
Scenario Clustering
Dependence between various stage2 scenarios.
Scenarios optimization starts from optimal dual basis of the last scenario
solved
Solving similar scenarios successively (by forming clusters of scenarios) sig-
nificantly reduces the stage2 solve time.

Issue: Internal Library state affects performance of future solves
Solution: Cluster similar scenarios to minimize solve times for the whole clus-

ter

Amdahl’s Law: Scalability plot of the Master-Worker parallelization based implemen-
tation with cut-management in stage1 and scenario based clustering in stage2

Branch and Bound Parallelism

Stage1 variables must be integers. Large solve times for stage1 IP prohibits
scaling beyond a point (as also seen in the stage1 LP case). Henceforth, we
present a massively scalable branch-and-bound based design to solve stochas-
tic programs with integer stage1 programs.

Stage1 solved as linear program with branching on fractional variables. Keep
branching until an integer solution is found or branch is pruned because lower
bound exceeded the best incumbent known so far.

Lessons from Master-Worker paralleliza-
tion and Motivations for the proposed
design
1. Amount of computation per search node in branch-and-bound tree very

large (could be hours for real world problems).
2. Finding single solution quickly more important than finding many solutions
after a long period of time. Former helps pruning the tree and thus reduces the

work.
3. Memory requirements per search node are very large because of accumu-

lated recourse information from stage 2.
4. Highly variable stage1 and stage2 solve times call for load balancing and

pull-based design for getting work.

Branch-and-bound tree structure for multistage stochastic programs with stage1 as
Mixed Integer Program

Design Approach
● Categorize the available processors into two sets of stage1 and stage2 solvers.

Each processor is associated with a solver (either stage1 or stage2).
● Stage1 solver maintains two queues - ready and waiting

 ● ready queue - search nodes for which stage2 recourse information has been
calculated (by stage2 solvers)

 ● waiting queue - search nodes sent for stage2 scenario realizations
● Two dedicated processors act as stage1 load balancer and stage2 manager
● Periodic redistribution of processors between stage1 and stage2 solvers.
 reduces memory requirements per search node
However, it is important to maintain cut locality as cuts from one end of the
tree not very useful for nodes in other end of tree

Overall design of the branch-and-bound strategy

Workflow
● Start with X stage1 solvers and Y stage2 solvers
● Use adaptive convergence criteria to create enough search nodes in the be-

ginning for idle stage1 solvers
● Same cuts used for all search nodes explored on a given stage1 solver

(reduces memory requirements per search node).
● Single Stage1 solver responsible for exploring the entire subtree generated

from a search node (unless there is work stealing)
 Ensures cut locality
● Combination of best-first and depth-first strategy used to explore the tree

Periodic redistribution of processors between stage1 and stage2 solvers
 ● Increase number of stage1 solvers unless there is enough work to keep all

stage2 solvers busy.
 ● Number of stage1 solvers should be such that all work generated by them

gets instant stage2 response i.e. queue length of stage2 manager remains
steady and close to zero. This keeps a check on the number of stage1
solvers.

Load Balancing amongst stage1 solvers
 ● When explored all nodes, request for work sent to stage1 load balancer

which issues max-load reduction on stage1 solvers.
 ● Search node and associated cuts from the max-loaded solver sent to the

requestor solver.

Branch and Bound increases processor utilization and reduces the time to solution
by more than half

A Snapshot of the progress of the tree exploration in a run with 4 stage1 and 16 stage2
solvers. Clusters represents the processor on which the search node was explored.

Names of the nodes are their respective bit vectors based on the decision made on the
parent node.

Search node color scheme- Red: pruned, Orange: incumbent integer solution, Green:
currently being optimized in stage1, Blue: in waiting queue, Purple: in ready queue

Performance of the Parallel Branch-and-Bound Implementation on a Model with 225
integer variables in stage 1 and 120 scenarios in stage 2

Conclusion and Future Work
Intelligent search strategies along with design approaches to maximally har-
ness the compute power of the high performance machines can be used to
obtain optimal solutions for the stochastic problems which have remained un-
solved in the past.

As a next step, we intend to incorporate into our design the ability to solve
stage 2 problems also as integer programs.

References

Stage 1 Load
balancer

Stage 2 Manager

Cluster 1

Cluster 2

Cluster k

Stage 1 solvers

Stage 2 solvers

searchnode1

searchnode2

searchnode3

allocations

Request for search node
by starving processor

Issues max-load reduction

Send request for
work

allocations

Cuts (recourse
information)

Migration of search node and
associated cuts to starving

processor

stg2
stg2
stg2
stg2

Stg1
(LP)

y1 <= 3 y1 >= 4

stg2
stg2
stg2
stg2

Stg1
(LP)

stg2
stg2
stg2
stg2

Stg1
(LP)

0

0.2

0.4

0.6

0.8

1

1.2

15t_D1 15t_D2 30t_D2

A
ve

ra
ge

 S
ta

ge
2

Ti
m

e

Models

Improvement in Stage2 time with Clustering

EM

Kmean
s

Results

100

1000

10000

100000

4 8 16 32 64 122

Ti
m

e(
s)

num cores

10t, 1000 scenarios on Abe(Intel 64 Cluster)

stg2 walltime

stg1 walltime

total walltime

Clustering of scenarios gives significant reduction in stage 2 solve times

8

16

32

64

128

256

512

4 16 64 256 1024

ex
ec

uti
on

 ti
m

e
in

 se
co

nd
s

number of processors

Akhil Langer, Ramprasad Venkataraman, Gagan Gupta, Laxmikant Kale, Udatta Palekar
Enabling Massive Parallelism for Stochastic Optimization Problems

University of Illinois at Urbana-Champaign MITRE Corporation
Steve Baker, Mark Surina

{alanger, ramv, gagan, kale, palekar}@illinois.edu {sbaker, msurina}@mitre.org

Two Stage Stochastic Program
Modeling Approach
Stage 1: Compute potential allocation
Stage 2: Evaluate costs of allocation for different scenarios
Iteratively use feedback from all scenarios to refine allocation

Objective Functions
Minimize:
1. The costs of allocating owned and long term leased aircraft to mission catego-

ries (stage 1)
 +
2. The expected costs of short-term aircraft leasing, aircraft operating and late

and non-delivered cargo and missed missions (stage 2)

T

Problem Context
Task: Allocate aircraft to cargo and crew delivery missions
Target: Minimize operating costs in the face of uncertain demands

The US air fleet is responsible for moving cargo all over the world, often in the
face of sudden events like natural disasters, conflict, etc. The penalty for late or
missed deliveries are often steep. Fleet management consists of periodically allo-
cating aircraft and personnel to different cargo delivery missions while allowing
for uncertain and sudden demands. Sudden reallocation of craft from one mission
to another is also very expensive. The objective is to minimize operating costs by
a weighted consideration of a variety of possible scenarios when making an allo-
cation decision.

Solving the resulting Stochastic Program
(Bender’s method)

Master Worker Parallelism
- Single stage 1 compute object (master) proposes new allocations
- Collection of stage 2 compute objects (workers) provide feedback for each al-

location
- Multiple rounds of master-worker interactions until optimal allocation is

found

LP/IP using a numeric library: Challenges

Issue: Load imbalance because of variable, unpredictable compute grain sizes
Solution: Use a work request mechanism instead of a priori load distribution

 - Stage 2 objects request work when idle
 - Orchestration object balances load by responding to stage 2 work requests
 - Stage 2 objects keep working until allocation is evaluated under all scenarios

Coarse Grained Computations
- Linear Programs cannot be broken down trivially
- LPs are delegated to numeric library
- Form fundamental grain of computation

Why Parallel?
- Need to evaluate multiple independant scenarios
- Desired time to solution is typically fixed
- Parallelism enables consideration of more scenarios and greater confidence in

resultin allocations

Main

Sol Sol Sol Sol Sol Sol Sol

Comm
R-1

Comm
R-2

Comm
R-3Send scenarios

to Solvers
Receive Duals

Send allocation to
Comm object
Receive Cuts

