
Composable and modular Exascale
Programming Models with intelligent

runtime systems:
To Virtualize or Not?!
Of course, virtualize

Laxmikant (Sanjay) Kale
http://charm.cs.illinois.edu

Parallel Programming Laboratory
Department of Computer Science

University of Illinois at Urbana Champaign

http://charm.cs.uiuc.edu/�

Observations: exascale machines

• Just restating, with a bit of my take added
• Many (1000+) cores in a “node”
• Heterogeneous cores:

– specialization saves energy
– Possibly reconfigurable hardware

• Main reason for accelerators:
– “cache” idea had outlived its utility
– So: explicit control over data movement

• Scratchpad memories a la Cell, GPGPU, ..
– Hardware context switches for tolerating latency

• Communication challenges: variable speeds?

8/2/2011 ASCR Exascale 2

Application Segmentation
• We may have to specialize architectures to classes

of applications
– Two dimensions: memory-per-core, bisection bandwidth
– Of the 4 quadrants formed, more than 1 are populated by

real apps, I think
– We can design *very* different machines for each class

• E.g. For many apps we may need to go to a machine design with
(say) no external DRAM. Use all the pins for communication.., and
say use a simple grid network.

• We need a serious study of applications
– Emphasizing exascale problem instances
– Use something like BigSim to do parametric studies to

quantify needs of application

April 28th, 2010 8th Annual Charm++ Workshop 3

Observations: Exascale applications

• Development of new models must be driven by
the needs of exascale applications
– Multi-resolution
– Multi-module (multi-physics)
– Dynamic/adaptive : to handle application variation
– Adapt to a volatile computational environment
– Exploit heterogeneous architecture

• So? Consequences:
– Must support automated resource management
– Must support interoperability and parallel composition

8/2/2011 ASCR Exascale 4

Decomposition Challenges

• Current method is to decompose to
processors
– But this has many problems
– deciding which processor does what work in

detail is difficult at large scale
• Decomposition should be independent of

number of processors
– Our design principle since early 1990’s

• (in Charm++ and AMPI)

8/2/2011 ASCR Exascale 5

Processors vs “WUDU”s

• Eliminate “processor” from programmer’s
vocabulary
– Well, almost

• Decomposition into:
– Work-Units and Data Units (WUDUs)
– Work-units: code, one or more data units
– Data-units: sections of arrays, meshes, ..
– Amalgams:

• Objects with associated work-units,
• Threads with own stack and heap

• Who does decomposition?
– Programmer, compiler, or both

8/2/2011 ASCR Exascale 6

Different kinds of units
• Migration units:

– objects, migratable threads (i.e. “processes”), data
sections

• DEBs: units of scheduling
– Dependent Execution Block
– Begins execution after one or more (potentially)

remote dependence is satisfied
• SEBs: units of analysis

– Sequential Execution Blocks
– A DEB is partitioned into one or more SEBs
– Has a “reasonably large” granularity, and uniformity

in code structure
– Loop nests, functions, ..

8/2/2011 ASCR Exascale 7

Migratable objects programming
model

• Names for this model:
– Overdecompostion approach
– Object-based overdecomposition
– Processor virtualization
– Migratable-objects programming model

8/2/2011 ASCR Exascale 8

Empower Adaptive Runtime System

• Decomposing program into a large number
of WUDUs empowers the RTS, which can:
– Migrate WUDUs at will
– Schedule DEBS at will
– Instrument computation and communication at

the level of these logical units
• WUDU x communicates y bytes to WUDU z every iteration
• SEB A has a high cache miss ratio

– Maintain historical data to track changes in
application behavior

• E.g. to trigger load balancing

8/2/2011 ASCR Exascale 9

Over-decomposition and
message-driven

execution

Migratability

Introspective and
adaptive runtime system

Control Points

Higher-level
abstractions

Scalable Tools
Automatic overlap, pefetch,

compositionality
Emulation for
Perf Prediction

Fault Tolerance

Dynamic load balancing
(topology-aware, scalable)

Languages and Frameworks

Temperature/power
considerations

8/2/2011 ASCR Exascale 10

Utility for Multi-cores, Many-cores,
Accelerators:

• Objects connote and promote locality
• Message-driven execution

– A strong principle of prediction for data and code
use

– Much stronger than principle of locality
• Can use to scale memory wall:
• Prefetching of needed data:

– into scratch pad memories, for example

8/2/2011 ASCR Exascale 11

Scheduler Scheduler

Message Q Message Q

Impact on communication

• Current machines are over-engineered for
communication by necessity:
– Compute-communicate cycles in typical MPI apps
– So, the network is used for a fraction of time,
– and is on the critical path

• With overdecomposition (virtualization)
– Communication is spread over an iteration
– Also, adaptive overlap of communication and

computation

8/2/2011 ASCR Exascale 12

Compositionality

• It is important to support parallel composition
– For multi-module, multi-physics, multi-paradigm

applications..
• What I mean by parallel composition

– B || C where B and C are independently developed
modules

– B is parallel module by itself, and so is C
– Programmers who wrote B were unaware of C

• This is not supported well by MPI
– Developers support it by breaking abstraction

boundaries
• E.g. wildcard recvs in module A to process messages for

module B
– Nor by OpenMP implementations :

8/2/2011 ASCR Exascale 13

8/2/2011 ASCR Exascale 14

Without message-driven execution
(and virtualization), you get either:
Space-division

Time

B

C

8/2/2011 ASCR Exascale 15

OR: Sequentialization

Time

B

C

8/2/2011 ASCR Exascale 16

Parallel Composition: A1; (B || C); A2

Recall: Different modules, written in different
languages/paradigms, can overlap in time
and on processors, without programmer
having to worry about this explicitly

Decomposition Independent of numCores

• Rocket simulation example under traditional MPI

• With migratable-objects:

– Benefit: load balance, communication optimizations, modularity

8/2/2011 ASCR Exascale

Solid

Fluid

Solid

Fluid

Solid

Fluid
. . .

1 2 P

Solid1

Fluid1

Solid2

Fluid2

Solidn

Fluidm
. . .

Solid3
. . .

17

Load Balancing
• Static

– Irregular applications
– Programmer shouldn’t have to figure out ideal

mapping
• Dynamic:

– Applications are increasingly using adaptive
strategies

– Abrupt refinements
– Continuous migration of work: e.g. particles in MD

• Challenges:
– Performance limited by most overloaded processor
– The chance that one processor is severely overloaded

gets higher as #processors increases

8/2/2011 ASCR Exascale 18

Migratable Objects Empower Automated Load Balancing!

Principle of Persistence
• Once the computation is expressed in terms of

its natural (migratable) objects
• Computational loads and communication

patterns tend to persist, even in dynamic
computations

• So, recent past is a good predictor of near
future

8/2/2011 ASCR Exascale 19

In spite of increase in irregularity and
adaptivity, this principle still applies at
exascale, and is our main friend.

A quick Example:
Weather Forecasting in BRAMS

• Brams: Brazillian weather code (based on RAMS)
• AMPI version (Eduardo Rodrigues, with Mendes

and J. Panetta)

8/2/2011 ASCR Exascale 20

Basic Virtualzation of BRAMS

8/2/2011 ASCR Exascale 21

8/2/2011 ASCR Exascale 22

8/2/2011 ASCR Exascale 23

Baseline: 64 objects on 64 processors

8/2/2011 ASCR Exascale 24

Over-decomposition: 1024 objects on 64 processors:
Benefits from communication/computation overlap

8/2/2011 ASCR Exascale 25

With Load Balancing:
1024 objects on 64 processors

No overdecomp (64 threads) 4988 sec
Overdecomp into 1024 threads 3713 sec
Load balancing (1024 threads) 3367 sec

Load Balancing for Large Machines: I

• Centralized balancers achieve best balance
– Collect object-communication graph on one

processor
– But won’t scale beyond tens of thousands of nodes

• Fully distributed load balancers
– Avoid bottleneck but… Achieve poor load balance
– Not adequately agile

• Hierarchical load balancers
– Careful control of what information goes up and

down the hierarchy can lead to fast, high-quality
balancers

• Need for a universal balancer that works for all
applications

8/2/2011 ASCR Exascale 26

Load Balancing for Large Machines: II

• Interconnection topology starts to matter again
– Was hidden due to wormhole routing etc.
– Latency variation is still small
– But bandwidth occupancy is a problem

• Topology aware load balancers
– Some general heuristic have shown good

performance
• But may require too much compute power

– Also, special-purpose heuristic work fine when
applicable

– Still, many open challenges

8/2/2011 ASCR Exascale 27

Dealing with Thermal Variation

• Some cores/chips might get too hot
– We want to avoid

• Running everyone at lower speed,
• Conservative (expensive) cooling

• Reduce frequency (DVFS) of the hot cores?
– Works fine for sequential computing
– In parallel:

• There are dependences/barriers
• Slowing one core down by 40% slows the whole

computation by 40%!
– Big loss when the #processors is large

8/2/2011 ASCR Exascale 28

Temperature-aware Load Balancing

• Reduce frequency if temperature is high
– Independently for each core or chip

• Migrate objects away from the slowed-down
processors
– Balance load using an existing strategy
– Strategies take speed of processors into account

• Recently implemented in experimental version
– SC 2011 paper

8/2/2011 ASCR Exascale 29

Benefits of Temperature Aware LB

Zoomed projection timeline for two iterations without temperature aware LB

Projections timeline without (top) and with (bottom) temperature aware LB

8/2/2011 ASCR Exascale 30

Other Power-related Optimizations
• Other optimizations are in progress:

– Staying within given energy budget, or power budget
• Selectively change frequencies so as to minimize impact

on finish time
– Reducing power consumed with low impact on finish

time
• Identify code segments (methods) with high miss-rates

– Using measurements (principle of persistence)
• Reduce frequencies for those,
• and balance load with that assumption

– Use critical paths analysis:
• Slow down methods not on critical paths
• Aggressive: migrate critical-path objects to faster cores

8/2/2011 ASCR Exascale 31

Scalable Fault tolerance

• Faults will be common at exascale
– Failstop, and soft failures are both important

• Checkpoint-restart will not scale
– Requires all nodes to roll back even when just

one fails
• Inefficient: computation and power

– As MTBF goes lower, it becomes infeasible

8/2/2011 ASCR Exascale 32

Message-Logging

• Basic Idea:
– Messages are stored by sender during execution
– Periodic checkpoints still maintained
– After a crash, reprocess “recent” messages to regain

state
• Does it help at exascale?

– Not really, or only a bit: Same time for recovery!
• With virtualization,

– work in one processor is divided across multiple
virtual processors; thus, restart can be parallelized

– Virtualization helps fault-free case as well

8/2/2011 ASCR Exascale 33

Message-Logging (cont.)
• Fast Parallel restart performance:

– Test: 7-point 3D-stencil in MPI, P=32, 2 ≤ VP ≤ 16
– Checkpoint taken every 30s, failure inserted at t=27s

8/2/2011 ASCR Exascale
34

34

35

Time

Progress

Pow
er

Normal
Checkpoint-Resart
method

8/2/2011 ASCR Exascale

Power consumption
is continuous

Progress is slowed
down with failures

36

Message logging +
Object-based
virtualization

8/2/2011 ASCR Exascale

Power consumption
is lower during
recovery

Progress is faster
with failures

Virtualization:
Pros, Cons, and Remedies

• We examined the “Pro”s so far.
• Cons and remedies:

– Memory in ghost layer increases
• Fuse local regions with compiler support
• Fetch one ghost layer at a time
• Hybridize (pthreads/openMP inside objects/DEBs)

– Less control over scheduling?
• i.e. too much asynchrony?
• But can be controlled in various ways by an observant RTS

– Too radical and new?
• Well, its working well for the past 10-15 years in multiple

applications, via Charm++ and AMPI
– Too old?

• What can I say. May be we can invent a new name

8/2/2011 ASCR Exascale 37

New Programming Models
• Simplify parallel programming, improve productivity
• Two broad themes:
• Frameworks

– Encapsulate common data-structure specific code
– Or domain specific code
– Avoids duplication/promotes reuse of expensive parallel

software
• Simpler but incomplete languages:

– Restricting modes of interactions among parallel entities
leads to simpler languages

– Each language may be incomplete but:
• Addresses important subclasses of algorithms
• Together with other models, lead to a complete toolkit

April 28th, 2010 8th Annual Charm++ Workshop 38

April 28th, 2010 8th Annual Charm++ Workshop 39

Interoperability allows faster evolution of programming models

Evolution doesn’t lead to a single winner species,
but to a stable and effective ecosystem.

Similarly, we will get to a collection of viable
programming models that co-exists well together.

Compiler Support

• Needed, but in a low-brow way
– Not for auto-parallelization

• A basic compiler infrastructure
– Easy to extend
– Allows code restructuring
– Supports syntax that improves productivity
– Basic, well-understood analyses

• E.g. live-variables analysis for checkpointing
– Inserting Control-points to provide knobs to RTS

• Rose?
8/2/2011 ASCR Exascale 40

Less-technical points

• Where are the youngsters??
– We have a big problem for the field if young

computer scientists are not joining this field
• Need for dialogue:

– friendly, no-holds-barred, and extensive
discussion among the 20 or so leading
researchers in the field

– Feasible now, because most of us are senior
(well) researchers, in no need for jockeying,
and facing the largest challenge of our times for
this field

8/2/2011 ASCR Exascale 41

Summary
• Do away with the notion of processors

– Adaptive Runtimes, enabled by migratable-
objects programming model (aka virtualization)

• Are necessary at exascale
• Need to become more intelligent and introspective
• Help manage accelerators, balance load, tolerate faults,

• Interoperability, concurrent composition
become even more important
– Supported by virtualization

• New programming models and frameworks
– Create an ecosystem/toolbox of programming

paradigms rather than one “super” language
– Avoid premature standardization

8/2/2011 ASCR Exascale 42

	Composable and modular Exascale Programming Models with intelligent runtime systems:�To Virtualize or Not?! �Of course, virtualize�
	Observations: exascale machines
	Application Segmentation
	Observations: Exascale applications
	Decomposition Challenges
	Processors vs “WUDU”s
	Different kinds of units
	Migratable objects programming model
	Empower Adaptive Runtime System
	Slide Number 10
	Utility for Multi-cores, Many-cores, Accelerators:
	Impact on communication
	Compositionality
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Decomposition Independent of numCores
	Load Balancing
	Slide Number 19
	A quick Example: �Weather Forecasting in BRAMS
	Basic Virtualzation of BRAMS
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Load Balancing for Large Machines: I
	Load Balancing for Large Machines: II
	Dealing with Thermal Variation
	Temperature-aware Load Balancing
	Slide Number 30
	Other Power-related Optimizations
	Scalable Fault tolerance
	Message-Logging
	Message-Logging (cont.)
	Slide Number 35
	Slide Number 36
	Virtualization:�Pros, Cons, and Remedies
	New Programming Models
	Slide Number 39
	Compiler Support
	Less-technical points
	Summary

