the no multicast curve did not
finish in allotted time; hence it represents the max-
imum performance that configuration could have
achieved.

on the fly. This enables dynamic, asynchronous collective
communication with negligible additional latency and little
message size overhead.

Figure 10 shows that our multicast scheme substantially
outperforms point-to-point responses to each request.

7. TRAILING SUBMATRIX UPDATES
To achieve high machine utilization, and hence good per-

formance, the active panel and trailing update calculations
must be overlapped. Specifically, the active panel for a step
t should finish early enough before the trailing updates from
step t−1 such that no processor idles while waiting for input
data for step t’s trailing updates. In strong scaling scenarios
and in the large weak-scaled runs, each active panel may take
longer to factor than all of the trailing updates it generates.
Thus, to maintain overlap throughout the factorization, ac-
tive panels should be executed as eagerly as possible while
staying within memory limits.

In a matrix decomposed into N × N blocks, the factor-
ization of active panel t enables (N − t)2 trailing updates.
However, only N − t of those updates must complete be-
fore the factorization of active panel t + 1 can start. De-
spite this, the UPC implementation allocates memory for
these updates in strict step order, as a conservative means
to avoid deadlock. Thus, with a matrix that is large relative
to available memory, it must execute most of each step’s up-
dates before making space for the next step, and lookahead
is very limited until late in the factorization, when little of
the matrix remains to be updated.

In order to explore less conservative scheduling policies,
we formalize the dependence structure in terms of planned
operations, those for which memory has been reserved. These
include both triangular solves and trailing updates, but not
pivoting, since it consumes a minimal amount of memory.

For each block (x, y), major operations on it are denoted
as a triple (x, y, t). Every block will go through trailing
updates

(x, y, t) | 0 ≤ t < min(x, y).

Blocks below the diagonal, x > y, become part of the active
panel after their last trailing update and so have no more

operations to plan. Blocks above the diagonal, x < y, com-
plete their trailing updates and then perform a triangular
solve, whose triple will always be of the form (x, y, x). For
simplicity, this formulation conservatively subsumes pivot-
ing operations into whatever major operation follows them,
since they consume little additional memory (obviating the
need to plan them explicitly).

A triangular solve (x, y, x) depends on its final trailing
update

(x, y, x− 1) ≺ (x, y, x)

the final trailing updates to its associated active panel

(i, x, x− 1) ≺ (x, y, x) | x ≤ i < N

and (due to pivoting) the previous step’s trailing updates on
the column below it

(i, y, x− 1) ≺ (x, y, x) | x ≤ i < N.

A trailing update (x, y, t) directly depends on the previous
update to that block

(x, y, t− 1) ≺ (x, y, t) | t > 0

and the triangular solve of its U input

(t, y, t) ≺ (x, y, t).

The dependence on U creates a transitive dependence on
the corresponding block of L, and so need not be considered
explicitly.

If operations are planned strictly in step order, with trian-
gular solves preceding trailing updates, these dependencies
are effectively expanded to include the entire trailing sub-
matrix at step t− 1 for every step t triangular solve. Under
that policy, it is clear that all dependencies will be planned
before their dependents, and this will create a deadlock-free
schedule. Moreover, this is a policy that every processor can
follow independently, without communication to coordinate
decision-making. This is the policy followed by the UPC
implementation.

We have two desiderata for a less conservative scheduling
policy. First, it should enable overlap to the greatest ex-
tent possible. Second, it should require little or no non-local
information to operate correctly, because coordinating mul-
tiple processors operating asynchronously can be expensive,
error-prone and difficult to reason about.

Given a set of operations S that can be considered done or
planned at some point in time, the operations E(S) eligible
for planning can be determined by which dependencies are
satisfied:

E(S) = {(x, y, t)| t < min(x, y) ∧
((x, y, t− 1) ∈ S ∨ t = 0) ∧
(t, y, t) ∈ S} ∪

{(x, y, x)| x < y ∧ (x, y, x− 1) ∈ S ∧
({(i, x, x− 1), (i, y, x− 1)|x ≤ i < N}
⊆ S ∨ x = 0)}

(6)
If these precise dependencies are applied on a local, per-

processor basis, deadlock can result, as shown in figure 11.
This occurs because the trailing updates necessary to pivot
data for some triangular solve can be mutually blocked by
other trailing updates across two or more processors. Step-
order planning does not give rise to cases like this; specifi-
cally, it guarantees that the trailing updates on one proces-
sor needed to generate pivots for a triangular solve would
be planned before any trailing updates that may depend on
that triangular solve’s output.

𝝰𝝰

0

1

0

𝝰

𝝩

𝝱p

𝝩p1

0

1

𝝰

𝝩𝝩

𝝱p

𝝩p𝝰

𝝰

𝝰

Block completed

0,1 Assigned processor

𝝩 Triangular solve

Xp Planned operation

𝝰,𝝱 Trailing update

Figure 11: Possible deadlock situation if only local
dependencies are considered. This is an example
with two processors and an allowed planning depth
of two. The two processors that try to execute βp
are dependent on their Tp triangular solves. These
two solves are dependent for pivoting on the two
non-local blocks that have not completed α. Since
these blocks are not planned, deadlock ensues.

Suppose that processor has the information that the trian-
gular solve (t+1, y, t+1) has completed, despite some of its
blocks in column y not having been updated to step t, and
thus unable to pivot with (t+ 1, y). This means that those
blocks contained no pivot rows for that step. The comple-
tion of the triangular solve with no contribution from those
blocks lets that processor delay planning updates to those
blocks, in favor of step-wise later updates that might be
closer to critical for the active panel.

Our baseline implementation follows the conservative step
order that avoids the possibility of deadlock. However, we
deviate from step order by exploiting the information about
finished triangular solves in a limited fashion. When a U
block on the first block super-diagonal does its triangular
solve, it broadcasts a notice of this progress to the scheduler
objects on all of the processors. That broadcast is used to
release conservatively set dependences that would hold back
the next active panel. In its limited form, the benefits of
this are small: about a 0.5% increase in peak.

A more complete implementation would make the same re-
lease notification from every triangular solve, allowing columns
that are a few steps away from being on the active panel to
run further ahead of other columns further to the right in
the matrix. The challenge, then, would be for each sched-
uler to determine how much memory to allocate to updates
on which part of the matrix, given a need to balance fastest
immediate progress with having work to do when otherwise
idle. We plan to explore this space in future work.

8. RELATED WORK
HPL [24], a high performance implementation of LU fac-

torization, uses a bulk synchronous approach along with
fixed lookahead, obviating the need for scheduling classes.
Its communication and computational patterns are described
in a paper by Dongarra, Luszczek, and Petitet [12]. ScaLA-
PACK [10] uses static scheduling with no lookahead. Both
implement parallel algorithms for LU that differ greatly from
our implementation.

UPC [16] uses a similar parallel algorithm, namely the
“dataflow” variant of the algorithm. They use a pull-based
scheme to constrain memory, but do not agglomerate re-
quests. Instead of using local coordination with prioritiza-

tion for work unit control-flow, they use user-level threads
which are co-operatively scheduled. They explain that pre-
emption is not viable in this context, but threads explicitly
yield when they start a long-latency operation or synchro-
nization dependence. It is possible that applying the idea of
exclusive scheduling classes to threads could be beneficial.

Lewis and Richards [22] use a dataflow parallel algorithm,
but only apply it to shared memory up 24 processors. Kurzak
and Dongarra [21] investigate the dataflow algorithm with
pipelining and lookahead (both techniques we used) on two
dual-core processors.

Krishnan, Lewis, and Vishnu [20] describe methods using
ARMCI for optimizing communication efficiency in LU for
smaller problem sizes using RDMA.

Amestoy, Guermouche, and Pralet [2] use a master/slave
model with dynamic scheduling for LU and constrain mem-
ory within this scheme.

Bosilca, et. al. describe DPLASMA [4], a library for dis-
tributed dense numerical linear algebra that uses the DAGuE
framework [5], which prioritizes and schedules tasks using
the application DAG. Chan, et. al. use SuperMatrix [8]
to perform LU factorization without pivoting and schedule
tasks using the data dependencies.

A theoretical understanding of when synchrony is effec-
tive and ineffective has garnered interest with the increased
concurrency found in high-performance computing. Hoe-
fler, et al. [15] developed a simulation toolchain that injects
noise delays from traces gathered on common large-scale ar-
chitectures into a simulator. They noted that the scale at
which noise becomes a bottleneck for synchronous opera-
tions is system specific and depends on the structure of the
noise, and that co-scheduling is able to effectively remove
the negative impact on synchronous collectives. Ferreira, et
al. [13] used noise injection techniques to assess synchronous
behavior on several applications at scale and noted the im-
portance of noise frequency and duration. Co-scheduling in
our case would help synchronize the processors as they start
non-active panel work, but it would still interleave grains
that should ideally be delayed.

9. CONCLUSION
In this paper, we describe an asynchronous, message-driven

implementation of the common dense LU factorization bench-
mark, and show that it successfully scales to thousands of
processors on multiple, leading-edge supercomputer archi-
tectures. In doing so, we explore several challenges and
opportunities presented by fully asynchronous parallel pro-
gramming models. We show how opportunistic execution
can negatively impact performance in certain circumstances,
and describe a mechanism to mitigate that loss. Perform-
ing work out of lock-step synchronization also introduces
new considerations for parallelism and resource contention,
which we address through variations on traditional map-
ping schemes and adaptive collective communication mech-
anisms. Given a well-tuned asynchronous implementation
to use as a baseline, we have begun to explore the more flex-
ible deep-lookahead schedules for dense LU that are possible
but untested.

Acknowledgements
Grants: Blue Waters (Phil), Simdemics, IACAT? Hecura?
(Jonathan), OpenAtom? (Anshu, Ram) Machines:

Development runs on Kraken were done under the Tera-
Grid [7] allocation grant TG-ASC050040N supported by the
NSF.

This research used Surveyor and Intrepid of the Argonne
Leadership Computing Facility at Argonne National Labora-
tory, under the support of DOE contract DE-AC02-06CH11357.

Running time on Jaguar, a resource of the National Center
for Computational Sciences at Oak Ridge National Labora-
tory, was supported by DOE contract DE-AC05-00OR22725.
Accounts on Jaguar were made available via the Perfor-
mance Evaluation and Analysis Consortium End Station,
a DOE INCITE project.

10. REFERENCES
[1] Top500 supercomputing sites. http://top500.org.

[2] P. R. Amestoy, A. Guermouche, and S. Pralet. Hybrid
scheduling for the parallel solution of linear systems.
Parallel Computing, 32:136–156, 2006.

[3] B. Bland. Hpc challenge class i award g-hpl winning
submission, 2010.

[4] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge,
A. Haidar, T. Herault, J. Kurzak, J. Langou,
P. Lemarinier, H. Ltaief, P. Luszczek, A. Yarkhan, and
J. Dongarra. Distibuted [sic.] dense numerical linear
algebra algorithms on massively parallel architectures:
Dplasma. Technical Report UT-CS-10-660, University
of Tennessee, September 2010.

[5] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault,
P. Lemarinier, and J. Dongarra. DAGuE: A generic
distributed DAG engine for high performance
computing. Technical Report ICL-UT-10-01,
Innovative Computing Laboratory, University of
Tennessee, April 2011.

[6] R. Brightwell, B. Barrett, K. Hemmert, and
K. Underwood. Challenges for high-performance
networking for exascale computing. In Computer
Communications and Networks (ICCCN), 2010
Proceedings of 19th International Conference on,
pages 1 –6, 2010.

[7] C. Catlett et al. TeraGrid: Analysis of Organization,
System Architecture, and Middleware Enabling New
Types of Applications. In L. Grandinetti, editor, HPC
and Grids in Action, volume 16, pages 225–249,
Amsterdam, 2007. IOS Press.

[8] E. Chan, F. Van Zee, E. Quintana-Orti,
G. Quintana-Orti, and R. van de Geijn. Satisfying
your dependencies with supermatrix. In Cluster
Computing, 2007 IEEE International Conference on,
pages 91 –99, September 2007.

[9] A. Chandramowlishwaran, K. Knobe, and R. Vuduc.
Performance evaluation of concurrent collections on
high-performance multicore computing systems. In
Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS), 2010.

[10] J. Choi, J. Dongarra, and D. Walker. The Design of
Scalable Software Libraries for Distributed Memory
Concurrent Computers. In H. Siegel, editor, Proc.
Eighth International Parallel Processing Symposium.
IEEE Computer Society Press, April 1994.

[11] J. Dongarra and P. Luszczek. Introduction to the
HPC Challenge Benchmark Suite. Technical Report
UT-CS-05-544, University of Tennessee, Dept. of

Computer Science, 2005.

[12] J. J. Dongarra, P. Luszczek, and A. Petitet. The
linpack benchmark: Past, present, and future.
concurrency and computation: Practice and
experience. Concurrency and Computation: Practice
and Experience, 15:2003, 2003.

[13] K. B. Ferreira, P. Bridges, and R. Brightwell.
Characterizing application sensitivity to os
interference using kernel-level noise injection. In
Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, SC ’08, pages 19:1–19:12, Piscataway,
NJ, USA, 2008. IEEE Press.

[14] G. R. Gao, T. L. Sterling, R. Stevens, M. Hereld, and
W. Zhu. Parallex: A study of a new parallel
computation model. In IPDPS, pages 1–6, 2007.

[15] T. Hoefler, T. Schneider, and A. Lumsdaine.
Characterizing the influence of system noise on
large-scale applications by simulation. In Proceedings
of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage
and Analysis, SC ’10, pages 1–11, Washington, DC,
USA, 2010. IEEE Computer Society.

[16] P. Husbands and K. Yelick. Multi-threading and
one-sided communication in parallel lu factorization.
In SC ’07: Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, pages 1–10, New York,
NY, USA, 2007. ACM.

[17] L. Kalé and S. Krishnan. CHARM++: A Portable
Concurrent Object Oriented System Based on C++.
In A. Paepcke, editor, Proceedings of OOPSLA’93,
pages 91–108. ACM Press, September 1993.

[18] L. V. Kale and M. Bhandarkar. Structured Dagger: A
Coordination Language for Message-Driven
Programming. In Proceedings of Second International
Euro-Par Conference, volume 1123-1124 of Lecture
Notes in Computer Science, pages 646–653, September
1996.

[19] D. Keyes. Partial differential equation-based
applications and solvers at extreme scale. Int. J. High
Perform. Comput. Appl., 23:366–368, November 2009.

[20] M. Krishnan, R. Lewis, and A. Vishnu. Scaling linear
algebra kernels using remote memory access. In
Parallel Processing Workshops (ICPPW), 2010 39th
International Conference on, pages 369 –376,
September 2010.

[21] J. Kurzak and J. Dongarra. Implementing linear
algebra routines on multi-core processors with
pipelining and a look ahead. In Proceedings of the 8th
international conference on Applied parallel
computing: state of the art in scientific computing,
PARA’06, pages 147–156, Berlin, Heidelberg, 2007.
Springer-Verlag.

[22] B. Lewis and K. Richards. Lu factorization case study
using fast: Dataflow parallelism with the forte
application scalability tool, 2003.

[23] R. Murphy, T. Sterling, and C. Dekate. Advanced
architectures and execution models to support green
computing. Computing in Science Engineering,
12(6):38 –47, 2010.

[24] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary.
HPL - a portable implementation of the
high-performance linpack benchmark for

distributed-memory computers.

[25] J. Reinders. Intel Threading Building Blocks:
Outfitting C++ for Multi-Core Processor Parallelism.
O’Reilly Media, 2007.

[26] Y. Saada. Communication complexity of the gaussian
elimination algorithm on multiprocessors. Linear
Algebra and its Applications, 77:315–340, May 1986.

