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Abstract— With the growing amount of parallelism available
on today’s multicore processors, achieving good performance
at scale is challenging. We approach this issue through an
alternative to traditional thread-based paradigms for writing
shared memory programs, namely message driven multicore pro-
gramming. We study a number of optimizations that improve the
efficiency of message driven programs on multicore architectures.
In particular, we focus on the following runtime system-enabled
optimizations: (i) grainsize control to effect a good concurrency-
overhead tradeoff, (ii) dynamic balancing of processor load,
(iii) low-overhead, asynchronous communication for lock-free
and message-driven execution and (iv) communication-reduction
through a novel chunked shared array abstraction. The practical
impact of these optimizations is quantified through a parallel
kd-tree construction program written in the message-driven
paradigm. A comparison of the optimized code with a state-of-
the-art parallel kd-tree construction program is also presented.

Index Terms—Multicore programming, Message driven exe-
cution, Performance tuning, High performance graphics, SAH-
based kd-tree construction

I. INTRODUCTION

A large majority of supercomputers today are arranged as
tightly coupled clusters of multicore processors. In addition,
most user-end computers are based on multicore processors.
To be able to exploit the full potential of these machines, ap-
plication developers must spend a significant amount of effort
tuning their applications for serial and multicore performance.

In this paper, we explore optimization techniques that are
valuable in the mold of message driven multicore program-
ming. Moreover, we note that all of these can be incorporated
into an adaptive parallel runtime system, leading to greater
modularity and reuse, and less effort on the part of the
programmer. We carry out our study in the context of an ap-
plication that is challenging to parallelize effectively. Surface-
area heuristic (SAH) based kd-tree construction exhibits a tree-
structured arrangement of parallelism, low intensity of floating
point operations, and extensive data movement, making it hard
to scale its performance with increasing processor counts.

We begin with a short discussion of programming on
multicore architectures using the asynchronous message driven
paradigm. Most of our experiments involve code written in
the CHARM++ language and runtime system. Therefore, we
provide a brief enumeration of the pertinent features of that

system as well. This is followed by a description of the sequen-
tial SAH-based kd-tree construction algorithm due to Wald and
Havran [23]. We then summarize the intuitive parallelization
of this algorithm as given by Choi et al. [4]. Next, we identify
elements of the kd-tree algorithm’s implementation that offer
opportunities for optimization in the asynchronous message-
driven paradigm provided by CHARM++. Whereas message-
driven execution (MDE) has seen notable application in the
realm of distributed memory machines, we study its utility on
shared-memory multicore systems. In particular, we study the
following MDE-enabled opportunities for parallel performance
optimization: grainsize control; dynamic load balancing and
lightweight, asynchronous message based communication in
place of collectives. In addition, we describe chunked arrays,
which reduce the amount of synchronization between cores up-
dating a shared array. Finally, the impact of these optimizations
is studied by comparing the performance of the CHARM++
kd-tree construction program with the best-known multicore
implementation to date [4].

II. MESSAGE DRIVEN PROGRAMMING FOR MULTICORES

The message driven execution (MDE) paradigm presents a
departure from the traditional message passing and thread-
based approaches to parallel programming. In a message
driven program, messages hold not only the data being com-
municated between parallel entities, but also the intended
recipient entity and the action to be performed on the data.
In this sense, entities are reactive and different actions can be
associated with the receipt of different types of message.

CHARM++ [14] is a parallel language and runtime system
based on the concept of MDE. Whereas other expressions
of the MDE paradigm exist (e.g. AM++ [25]), we consider
the explicitly coarse-grained nature of CHARM++ objects to
be well suited to the parallelization of the kd-tree algorithm
presented here. In CHARM++, parallel C++ objects called
chares encapsulate computation and exchange data with each
other through asynchronous messages. Sequential pieces of
computation are arranged in the form of entry methods.
An entry method is like a regular C++ method; only, it is
triggered by the receipt of a message from another chare, and
once triggered, runs to completion, i.e. it is non-preemptible.
This provision increases the level of reasoning that must be



applied to parallel programs from the ordering of individual
instructions accessing shared variables (as is the case with
thread-based programming) to ordering between messages.

Typically, CHARM++ applications leverage object-based
virtualization, wherein several chares exist on each processing
element (i.e. a thread, or a core). Chares may be created dy-
namically, and are distributed across the available processing
elements by the runtime system. The runtime system has sev-
eral load balancing strategies to balance dynamically generated
work. The experiments in this paper use the neighborhood
balancing technique, which is described in § V-B. The user is
not exposed to threads and low-level synchronization between
objects through mutex devices such as locks and fences.
Synchronization between chares is realized through the causal
dependencies that are embodied by entry method invocations
and message receipts. Moreover, in the multicore setting that
we experiment with, since chares exist in the same address
space, data can be transferred efficiently via pointer exchange.
This avoids the copying of data communicated between chares.

CHARM++ has been ported to most available distributed
memory and shared memory platforms. Recent work has
involved its tuning for multicore architectures and SMP
clusters [18]. That work involved the incorporation of such
techniques as CPU affinity to improve locality of memory ac-
cess, fine-grained critical sections, lock-free message queues,
and the use of thread-level storage to reduce false sharing
between cores. We do not discuss these in detail here, but
note that significant effort has already been invested in tuning
CHARM++ for multicore platforms.

III. BACKGROUND

In order to better appreciate the performance issues that
follow, we now touch upon the rudiments of tree-based scene
rendering and kd-tree construction.
Ray tracing. The approximate, discrete representation of any
physical surface may be obtained by triangulating it to the re-
quired degree of detail. This allows us to construct collections
of triangles as finite approximations of arbitrarily complex
graphical scenes. Although there are several methods available
to map the resulting three-dimensional representation onto a
two-dimensional image plane, the most extensible and flexible
one is ray tracing. Given a three-dimensional collection of
triangles, C, a number of light sources, a two-dimensional
image plane, P , and a point of view, V , the shade of each pixel
p in P is determined by computing a representative subset
of the rays of light that are incident on p. This is done by
projecting a ray of light from V to P and tracing its path
as it interacts with materials in the scene through phenomena
such as reflection, refraction, scattering and diffraction. These
phenomena may, in turn, cause the generation of more rays,
each of which may be traced through the scene.
Spatial hierarchy and kd-trees. While it can yield realistic
renditions of graphical scenes, the ray tracing algorithm is very
demanding in terms of the amount of computation it requires.
As described, the algorithm would calculate the intersection
of each projected (or generated) ray with every triangle in

C. However, the spatial layout of the scene can be exploited
in order to reduce the number of intersection calculations
required per traced ray. This observation prompted the use
of the kd-tree data structure to impose a spatial hierarchy
on C. Each node N of the tree has an associated three-
dimensional, axis-aligned bounding box BN , which encloses
all the triangles in N ⊂ C. If a ray intersects BN , its
children (both of which are enclosed by BN ) are checked
for intersection. This process continues recursively until the
leaves of the tree are reached, at which point all the triangles
enclosed by the leaf are tested for intersection with the ray.
This scheme can greatly reduce the cost of intersction, making
it proportional to leaf size and tree depth, which is expected
to be logarithmic in the number of the triangles in C.

Precise SAH-based kd-trees. As noted previously, each node
of a kd-tree encloses a number of triangles. Each triangle has
an extent along dimension d ∈ {X,Y, Z}, which is given
by the minimum and maximum coordinates along d of the
three vertices of the triangle. These maximum and minimum
coordinates along d are referred to as the d-events of the
triangle. Each event has an associated position, a type, which
is either START or END and a reference to the triangle whose
extent along d it marks. The union of the d-events of all
triangles enclosed within a node n is referred to as En(d),
the set of all d-events of n. Note that each e ∈ En(d) defines
a plane, to which the direction vector of d is normal. In the
following, we refer to an event interchangeably with the plane
that it defines.

The defining characteristic of a kd-tree is the rule used to
split a parent node into its two children. It has been shown that
the surface area heuristic (SAH) yields kd-trees that are well-
suited for rendering performance [4]. Whereas a discussion of
the heuristic itself is beyond the scope of this paper (the reader
will find a more thorough exploration of the subject in [9]),
we summarize it in the following. In order to find the (locally)
optimum partitioning plane for a node n, the SAH considers
the cost of traversing the tree rooted at n for every dimension d
and every prospective partitioning plane e ∈ En(d). Since the
tree beneath n cannot be obtained before the act of partitioning
itself, the expected traversal cost is estimated by assuming that
the two children obtained by splitting n at e are leaves. The
plane e for which this cost is minimized, is the one selected
as the partitioning plane.

Sequential kd-tree construction. The sequential algorithm
for kd-tree construction is outlined in Algorithm 1. It begins by
finding the best partitioning plane (FindBestPartition) among
all possible events for the node along each dimension. As
shown in the FindBestPartition procedure, the SAH assesses a
candidate partitioning plane by considering (i) the balance of
triangles between the two partitions that will be thus created
and (ii) the surface area of each partition. Two appropriately
set constants representing the cost of traversing a node (KT )
and the cost of performing an intersection calculation (KI )
between a triangle and a projected ray. If it is found that the
estimated traversal cost of the node is greater than the cost



of performing intersection calculations for all of its enclosed
triangles, the node is made a leaf. We refer to this test as the
SAH opening criterion.

Algorithm 1: Sequential kd-tree construction algorithm
BuildKdTree(E[·, ·], B)
Input: sorted events E[·, ·], bounding box B
Output: tree node n
begin

cs ←∞
for d ∈ {X,Y, Z} do

(c, p, i)← FindBestPartition(E[d, ·], B)
if c < cs then (cs, ps, is, ds)← (c, p, i, d)

end
if cs > KI × |E[ds, ·]| then

return new TreeNode(E[ds, ·], B);
end
MarkTriangles(E[ds, ·], I)
(EL[·, ·], ER[·, ·])← CopyEvents(E[·, ·], is, ds)
(BL, BR)← SplitBoundingBox(B, ps)
NL ← BuildKdTree(EL[·, ·], BL)
NR ← BuildKdTree(ER[·, ·], BR)
return new TreeNode(NL, NR)

end
FindBestPartition(E[·], B)
Input: sorted events E[·], bounding box B
Output: tree node n
begin

nL ← 0; nR ← |E[·]|/2; AB ← SA of B; cs ←∞
for e ∈ E[·] do

if e.type is END then nR ← nR − 1
let AL, AR be areas of partitions of B at e.pos
c← KT + KI(nLAL/AB + nRAR/AB)
if c < cs then (cs, ps, is)← (c, e.pos, i)
if e.type is START then nL ← nL + 1

end
return (cs, ps, is)

end
MarkTriangles(E[·], I)
Input: sorted events E[·], split index I
begin

N ← |E[·]|
for e ∈ E[0..I] do

if e.type is START then e.∆.left← 1
end
for e ∈ E[I..N − 1] do

if e.type is END then e.∆.right← 1
end

end
CopyEvents(E[·, ·])
Input: sorted events E[·, ·]
Output: sorted events for children, EL[·, ·], ER[·, ·]
begin

for d ∈ {X,Y, Z} do
EL[d, ·]← ∅;ER[d, ·]← ∅
for e ∈ E[d, ·] do

if e.∆.left then EL[d, ·]← EL[d, ·] ∪ {e}
if e.∆.right then ER[d, ·]← ER[d, ·] ∪ {e}

end
end

end

Once the best plane, p, is found and its associated dimen-
sion, d, recorded, the triangles are marked either as being to
the left or to the right (respectively, above or below, on the
near side or on the far side) of p along dimension d. This is
done in the MarkTriangles phase.

Next, the events of each triangle are copied either to
the left or to the right partition (or both, if the triangle
straddles p), depending on how the triangle was marked in

the previous phase. This phase of the partitioning is listed as
CopyEvents in the algorithm. The marking process allows us
to copy events associated with the marked triangles from a
parent partition to its children, while maintaining their sorted
order. This observation is crucial in achieving the algorithm’s
computational complexity of O(N lgN). Once the triangles
and events for the children partitions have been set up, the
procedure is invoked recursively on each child.

Parallelization. For our study, we adapted the parallelization
strategy detailed by Choi et al. [4] to CHARM++. The parti-
tioning of a node is coordinated by a dynamically created task
(chare). As is evident from Algorithm 1, the partitioning pro-
cess of a node n involves a series of data-parallel operations,
namely FindBestPartition, MarkTriangles and CopyEvents. To
accomplish each one of them, the coordinating process enlists
a collection of data-parallel tasks. As we will see in § V-B
this collection can be static, or dynamically created. The three
event arrays, which are the inputs to the data-parallel phases,
are divided evenly among these data-parallel worker tasks.

The FindBestPartition phase begins with a parallel scan
operation in which each worker contributes the number of
triangles to the left and to the right of the last prospective
partitioning plane in its portion of the event array. Once the
scan operation has finished, each worker can perform the
SAH based cost calculation for each event e ∈ En(d), where
d ∈ {X,Y, Z}. The event with the optimum partitioning cost
is selected as the partitioning plane for n if the SAH opening
critertion is satisfied.

Upon examining the MarkTriangles phase, we see that
the left and right flags of each triangle are set by at most
one worker. Therefore, this phase is easily parallelized. The
CopyEvents phase is similarly easy to parallelize. Note, how-
ever, that the workers perform concurrent writes into the left
and right children partitions’ event arrays. Therefore, prior to
copying its share of events, each worker must ascertain the
offsets into these shared arrays at which it can start writing.
This is achieved through a scan operation on the number of
events each of them will copy to the left and right partitions,
respectively. Once the copying of events is complete, the left
and right flags of the triangles must be reset. In the sequential
version of the algorithm, this would be accomplished by
simply resetting them as the copying of events proceeds.
However, for this scheme to work in the parallel algorithm, we
would have to perform synchronizations between otherwise
independent nodes in the tree. We solve this problem by
giving each node its own set of triangles to read and mark.
A new phase, CopyTriangles is introduced as intermediate to
MarkTriangles and CopyEvents. In this phase, triangles are
copied from the parent partition to the left and right children
as necessary. Furthermore, two indices are maintained for each
triangle, recording the new position of the copied triangle in
the left and right partitions, respectively. These are used during
CopyEvents so that the events in the children partitions refer
to triangles enclosed in those partitions, and not the parent.
Since the workers copy triangles into shared arrays, as before,



a scan operation must precede the CopyTriangles phase.

IV. EXPERIMENTAL SETUP

In the following sections, we describe the experiments
conducted to identify sources of inefficiency in the CHARM++
parallel kd-tree construction program. In tuning those aspects
of the performance where it is feasible to do so, we first outline
a motivating experiment, and follow it with tests studying the
impact of the optimization on executions with actual input
datasets. We use four standard datasets of varying size and
scene layout.

The first of these is also the smallest dataset, namely bunny,
consisting of about 67k triangles. The next is fairy, with about
170k triangles, angel, with 450k triangles and finally happy,
consisting of 1.1m triangles. Qualitatively speaking, fairy has
the most uniform scene layout of the four inputs. In the
experiments that follow, the constructed tree was restricted to 8
levels of depth. We consider performance results from deeper
trees in § VI. In each case, the results of tree construction were
verified for correctness by comparing the output with that of
the kd-tree construction program of Choi et al. [4].

We conducted our experiments on a shared memory ma-
chine comprising 4 sockets with 10 Intel Xeon E7-4860
cores each. The cores were clocked at 2.27 GHz. Although
the cores support SMT, we did not use them in this ca-
pacity; a study of the impact of SMT on memory-intensive
algorithms is beyond the scope of this paper. The system
has ample memory–a total of 132 GB of RAM shared
between 40 cores, and in keeping with the Nehalem ar-
chitecture, four memory channels per socket, with a QPI-
based network connecting the sockets to each module of
memory. We used the gcc compiler suite for our experiments,
compiling code with the flags -O3 -funroll-loops
-fomit-frame-pointer in all cases.

V. PERFORMANCE OPTIMIZATIONS

The CHARM++ adaptive runtime system enables the op-
timization of an executing parallel program along several
dimensions. The inter-related techniques we describe here have
seen wide application in the realm of distributed memory
programs running on thousands of SMP nodes. Here, we show
how their use in the context of shared memory programs can
improve parallel efficiency on multicore processors.

A. Static grain size control

The algorithm used for kd-tree construction in this paper
exhibits both task- and data-parallelism. The construction
of subtrees rooted at nodes that do not share an ancestor-
successor relationship can be performed concurrently. This
fact is exploited by dynamically spawning node tasks, each of
which coordinates the partitioning of a node of the tree. One
must consider the tradeoff inherent in this strategy of dynamic
task creation: on the one hand, the generation of a large
number fine-grained tasks exposes more parallelism than a
small number of coarse-grained tasks; on the other, there is less
runtime overhead in dynamically creating a smaller number

of tasks. This tradeoff is embodied in the choice of grainsize:
one must select a value for this parameter that creates ample
parallel work (i.e. node tasks), while allowing the associated
overheads of parallelization to be amortized over sequential
tasks of reasonable duration.
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Fig. 1. Variation of tree construction time with grain size, as measured by
the inverse of the number of node tasks.

Figure 1 illustrates this tradeoff for the largest of the input
datasets, happy. The different curves in this figure represent
the tree construction time on different core counts. Notice
that the valleys of the curves shift progressively to the right,
indicating that as more cores become available for execution,
the overheads of a finer decomposition are compensated for
by the reduction in total idle time across all processors.
Whereas at 2 cores the best execution time is achieved with 3
coarse-grained tasks, that at 16 cores is attained with 250-500
medium-grained tasks. Recall that in our experiments the tree
is no more than 8 levels deep, so that there can be a maximum
of 511 node tasks in all. If we were to allow trees of greater
depth, we would notice that finer dynamic decompositions
of the work would lead to greater parallel overhead, and
consequently, poorer performance. The red curve for 2 cores
also shows that the cost of dynamic task creation can, indeed,
be significant, especially at low core counts. Also notice that
the yellow and green curves appear to flatten at high task
counts. This observation indicates that parallel overhead is less
of an issue at higher core counts.

Cores Avg./Min. Max./Min.

2 1.23 1.37
4 1.08 1.24
8 1.12 1.35
16 1.16 1.45

TABLE I
AVERAGE-CASE AND BEST-CASE SPEEDUPS OBTAINED BY STATIC

GRAINSIZE DETERMINATION.

Table I quantifies the importance of grainsize control with
an increase in core count. The table shows two figures for each
core count. The first of these gives us an idea of the average
improvement that can be expected by picking the appropriate
grainsize for an execution. On average, the program would be
8-16% slower if static grainsize control were not employed.
The second column reflects the worst case in performance
slowdown–the program can be anywhere from 24-45% slower



if a bad grainsize is selected. In this context, auto-tuning
techniques (e.g. [6]) are of great relevance, especially if the
tree construction procedure is repeated several times.

B. Dynamic load balancing for data parallel tasks

In the previous subsection, we discussed the relevance of
static grainsize control for node tasks, which embody the task-
level parallelism inherent in the kd-tree construction algorithm.
Now, we focus on the dynamic generation of data-parallel,
worker tasks, and the dynamic load balancing that must be
performed in assigning these tasks to cores.

As noted in § III, the task of splitting a parent node into its
children is composed of three phases, each of which exhibits
a data-parallel structure.

However, there is a great deal of imbalance in the work
required to partition different nodes. We observed that the
number of triangles enclosed within a node varies non-
monotonically with the level (inter-level variation). Moreover,
there is a variation of up to 10 times in the number of
enclosed triangles between nodes of the same level (intra-level
variation). These effects contribute to imbalance of work when
triangles and events are distributed among workers.

In order to balance the worker tasks across processor
cores, we first formulated a static balancing technique. In
this scheme, indexed collections of worker tasks are created
a priori and reused by different nodes in order to perform
data-parallel partitioning work. Collections of several sizes
are created, so that nodes with different numbers of enclosed
triangles may enlist an appropriate number of data-parallel
tasks. For instance, with 32 processing cores, there may be
1 collection of size 32 (call this task collection T32,0), 2 of
size 16 (T16,0 and T16,1), 4 of size 8 (T8,0, T8,1, T8,2 and
T8,3), etc. These collections are spread across cores so that
node tasks with similar amounts of data-parallel work may
be partitioned in parallel. Continuing with the example, T32,0

is spread across all 32 cores; T16,0 and T16,1 are distributed
over cores 0-15 and 16-31, respectively; T8,0, T8,1, T8,2 and
T8,3 over cores 0-7, 8-15, 16-23 and 24-31, respectively, etc.
A node task on processor core p that requires a task collection
of size m to perform its data-parallel work, enlists collection
Tm,p/m for this purpose. This helps to balance the data parallel
work across all the cores. To further reduce contention among
node tasks for collections, we replicate the collections. Node
tasks then employ a randomly chosen replica from the pool of
collections of a particular size. We found that these provisions
coped quite well with the load imbalance engendered by inter-
level variation of triangle counts. However, collections tend
to interfere with the execution of each other, since smaller
collections share their processor cores with larger ones. For
instance, it may happen that the execution of one phase of
T16,0 gets delayed by the execution of another phase of T8,0. If
T16,0 were partitioning a shallower node than T8,0, this would
delay the critical path of execution, slowing down the entire
construction procedure.

To overcome this interference, we switched to a more
dynamic assignment of data-parallel work to cores. Instead

of using statically created task collections, node tasks dynam-
ically create data-parallel worker tasks. The particular strategy
for assignment of these tasks to cores depends on the number
of data-parallel tasks created. If this number is larger than the
total number of cores, the tasks are spread evenly across all
cores. Otherwise, they are enqueued for execution on the local
core. Periodically, processors that have little or no work poll
their neighbors (as decided by a virtual processor topology) for
data-parallel tasks, so that work is balanced across the entire
set of processors.
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Fig. 2. Speedup obtained by using dynamic load balancing instead of a static
scheme for the assignment of data-parallel tasks to cores.

Figure 2 shows the resulting improvement in performance
by switching to the dynamic load balancing scheme. Whereas
the fairy dataset shows significant benefits across the entire
range of processor counts, angel and happy show an improve-
ment in performance of less than 20%. Moreover, for the
smallest of the datasets, bunny, the gains in performance due to
improved load balance are more than offset by the overheads
associated with dynamic creation of data-parallel tasks.

C. Lightweight fork-join synchronization

The parallelization of the kd-tree construction algorithm
studied in this paper makes heavy use of the fork-join
paradigm. A coordinating node task forks a number of worker
tasks to perform a certain function, and control is eventually
returned to the coordinator. This requires frequent synchro-
nization between tasks through barriers and multicasts, which
initiate the different data-parallel phases (SAH calculation,
triangle and event copying) related to node partitioning. In
the CHARM++ system, these modes of synchronization are
provided through section reductions and section multicasts.
However, in our initial implementations of the CHARM++-
based kd-tree construction algorithm, we found that there
were significant overheads associated with the use of these
communication primitives. The reason for these overheads is
as follows. As mentioned previously, the CHARM++ runtime
system supports object-based virtualization, wherein several
objects embodying computation are hosted on each available
processor core. Having been designed for distributed mem-
ory systems where inter-processor messaging is expensive,
CHARM++ reductions consist of two phases. In the first phase,
all participating objects on a core make their contributions to
a core-level reduction manager. This is followed by a second,
spanning-tree based reduction phase over all the cores in the



system. Multicasts follow this pattern in reverse: a multicast
involving all cores is performed first, followed by message
delivery to all addressed objects on a core.
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Figure 3 quantifies the overheads associated with the use of
these two-level schemes through a small benchmark program.
This benchmark repeatedly performs a multicast followed
by a reduction-based barrier. Since we were interested in
the latency of these operations rather than the bandwidth
achieved, small messages were used in the operations. The
red curve in Figure 3 shows that the cost of using this two-
level synchronization scheme grows rapidly with the number
of cores used. As a point of comparison, we also implemented
a simpler one-level scheme based on the use of point-to-point
messages between the forked objects and the forking object. Its
performance is depicted by the orange curve. For small core
counts, the point-to-point scheme outperforms the two-level
scheme significantly. However, the overheads of allocating
and transmitting individual messages eventually degrade its
performance.

In order to improve the communication efficiency of the
runtime system for multicore systems, we wrote a lightweight
synchronization module. This module provides basic section
multicast and section reduction primitives through binomial
tree based messaging between objects. The reduction manager
of CHARM++ is not involved. This approach combines the
benefits of one-level point-to-point synchronization with the
efficiency of spanning tree based primitives. The performance
of the binomial tree based synchronization primitives on the
multicast-barrier benchmark is presented by the green curve in
Figure 3. Although the point-to-point scheme is slightly more
efficient than the binomial tree at small core counts, there are
significant benefits in the use of the latter at larger core counts.

Figure 4 shows the increase in parallel efficiency of the kd-
tree construction program through the use of this lightweight,
binomial tree based synchronization module. The y axis plots
the speedup obtained by using the binomial tree module for
fork-join communication instead of the default CHARM++
primitives. All four input datasets show significant improve-
ments in performance, the fairy dataset being the greatest ben-
eficiary of this optimization, with a maximum speedup of over
3 on 16 cores. Even though these gains are significant, they are
not as marked as the improvements in the performance of the
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much simpler benchmark because (i) synchronization accounts
for a much smaller portion of the parallel execution and (ii)
the CHARM++ runtime adaptively overlaps the communication
latency with useful computation.

D. Parallel scans for multicore

The parallel scan operation is another frequently used
communication primitive in the kd-tree construction algorithm.
Whereas a recursive doubling (RD) scheme would be more
appropriate in a disributed memory setting with high com-
munication startup overheads, as Choi et al. [4] note, in a
multicore setting it is more efficient to use a prescan-push
(PP) technique. Given a data array of n elements and p tasks,
in the prescan phase, each task sums n/p elements in parallel,
thereby computing its contribution to the scan result. This is
followed by a push, in which a barrier transfers control to a
single task, on which the p contributions are summed to obtain
the final scan result.
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Fig. 5. A comparison of prescan-push (PP) and recursive doubling (RD) as
parallel scan algorithms for multicore processors.

Figure 5 shows the relative performance of the two ap-
proaches. The y axis plots the ratio of time taken by RD to
that taken by PP for a number of core counts and different
amounts of sequential computation. As can be seen, the
relative advantage of using the prescan-push technique is quite
marked at low processor counts when there is little sequential
work to be done in the prescan phase. However, as the amount
of prescan work grows in comparison to the communication
time, the difference between the algorithms is less evident.
Furthermore, with an increase in the number of processor



cores, the difference in performance of the two algorithms
diminishes. Therefore, we use the recursive doubling approach
in the SAH phase of the shallower nodes of the tree, and the
prescan-push algorithm for SAH computation in the deeper
levels of the tree. The prescan-push approach is also used in
the offset calculation scans for triangle and event copying.

However, given the limited impact of this optimization, and
the fact that the number of parallel scan operations performed
can be reduced significantly (§ V-E), we do not include a
discussion of the improvements in application performance
that it yields.

E. Chunked arrays

As mentioned in § III the parallel scan operation features
in the algorithm in three contexts: (i) to obtain the number of
triangles to the left and right of each event when calculating
SAH values for prospective splitting planes, (ii) in order to
obtain the write offsets of each worker involved in the data-
parallel copying of triangles from the parent partition to its
children and (iii) similarly to (ii), in order to determine write
offsets for each task while copying events from parent to chil-
dren partitions. Note that the scans in (ii) and (iii) are required
only as a coordination mechanism between concurrent tasks,
so that they may perform coherent writes to a shared array.
Instead, if each task were to write to an independent buffer,
and the collection of buffers thus obtained were addressable in
a manner similar to a regular C++ array, we wouldn’t require
these coordination phases at all.

This is the primary motivation behind the chunked array
abstraction. A chunked array is similar to a regular C++
array in that it holds a collection of values of a certain type.
However, unlike an array, which is laid out as a contiguous
run of bytes in memory, a chunked array consists of several
chunks of memory, each chunk a contiguous C++ array in
itself. Therefore, each element in a chunked array has two
indices: a local one that describes its position within its chunk,
and a global one, that identifies it uniquely among all elements
(including those in other chunks) held in the chunked array.

Consider the utility of chunked arrays in the kd-tree con-
struction algorithm, specifically in the copying of triangles
(cf. (ii) above) from parent to children partitions. In the
MarkTriangles phase each triangle is marked as belonging to
the left or right (or both) partition(s). If we were to use C++
arrays to hold triangles workers would be involved in scan
operations to determine starting write offsets (§ III). However,
using chunked arrays, once each task has determined its contri-
bution to the left and right triangle partitions, it would simply
allocate two chunks, fill them with the appropriate triangles
and add these chunks to the left and right partitions’ chunked
arrays, respectively. This approach completely avoids the use
of parallel scans for coordination. There is another benefit to
the use of chunked arrays, that of avoiding false sharing and
in generally reducing the amount of cache coherence traffic.
However, we do not explore this advantage here.

Although chunked arrays save the application the communi-
cation cost of performing scan operations, there are overheads

associated with their use. First, whereas with a regular C++
array only a single malloc is required to allocate a shared
buffer, chunked arrays require as many chunks as there are
tasks. However, in our experiments, good OS-level memory
allocators meant that these did not account for a significant
penalty to performance. The second, and more significant
source of overhead, is the cost of addressing individual el-
ements in the chunked array through a global index.
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Fig. 6. Comparison of element access latency for regular C++ arrays and
chunked arrays.

Figure 6 compares the cost of accessing elements stored in a
chunked array (CA) relative to that of accessing elements in a
regular C++ array (RA). Two modes of access, namely random
and sequential access, are studied. In all experiments, the
total number of elements was kept constant. Therefore, as the
number of chunks increases along the x axis, the size of each
chunk decreases. A chunked array exposes a square bracket
operator [], providing the array-access notation familiar to
C++ programmers. However, as the red curve in Figure 6
shows, random access of elements through this operator can
be expensive. The operator invocation costs aside, the identi-
fication of elements using a global index requires the traversal
of a tree structure internal to the chunked array. Therefore, the
access of a single element actually involves several metadata
accesses, the cost of which grows with the number of chunks.
This eventually creates a gap in performance of over 5 times
between regular and chunked arrays. We note that these costs
could possibly be reduced by maintaining a b-tree or a hash
table, instead of a binary comparison tree as we do.

Fortunately, however, the kd-tree construction program and
many other parallel applications exhibit a linear memory
access pattern. The orange curve in Figure 6 shows the relative
cost of using the [] operator to access sequential elements
spread across several chunks. While less expensive than ran-
dom accesses, the notational convenience to the programmer
incurs significant runtime overhead–the average access time
using the operator is up to 3.1 times that of a regular C++
array. However, chunked arrays allow a more efficient way to
access sequential elements, namely through iterators. As the
name suggests, these are used in a manner similar to STL
iterators. Moreover, as shown by the green curve in the figure,
their use incurs little overhead. In this manner, chunked arrays
allow programs to avoid synchronization between tasks during
shared array updates, while adding little sequential overhead.

In order to quantify the gains in performance due to this
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Fig. 7. Use of chunked arrays reduces synchronization costs. The y axis
plots the ratio of update time of a regular array to that of a chunked array.

communication avoidance, we conducted an experiment that
compared the time taken to update, in parallel, a large array
that is shared between tasks, with the time taken to update
a similarly sized chunked array. Figure 7 shows the benefit
of avoiding the scan operation during the update. As shown
by the red and yellow curves, the benefits are especially
prominent when there is relatively little sequential updating
to do. As expected, this performance advantage dwindles as
the amount of sequential work begins to dominate. In fact, for
a large enough sequential update, the overheads of chunked
array use are quite significant on small numbers of cores.

Of course, it would be unreasonable to expect similarly
marked improvements in the performance of the actual ap-
plication itself. The reasons for this are similar to those given
in § V-C. However, in order to quantify the importance of
communication-avoidance, we compared the performance of
two versions of the kd-tree construction code, the first of
which used regular C++ arrays together with the scan-based
synchronization between tasks, and the second one, chunked
arrays.
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Fig. 8. Speedup obtained by using chunked arrays in the CHARM++ kd-
tree construction program. On small core counts, it is not feasible to use the
chunked array abstraction. However, on large core counts, its use mitigates
the amount of synchronization required between cores.

The ratio of time taken by the former to that taken by
the latter is shown in Figure 8. As we had observed with
the performance of the benchmark, for small numbers of
cores, we see a slight performance penalty associated with
the use of chunked arrays. However, the abstraction is more
valuable as the number of cores is scaled up. For the two
largest input datasets, we see an improvement of about 80%
is application performance. The results are less spectacular

with the fairy dataset, which showed an improvement of 40%
in total construction time. Performance was actually hampered
by chunked array use in the smallest of the datasets, bunny.

VI. RESULTS

In this section we briefly examine the overall impact of the
optimizations discussed in § V. As a point of comparison we
use the ParKD kd-tree construction program of Choi et al. [4].
ParKD is based on Intel’s Threaded Building Blocks [19]
framework, and, to the best of our knowledge, provides the
best-known speedups on multicore platforms. We used the
experimental setup described in § IV for both the CHARM++
kd-tree construction program and ParKD. We only used the
actual tree construction time to compare the two codes. The
I/O, initialization and sorting times were not considered.
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Fig. 9. A comparison of absolute speedups obtained by the CHARM++ and
ParKD codes for (a) 8-level trees and (b) 15-level trees. The baseline for these
speedups was the uniprocessor execution time of the CHARM++ code. Solid
lines show speedups obtained with the CHARM++ code, and dashed ones,
those with ParKD.

Figure 9 shows absolute speedups obtained for the two
codes in constructing trees of depth 8 and 15. The speedups are
calculated relative to the serial performance of the CHARM++
kd-tree code, which is faster than the sequential baseline of [4],
and is therefore an appropriate comparison point for speedups.
The solid lines show the scaling profile of the CHARM++ code,
and the dashed ones, that of ParKD. Both codes demonstrate
relatively poor overall scaling when constructing the shallower,
8-level trees (Figure 9(a)). However, the speedups become
more appreciable with larger datasets–as the parallel overhead
is amortized over more sequential work, we obtain better effi-
ciency. CHARM++ code attains a maximum speedup of almost
6 on 32 cores for the happy dataset. By raising the number of
levels in the tree to 15, we allow for a maximum of about 32k
nodes to be constructed, thereby increasing the total amount
of work significantly. As seen in Figure 9(b), this increase
in work improves the performance of the CHARM++ code,
allowing it to achieve a speedup of 10 times on 32 cores for the
happy dataset. Performance analysis for this dataset identified
communication overhead and limited memory bandwidth as
the major impediments to better scalability. The performance
of ParKD does not scale to 32 cores on any of the inputs



for the construction of 15-deep trees. Next we compare the
relative performance of the two codes.

Max. depth 8 Max. depth 15
Cores bunny fairy angel happy bunny fairy angel happy

1 2.1 1.9 1.9 2.0 2.2 1.6 1.7 2.0
2 1.9 1.9 1.8 1.5 2.0 1.8 1.7 2.0
4 1.7 2.0 1.5 1.4 2.3 1.8 1.8 2.2
8 1.5 1.9 1.5 1.4 1.9 2.0 1.8 1.8
16 1.4 2.0 1.4 1.4 2.0 2.0 1.8 1.9
32 1.3 1.5 1.3 1.4 3.1 2.2 3.1 2.7

TABLE II
SPEED OF CHARM++ CODE RELATIVE TO PARKD. LISTED ARE THE

RATIOS OF TIME TAKEN BY THE CHARM++ CODE TO THAT TAKEN BY
PARKD FOR VARIOUS CORE COUNTS.

Table II shows the ratio of time taken by ParKD to construct
a kd-tree to that taken by the CHARM++ code, for various
input datasets and core counts. We term this ratio relative
gain. Comparing the relative gains for trees of depth 8 first,
we note that the gains of about 2 at lower core counts are
significant. We believe that this difference on 1 and 2 cores is
the result of better sequential performance and better grainsize
management in the CHARM++ code. For bunny, the relative
gain falls with the number of cores, since the small size of
the problem makes it hard to scale either code. Even at 32
cores, however, the CHARM++ code is 1.3 times as fast as
ParKD. The relative gain is greatest with the more uniform
fairy dataset. With this dataset, the CHARM++ code is nearly
2 times as fast on upto 16 cores. Although the gain falls at 32
cores, it is still respectable, at 60%. The angel dataset shows
a similar profile to the bunny dataset, even though it is much
larger in size. We did not investigate the reasons for this.
Finally, for the largest of the inputs, happy, the CHARM++
code shows a consistent relative gain of about 40% over ParKD
for 2 through 32 cores.

The second set of columns in Table II shows relative gain for
the construction of trees of depth 15. The results indicate that
as the amount of work to be done is increased, the CHARM++
code shows more consistent gains. For this depth of tree, the
CHARM++ code is 1.5-2.0 times as fast through 16 cores.
At 32 cores, the performance of the ParKD code falls quite
significantly, leading to a ParKD to CHARM++ ratio of nearly
3 times.

VII. RELATED WORK

We discuss related work in two parts, the first of which
presents a brief literature survey of shared memory program-
ming and performance tuning for multicore systems. Tradi-
tional languages and frameworks for programming multicore
systems either provide very low-level constructs, or a perfor-
mance model that is not well-matched with the underlying
hardware. For instance, with pthreads [11] programmers must
write code in terms of interleaved streams of instructions per-
forming concurrent memory accesses. The productivity issues
of this aside, the concomitant use of locks can be a hazard for
performance as well. Interest in user-level threads has recently

been revived with work on QThreads [24]. OpenMP [5]
provides a notionally simpler way of specifying implicitly
data parallel operations in the form of for loops whose
iterations can be spread over the available set of processors.
This programming model, however, obscures key elements
of machine performance, such as the caching of data. More
recently OpenMP has acquired primitives to specify task-
parallel operations as well. Task-based fork-join parallelism
is made simpler with Cilk [2] and Intel’s Threaded Building
Blocks [19]. However, with Cilk, communication between
tasks is implicit and cannot be expressed by the programmer.
Similarly, using TBB, the programmer is constrained by the
range of parallel constructs provided therein. As shown in
§ V-C, not having explicit control over communication can
hinder application performance. In the same vein as this paper,
researchers have previously conducted studies of application
architecture and optimization for multicore systems [3].

Bentley [1] and Friedman et al. [7] did some of the earliest
work on kd-trees for distance-based searches and linear-
time matching algorithms. Median-based construction, which
involves the partitioning of prospective nodes along their me-
dians, is a well studied problem. Zhou et al. [26] have provided
a fast algorithm for the construction of such trees. The surface
area heuristic for partitioning kd-tree nodes is known to
improve scene rendering time, and has been studied by several
researchers [8], [17]. The sequential algorithm that forms the
basis of the CHARM++ kd-tree construction program and
ParKD, is due to Wald and Havran [23]. The complexities
of ray tracing and kd-tree construction are also discussed in
great depth in Havran’s doctoral thesis [9]. Work has been
done to speed up the evaluation of node partitioning heuristics
for kd-trees, while maintaining the quality of these partitions.
Shevtsov et al. [20] discuss an approximation to the SAH in
their work. Several parallel implementations of SAH-based kd-
tree construction programs also exist. In particular, the work
of Choi et al. [4] has been key in the exploration of new par-
allelizations of the kd-tree construction algorithm. In addition
to providing the basis for the kd-tree construction algorithm
used here, they also provide a so-called in-place algorithm
that reduces the amount of data movement. Researchers in the
graphics community have studied alternatives to the kd-tree for
hierarchical representations of scenes. Lauterbach et al. [16]
and Wald [21] provide fast parallel implementations for BVH
construction. Wald [22] also gives efficient implementations of
BVH construction on the recently released MIC architecture.
Hou et al. [10] discuss the generation of BVHs and kd-trees on
GPUs, and Kalojanov et al. [15] and Ize et al. [13] use grids to
accelerate ray tracing. In addition, researchers have looked at
using the hardware parallelism available in multicore systems
in a different way–Ize et al. [12] provide an “asynchronous”
algorithm that conducts tree construction and ray tracing in
parallel for deformable scenes.

VIII. CONCLUSION AND FUTURE WORK

In this paper we explored several techniques for the opti-
mization of multicore MDE programs. We studied the ben-



efits of these techniques in the context of a parallel kd-tree
construction program written in CHARM++. The parallelism
inherent in the kd-tree algorithm has a hierarchical layout,
so that each node can be constructed by an independent
task. Moreover, the partitioning of a node involves medium-
grained data-parallel work that is memory intensive, with
few floating point operations to keep CPUs occupied. These
are characteristics that kd-tree construction shares with many
other parallel applications, so that the results presented herein
have more general appeal. We showed that multicore MDE
performance can be improved through static grainsize control,
load balancing of dynamically created data-parallel tasks,
the provision of efficient communication primitives suited to
multicore systems, and the use of abstractions such as the
chunked array to reduce synchronization between cores. Note
that these optimizations apply equally well in the distributed
memory world.

Finally, in order to see the cumulative impact of these op-
timizations, we compared the performance of the CHARM++
code to that of ParKD, which is a parallel kd-tree construction
program based on Intel’s TBB framework. We demonstrated
significant improvements in performance over a range of input
datasets and processor cores. We observed that as the depth of
the constructed trees was increased, thereby leading to more
parallel work, these improvements gained in magnitude and
became more consistent. The CHARM++ version was 1.5-2.5
times as fast as ParKD for such trees.

Future work will explore the multicore MDE paradigm
in the context of other applications. While the performance
benefits of using MDE have been studied, we would also like
to examine the improvements in programmer productivity that
this paradigm engenders. More generally, we would like to
see what abstractions would enable the portability of multi-
core MDE programs across shared- and distributed-memory
machines.
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