Composable and modular Exascale
Programming Models with intelligent
runtime systems:

To Virtualize or Not?!

Of course, virtualize

Laxmikant (Sanjay) Kale

http://charm.cs.illinois.edu
Parallel Programming Laboratory
Department of Computer Science
University of lllinois at Urbana Champaign

L LLINOTIS PARALLELTD

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PROGRAMMING LAB m

PT.OF COM ERSITY OF ILLINOIS

http://charm.cs.uiuc.edu/�

Observations: exascale machines

Just restating, with a bit of my take added
Many (1000+) cores in a “node”

Heterogeneous cores.

— specialization saves energy

— Possibly reconfigurable hardware
Main reason for accelerators:

— “cache” idea had outlived its utility

— So: explicit control over data movement
e Scratchpad memories a la Cell, GPGPU, ..

— Hardware context switches for tolerating latency
Communication challenges: variable speeds?

-PPL

uluc

Application Segmentation

« We may have to specialize architectures to classes
of applications

— Two dimensions: memory-per-core, bisection bandwidth

— Of the 4 quadrants formed, more than 1 are populated by
real apps, | think

— We can design *very* different machines for each class

 E.g. For many apps we may need to go to a machine design with
(say) no external DRAM. Use all the pins for communication.., and
say use a simple grid network.

« We need a serious study of applications
— Emphasizing exascale problem instances

— Use something like BigSim to do parametric studies to
quantify needs of application

uluc

Observations: Exascale applications

 Development of new models must be driven by
the needs of exascale applications
— Multi-resolution
— Multi-module (multi-physics)
— Dynamic/adaptive : to handle application variation
— Adapt to a volatile computational environment
— Exploit heterogeneous architecture

« So? Consequences:

— Must support automated resource management
— Must support interoperability and parallel composition

PPL

uluc

Decomposition Challenges

 Current method is to decompose to
processors

— But this has many problems

— deciding which processor does what work in
detail is difficult at large scale

« Decomposition should be independent of
number of processors

— Our design principle since early 1990’s
e (in Charm++ and AMPI)

-PPL

uluc

Processors vs “WUDU’’s

* Eliminate “processor’” from programmer’s
vocabulary

— Well, almost

e Decomposition into:
— Work-Units and Data Units (WUDUSs)
— Work-units: code, one or more data units
— Data-units: sections of arrays, meshes, ..

— Amalgams:
e Objects with associated work-units,
e Threads with own stack and heap

« Who does decomposition?
— Programmer, compiler, or both

PPL

uluc

Different kinds of units

e Migration units:

— objects, migratable threads (i.e. “processes”), data
sections

e DEBs: units of scheduling
— Dependent Execution Block

— Begins execution after one or more (potentially)
remote dependence is satisfied

e SEBs: units of analysis
— Sequential Execution Blocks
— A DEB is partitioned into one or more SEBs

— Has a “reasonably large” granularity, and uniformity
in code structure

— Loop nests, functions, ..

‘PPL

uluc

Migratable objects programming
model

« Names for this model:
— Overdecompostion approach
— Object-based overdecomposition
— Processor virtualization
— Migratable-objects programming model

\PPL

uluc

Empower Adaptive Runtime System

« Decomposing program into a large number
of WUDUs empowers the RTS, which can:

— Migrate WUDUs at will
— Schedule DEBS at will

— Instrument computation and communication at
the level of these logical units
« WUDU x communicates y bytes to WUDU z every iteration
« SEB A has a high cache miss ratio
— Maintain historical data to track changes in
application behavior
e E.g. to trigger load balancing

uluc

Over-decomposition and
message-driven
execution

Migratability

Introspective and
adaptive runtime system

Higher-level
abstractions Languages and Frameworks

Control Points

8/2/2011

Scalable Tools
Automatic overlap, pefetch,
compositionality

Emulation for
Perf Prediction

Fault Tolerance

Dynamic load balancing
(topology-aware, scalable)

Temperature/power
considerations

ASCR Exascale

1PPL

UI1uc

Utility for Multi-cores, Many-cores,
Accelerators:

e Objects connote and promote locality

« Message-driven execution

— A strong principle of prediction for data and code
use
— Much stronger than principle of locality
e Can use to scale memory wall:
» Prefetching of needed data:
— into scratch pad memories, for example

I

UI1uc

Impact on communication

 Current machines are over-engineered for
communication by necessity:
— Compute-communicate cycles in typical MPI apps
— So, the network is used for a fraction of time,
— and is on the critical path

« With overdecomposition (virtualization)

— Communication is spread over an iteration

— Also, adaptive overlap of communication and
computation

1@
uluc

Compositionality

e It is important to support parallel composition
— For multi-module, multi-physics, multi-paradigm
applications..
« What | mean by parallel composition

— B || C where B and C are independently developed
modules

— B is parallel module by itself, and so is C
— Programmers who wrote B were unaware of C

e This is not supported well by MPI

— Developers support it by breaking abstraction
boundaries

e E.g. wildcard recvs in module A to process messages for
module B

— Nor by OpenMP implementations : 1@

Without message-driven execution
(and virtualization), you get either:

Space-division

v

Time

1PPL

uluc

OR: Sequentialization

v

Time

11PPL

uluc

Parallel Composition: AT; (B || C); A2

‘O
>
D

Recall: Different modules, written in different
languages/paradigms, can overlap in time

and on processors, without programmer
having to worry about this explicitly

PPL

uluc

Decomposition Independent of numCores

 Rocket simulation example under traditional MPI
1 2 P

 With migratable-objects:

— Benefit: load balance, communication optimizations, modularity

%P_PL

uluc

Load Balancing

« Static
— Irregular applications
— Programmer shouldn’t have to figure out ideal
mapping
e Dynamic:
— Applications are increasingly using adaptive
strategies
— Abrupt refinements
— Continuous migration of work: e.g. particles in MD

« Challenges:

— Performance limited by most overloaded processor

— The chance that one processor is severely overloaded
gets higher as #processors increases

Migratable Objects Empower Automated Load Balancing!
1Fm

uluc

Principle of Persistence

Once the computation is expressed in terms of
its natural (migratable) objects

Computational loads and communication
patterns tend to persist, even in dynamic
computations

So, recent past is a good predictor of near
future

In spite of increase in irregularity and
adaptivity, this principle still applies at
exascale, and 1s our main friend.
PPL

uluc

A quick Example:
Weather Forecasting in BRAMS

e Brams: Brazillian weather code (based on RAMS)

« AMPI version (Eduardo Rodrigues, with Mendes
and J. Panetta)

EI: EI:I
- . -

_4 _ ' La 3-:. 3- 1

zFPPL

uluc

Basic Virtualzation of BRAMS

GraDS: COLA/IGES 2010-01-18-05:48 GraDS: COLA/IGES 2010-01-18-10:00

»PPL

uluc

Usage Percent %

100

Baseline: 64 objects on 64 processors

54

59

2@
uluc

Usage Percent %

100

Over-decomposition: 1024 objects on 64 processors:
Benefits from communication/computation overlap

2@
uluc

With Load Balancing:
1024 objects on 64 processors

100

o9
I
Kb
F0
65
60
55

No overdecomp (64 threads) 4988 sec

Usage Percent %
Ln

45
40 Overdecomp into 1024 threads 3713 sec
g Load balancing (1024 threads) 3367 sec
25
20
15
10

5

)

Avqg | O 14 19 24 29 34 30] 40 5 50

2@
uluc

Load Balancing for Large Machines: |

Centralized balancers achieve best balance

— Collect object-communication graph on one
processor

— But won’t scale beyond tens of thousands of nodes
Fully distributed load balancers

— Avoid bottleneck but... Achieve poor load balance
— Not adequately agile

Hierarchical load balancers

— Careful control of what information %oes up and
down the hierarchy can lead to fast, high-quality
balancers

Need for a universal balancer that works for all

applications

2@
uluc

Load Balancing for Large Machines: Il

* Interconnection topology starts to matter again
— Was hidden due to wormhole routing etc.
— Latency variation is still small
— But bandwidth occupancy is a problem

« Topology aware load balancers

— Some general heuristic have shown good
performance

e But may require too much compute power

— Also, special-purpose heuristic work fine when
applicable

— Still, many open challenges

2@
uluc

Dealing with Thermal Variation

« Some cores/chips might get too hot

— We want to avoid
 Running everyone at lower speed,
« Conservative (expensive) cooling

 Reduce frequency (DVFS) of the hot cores?
— Works fine for sequential computing

— In parallel:
 There are dependences/barriers

« Slowing one core down by 40% slows the whole
computation by 40%!

— Big loss when the #processors is large

Migratable Objects to the rescue!

i

PPL

uluc

Temperature-aware Load Balancing

 Reduce frequency if temperature is high
— Independently for each core or chip
* Migrate objects away from the slowed-down
Processors
— Balance load using an existing strategy
— Strategies take speed of processors into account
 Recently implemented in experimental version
— SC 2011 paper

»PPL

uluc

Benefits of Temperature Aware LB

I | I I I I I
14 TempLDB —— -
w/o0 TempLDB
1.35 —
(o)) B _
g 1.3
l.; 1.25 | —
GN) 23.3C
'(—E 1.2 —
= 21.1C
5 115 18.9C B
prd
1.1 16.6C —
L& 8.9%214.4C
1.05 | gl —
Phac
1 | | | | | | |
0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

Norma

Zoomed projection timeline for two iterations without temperature aware LB

PPL

uluc

Other Power-related Optimizations

e Other optimizations are in progress:

— Staying within given energy budget, or power budget

» Selectively change frequencies so as to minimize impact
on finish time

— Reducing power consumed with low impact on finish
time
 |ldentify code segments (methods) with high miss-rates
— Using measurements (principle of persistence)
« Reduce frequencies for those,
e and balance load with that assumption

— Use critical paths analysis:

* Slow down methods not on critical paths
e Aggressive: migrate critical-path objects to faster cores

S PPL

uluc

Scalable Fault tolerance

 Faults will be common at exascale
— Failstop, and soft failures are both important

 Checkpoint-restart will not scale

— Requires all nodes to roll back even when just
one fails
 Inefficient: computation and power

— As MTBF goes lower, it becomes infeasible

3@
uluc

Message-Logging

e Basic ldea:
— Messages are stored by sender during execution
— Periodic checkpoints still maintained

— After a crash, reprocess “recent” messages to regain
state

 Does it help at exascale?
— Not really, or only a bit: Same time for recovery!

e With virtualization,

— work in one processor is divided across multiple
virtual processors; thus, restart can be parallelized

— Virtualization helps fault-free case as well

3@
uluc

Message-Logging (cont.)

Fast Parallel restart performance:
— Test: 7-point 3D-stencil in MPI, P=32,2 < VP < 16
— Checkpoint taken every 30s, failure inserted at t=27s

27.5 4
251

W Re-execute

[l Redistibute the objects
B Recreate the objects
[l Retrieve the checkpoint
20 B Launching the new

1751 peee
5.
125.
10-
75
5_
o5]
0 . . .

Basic Fast-2 Fast-4 Fast-8 Fast-16

22.5 1

Time(s)

JPPL
34 vluc

19MOd

8/2/2011

ASCR Exascale

Power consumption
IS continuous

Normal
Checkpoint-Resart
method

Progress Is slowed
down with failures

PPL

UI1uc

_ Power consumption
IS lower during

recovery

Message logging +
/ Object-based

/ virtualization

Progress is faster
with failures

PPL

uluc

Virtualization:
Pros, Cons, and Remedies

e We examined the “Pro”s so far.

e Cons and remedies:

— Memory in ghost layer increases

e Fuse local regions with compiler support

* Fetch one ghost layer at a time

e Hybridize (pthreads/openMP inside objects/DEBs)
— Less control over scheduling?

e j.e. too much asynchrony?

e But can be controlled in various ways by an observant RTS
— Too radical and new?

o Well, its working well for the past 10-15 years in multiple
applications, via Charm++ and AMPI

— Too old?
« What can | say. May be we can invent a new name

+

PPL

uluc

New Programming Models

Simplify parallel programming, improve productivity
Two broad themes:

Frameworks

— Encapsulate common data-structure specific code

— Or domain specific code

— Avoids duplication/promotes reuse of expensive parallel
software

Simpler but incomplete languages:

— Restricting modes of interactions among parallel entities
leads to simpler languages

— Each language may be incomplete but:
e Addresses important subclasses of algorithms
 Together with other models, lead to a complete toolkit

3@
uluc

Interoperability allows faster evolution of programming models

Evolution doesn’t lead to a single winner species,
but to a stable and effective ecosystem.

Similarly, we will get to a collection of viable
programming models that co-exists well together.

PPL

uluc

Compiler Support

 Needed, but in a low-brow way
— Not for auto-parallelization

* A basic compiler infrastructure
— Easy to extend
— Allows code restructuring
— Supports syntax that improves productivity

— Basic, well-understood analyses
e E.g. live-variables analysis for checkpointing

— Inserting Control-points to provide knobs to RTS

e Rose?
4PPL
vruc

Less-technical points

« Where are the youngsters??

— We have a big problem for the field if young
computer scientists are not joining this field

* Need for dialogue:

— friendly, no-holds-barred, and extensive
discussion among the 20 or so leading
researchers in the field

— Feasible now, because most of us are senior
(well ©) researchers, in no need for jockeying,

and facing the largest challenge of our times for
this field

4@
uluc

Summary
Do away with the notion of processors

— Adaptive Runtimes, enabled by migratable-
objects programming model (aka virtualization)
e Are necessary at exascale
 Need to become more intelligent and introspective
 Help manage accelerators, balance load, tolerate faults,

* Interoperability, concurrent composition
become even more important

— Supported by virtualization
« New programming models and frameworks

— Create an ecosystem/toolbox of programming
paradigms rather than one “super” language

— Avoid premature standardization

4@
uluc

	Composable and modular Exascale Programming Models with intelligent runtime systems:�To Virtualize or Not?! �Of course, virtualize�
	Observations: exascale machines
	Application Segmentation
	Observations: Exascale applications
	Decomposition Challenges
	Processors vs “WUDU”s
	Different kinds of units
	Migratable objects programming model
	Empower Adaptive Runtime System
	Slide Number 10
	Utility for Multi-cores, Many-cores, Accelerators:
	Impact on communication
	Compositionality
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Decomposition Independent of numCores
	Load Balancing
	Slide Number 19
	A quick Example: �Weather Forecasting in BRAMS
	Basic Virtualzation of BRAMS
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Load Balancing for Large Machines: I
	Load Balancing for Large Machines: II
	Dealing with Thermal Variation
	Temperature-aware Load Balancing
	Slide Number 30
	Other Power-related Optimizations
	Scalable Fault tolerance
	Message-Logging
	Message-Logging (cont.)
	Slide Number 35
	Slide Number 36
	Virtualization:�Pros, Cons, and Remedies
	New Programming Models
	Slide Number 39
	Compiler Support
	Less-technical points
	Summary

