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Abstract—Computing systems will grow significantly larger
in the near future to satisfy the needs of computational scien-
tists in areas like climate modeling, biophysics and cosmology.
Supercomputers being installed in the next few years will
comprise millions of cores, hundreds of thousands of processor
chips and millions of physical components. However, it is
expected that failures become more prevalent in those machines
to the point where 10% of an Exascale system will be wasted
just recovering from failures. Further, with such large numbers
of cores, fine-grained and dynamic load balance will become
increasingly critical for maintaining good system utilization.
This paper addresses both fault tolerance and load balancing
by presenting a novel extension of traditional message logging
protocols based on team checkpointing.

Message logging makes it possible to recover from localized
failures by rolling back just the failed processing elements.
Since this comes at a high memory overhead from logging all
communication, we reduce this cost by organizing processing
elements into teams and only logging messages between teams.
Further, we show how to dynamically partition the applica-
tion into teams to simultaneously minimize the cost of fault
tolerance and to balance application load. We experimentally
show that this scheme has low overhead and can dramatically
reduce the memory cost of message logging.

Keywords-load balancing, causal message logging, fault tol-
erance.

I. INTRODUCTION

To satisfy the needs of computational scientists for com-
puting power, future computing systems will grow signif-
icantly larger and more complex. At the same time, those
machines will be more likely to fail. Today’s systems are
already known to be vulnerable to system faults. For in-
stance, a study of failures in large systems at the Los Alamos
National Laboratory (LANL) found that they failed at a
rate of 0.2-0.5 failures/year/processor chip [1]. Further, the
108K-node BlueGene/L at the Lawrence Livermore National
Laboratory (LLNL) suffers one L1-cache bit flip every 4-
6 hours and the ASCI Q machine experienced 26.1 cache
errors per week [2]. At Exascale, according to the most
optimistic projections, the probability that some component
will fail will grow so high that 10% of an Exascale system’s
time will be wasted just recovering from failures [3].

Furthermore, as scientists scale their applications to bigger
machines, they will face a set of new challenges due
to the unique architecture of these supercomputers. Their
algorithms will become more sophisticated as they try to
incorporate more considerations. For example, adaptive re-
finements to match the physical space of a simulation may
create uneven computation distribution. This will make more
complex the task of anticipating the performance character-
istics for different scenarios. One inevitable consequence is
that programs may exhibit load imbalance for most of the
inputs. Some contexts are more susceptible to suffer load
imbalance: weather forecast [4], molecular dynamics [5]
and cosmology [6]. For all these fields, a smart runtime
system working with migratable threads may provide the
ideal solution to obtain good load balance and monitor the
application to rebalance the load whenever an imbalance
occurs again.

This paper examines the design of scalable rollback-
recovery protocols for tolerating the effects of component
failures. Since global checkpointing requires all processors
to roll back when just one of them fails, it will become in-
creasingly more wasteful as the mean time between failures
approaches the time to write or read a checkpoint. As such,
we focus on message logging protocols that allow one task
to recover while others are free to continue their execution.
Although traditional message logging protocols must store
all application communication, this paper shows how to
significantly reduce the storage overhead by partitioning
the application tasks into teams and logging only messages
between teams. Further, we present an efficient and effective
team partitioning algorithm and show that in frameworks that
support migratable threads it is possible to combine team
partitioning with load balancing.

The paper is organized as follows. Section II describes
rollback-recovery strategies and Section III introduces the
optimized message logging protocol. Section IV shows how
to partition processing elements into teams and combine
this with traditional load balancing. This approach is exper-
imentally evaluated in Section V. Section VI connects our
approach to related work. Section VII concludes the paper.
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Figure 1: Operation of rollback-recovery protocols.

II. ROLLBACK-RECOVERY

A. System Model

The application’s computation is assumed to be divided
into a number of objects. Each object has a thread of exe-
cution and a private memory. Objects execute concurrently
on a set of processing elements (PEs), with one or more
objects running on one PE. The distribution of objects onto
PEs can be either static or dynamically adjusted by the
runtime system. Objects interact by exchanging messages
over a network that is reliable but does not guarantee FIFO
delivery. The set of all objects is denoted as O and the set of
all PEs as P . The fraction |O|/|P| is called the virtualization
ratio. We assume it is possible to checkpoint the state of any
object at those points in the application where the state of
the program is close to its minimal. Either the programmer
or a compiler can find those points. This is consistent with
application-level checkpointing.

The minimum unit of failure is one PE. We assume that
PE failures follow the fail-stop model where a failed PE
ceases all operation and communication and never recovers.
Objects on failed PEs are thus lost. PEs may checkpoint the
state of their objects to reliable storage or the memories
of other PEs. The frequency of the checkpoints depends
on the mean time between failures (MTBF) and can be
computed using one of several known methods [7]. When
a PE fails we assume that the system has sufficient spare
PEs to provide the application with a fresh one. Thus, to
recover from a failure, the state of the application’s PEs,
including the fresh PE, must be rolled back to a valid state
based on the data stored in its checkpoints. The traditional
approach for this requires all processes to periodically save
the state of the entire application. When one PE fails, all
PEs have to roll back to a prior checkpoint to bring the
application into a consistent state. However, as the size of
systems grows to hundreds of thousands of PEs to reach
Exascale performance, the MTBF will grow so low as to
make this approach prohibitively expensive [8].

B. Protocols

Figure 1 illustrates the fundamental ideas of rollback-
recovery. Suppose for simplicity that one object executes
on each of the PEs A,B,C and D. All objects periodi-
cally checkpoint their own state, ensuring that some set of
checkpoints forms a recovery line (shown as the bold line
connecting checkpoints and/or current states). If a recovery
line is not crossed by any communication, recovering objects
may compute as normal. Suppose, however, a recovery line
is crossed by some message from PE D to PE C that
was sent before D checkpointed and was received after C
checkpointed (denoted Late Message). On restart it will not
be replayed by D but will be expected by C. To recover
from such a recovery line is necessary to record the data of
all late messages in a log and on restart to replay them for
their receivers from the log. This provides the illusion that
they were in-flight at the time of the checkpoint. Similarly,
consider a message from B to A that was sent after B
checkpointed and received before A did (denoted Early
Message). Such messages will be resent by B on restart
but A will not be ready to receive them, which means that
they must be suppressed on restart. Further, if there are any
non-deterministic events between the checkpoint on B and
the send of this message, their outcomes must be recorded
during the original execution and they must be replayed
exactly the same way on restart because A’s state in its
checkpoint depends on their original outcomes.

Traditional checkpointing is shown in Figure 1(b). When
some PE fails and its objects are lost, all PEs roll back to
the checkpoints of a recovery line and resume computation.
Checkpointing protocols manage late and early messages
in a wide variety of ways, from ensuring that early and/or
late messages cannot exist (via coordinated checkpoint) to
performing the appropriate logging [9].

Since checkpointing protocols require all objects to roll
back whenever any one of them fails, message logging
protocols were developed to enable just the failing objects
to roll back and allow the others to continue execution as
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Figure 2: Simple Causal Message Logging.

normal. Figure 1(c) illustrates this. Since only the failing
PE rolls back, the recovery line connects the failed object’s
checkpoint to the current state of the non-failed objects. This
means that any messages sent by the failed object after its
checkpoint are early and any messages received by it since
the checkpoint are late. As such, message logging protocols
must log the data of all messages and the outcomes of all
non-deterministic events as the price of providing a more
flexible recovery.

Recently, there has been work to combine the two families
of protocols to provide flexible recovery with a low logging
overhead [10]. The idea, illustrated in Figure 1(d), is to
group PEs into teams. PEs within each team use a traditional
checkpointing protocol, where if a PE of any team fails,
all PEs in the team must roll back and restart. Message
logging is used for communication between teams, so if
one team rolls back, others can continue work without
interruption. This means that only messages across teams
must be logged, although all non-determinism must still
be logged. Team-based message logging can be seen as
a compromise between global checkpointing and message
logging. If there is only one team, it is equivalent to global
checkpointing, whereas if the number of teams equals |P|,
it is equivalent to message logging.

III. OPMITIZED MESSAGE LOGGING

This paper presents and evaluates techniques for dynam-
ically managing the division of application objects into
teams based on their computation and communication re-
quirements. It is performed in the context of a specific
combination of checkpointing and message logging pro-
tocols. All PEs belonging to the same team checkpoint
coordinately. Communication inside a team and between
teams is managed using the causal logging protocol [11],
[12]. This protocol logs the data of outgoing messages to
ensure that if the receiver fails, the messages it received
since its last checkpoint will be re-sent to it. Outcomes of
non-deterministic events (called determinants) on a given
object are logged away from the object so that if it fails,
it can recover them from surviving portions of the system.

The prime example of a non-deterministic event is message
reception. The insight of causal logging is that the reason to
save non-deterministic events on a given object is because
other objects may depend on them. As such, if the object
restarts and executes these events differently, the states of
these other objects may become inconsistent with these new
post-restart outcomes. As such, it lazily waits to save each
event e on an object o until the point in time when another
object r may depend on its outcome, which happens when
o sends a message to r after performing event e. Since r is
the reason for e being saved, e’s outcome is attached to the
message to r, making r responsible for storing its outcome.
There are extensions of causal logging that ensure that the
outcome of each event is replicated on at least some number
of PEs. Our evaluation focuses on the variant that maintains
one redundant copy of each determinant.

On object 〈α,A〉:
Non-Deterministic Event generates determinant d

Store d in dets(A)

On object 〈α,A〉:
Send(m, 〈β,B〉)

if A and B are NOT on same team then
α stores m in MLOG(A)

end if
if A 6= B then

SendNetwork(〈β,B〉,m, dets(A))
else

SendNetwork(〈β,B〉,m, ∅)
end if

On object 〈β,B〉:
Receive(m, dets) from object 〈α,A〉

Store dets in DLOG(B)
Deliver(α,m)
SendNetwork(ACK, A)

On PE A:
ReceiveACK(d) from PE B

Remove d from dets(A)

Figure 3: Pseudocode of team-based causal message logging.

Figure 2 depicts the basic operation of simple causal
message logging. We can see four objects (α, β, γ and δ)
distributed into three PEs in the system (A, B and C). Let’s
imagine α sends message m1 to β. After receiving m1, β
generates a determinant for m1, denoted by d1. Later on,
γ sends m2 to β and another determinant, d2, is generated
at β. Now, β will piggyback these determinants on all the
next outgoing messages until it receives a confirmation that
the determinants are safely stored. For instance, when β
sends m3 it has to piggyback the two determinants. We
represent the piggyback operation by the symbol ⊕. Once



δ receives m3 and determinants d1 and d2, it will return
an ACK message to β for it to stop piggybacking those
two determinants. Figure 2 also presents the two sources of
memory overhead for any message logging protocol. First,
and more important, we have the message log (MLOG)
that stores all the outgoing messages. Depending on the
size of the messages and the communication dynamics of
the application, this overhead can quickly become a major
concern. Second, the determinant log (DLOG) has to store
the determinants produced in other PEs.

Figure 3 shows the pseudo-code of the causal message
logging algorithm that has been adapted to work with team-
based checkpointing. Objects are denoted 〈α,A〉, where
α is the object and A is the PE it runs on. The data
structure that temporarily stores the determinants generated
at PE A is called dets(A). Determinants in dets(A) must
be piggybacked in outgoing messages until they are safely
stored in other PE.

We call our protocol optimized message logging, primarily
for two reasons. First, it is based on simple causal message
logging, which we recently showed has a smaller execution
time penalty [11]. Second, it incorporates the team-based
approach which we demonstrated may reduce dramatically
the memory overhead of message logging [10].

IV. LOAD BALANCING

In prior work we evaluated a simplified version of the
team-based approach with pessimistic message logging on
various applications [10]. Our experiments demonstrated the
value of this method, showing that memory used by message
logs was reduced by 73% in NPB-CG using teams of 16 PEs
each. However, this work was limited because the teams
were created by grouping each consecutive set of 16 PEs
into a team and maintaining this static team assignment
for the entire execution. This simple approach can result
in poor performance if it causes most communication to
cross team boundaries because all such communication will
need to be logged. Further, such a static assignment is
unlikely to perform consistently well for applications where
the communication pattern changes over time. Communi-
cation characteristics may change due to load imbalance
in the application. As such, it is necessary to ensure that
the partitioning matches the application’s communication
pattern and tracks this pattern as it evolves over time.

The communication patterns of parallel computing pro-
grams are usually well-structured since such structures are
easier to implement and optimize and because large patterns
are composed of smaller patterns from individual kernels.
Figure 4(a) presents the communication topology of a
256-rank instance of the Conjugate Gradient NAS Parallel
Benchmark, Class D. Each point represents the number
of messages exchanged by a pair of ranks, with brighter
points corresponding to more messages. The figure shows a
clear pattern of numerous clusters of 16 tightly connected

ranks. Thus, best performance will be achieved if each
checkpointing team included one or more such clusters since
only inter-cluster communication must be logged. The same
lesson applies to applications with dynamic communication
patterns, such as NAMD [5], where the choice of teams
must evolve to provide good performance throughout the
application’s execution. While some applications have sim-
ple regular patterns, others have a more complex locality
structure. Figure 4(b) shows the communication topology
for a 256-rank instance of the multi-zone version of the
Block Tri-diagonal NAS Parallel Benchmark, Class C. It
this case, we see a very different pattern, where it is more
difficult to spot the clusters by a simple look. The next
section analyzes this case more deeply, showing a general
algorithm to partition arbitrary communication patterns into
teams.
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Figure 4: Communication Topology.

Given the importance of providing high-performance fault
tolerance for future HPC systems we have designed a
technique to minimize the overhead of message logging
dynamically assigning PEs to teams. The assignment (i)
minimizes communication to reduce the cost of logging
cross-team messages and (ii) ensures that computational
work is balanced across PEs. Team work assignments must
be balanced to ensure that the amount of work lost due to
a failure is consistent across all possible failures. Further,
balanced assignments work to PEs ensure that computational
resources are used efficiently. Our algorithm satisfies these
goals by using a graph partitioning algorithm to map objects
into teams of PEs and using a greedy load balancing
algorithm to assign objects within each team to PEs.

A. Graph Partitioning

We represent the application as an undirected graph
G = (V,E), where V is a set of weighted vertices and
E is a set of weighted edges. Vertices represent objects and
their weights correspond to the amount of compute work
performed by each object. Edges represent communication
between objects and their weights represent the amount of
message traffic in terms of the total amount of message data.
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The goal is to partition this graph’s vertices to minimize the
weights on the edges across partitions (also called the edge
cut) and produce partitions with approximately equal sums
of vertex weights.

This task can be done by a variety of graph partitioning
tools, most notably METIS [13] and SCOTCH [14]. These
libraries usually implement one of two major algorithms
for graph partitioning. In an approach called multilevel
partitioning, the initial graph is first coarsened by merging
vertices that look like promising members of the same
cluster. Then, the graph is partitioned at that point to get into
a refinement phase, where the partitioning will be performed
with finer vertices. In contrast, recursive bipartitioning splits
each sub-graph into two smaller sub-graphs until the whole
graph reaches the required number of partitions.

B. Load Balancing Framework

After the graph is partitioned into teams it is necessary to
assign individual objects to PEs. This is done by greedily
assigning objects to minimize the variance between the load
on different PEs. The algorithm iterates through the objects
and assigns each object, which has load l, to the PE that
minimizes the function

I =
maxl − avgl

avgl

where maxl is the maximum load assigned to any PE and
avgl is the average assigned load.

Figure 5 shows the load balancing process. The set of ob-
jects and their communication graph are displayed at the left,
with objects that have a heavier load shown in a darker color.
For simplicity the edges among objects all have the same
weight. We first apply graph partitioning (Step 1) to divide
the objects into teams X and Y that minimize cross-team
communication. We then balance load within each team to
minimize I (Step 2). Since the clustering algorithm balances
load across teams and the greedy algorithm balances load
among PEs within a team, this results in a globally balanced
load assignment.

V. EXPERIMENTAL EVALUATION

A. Software Infrastructure

We chose to implement the multi-level load balancer
described in the previous Section in CHARM++, since it
provides all the required infrastructure to experiment with
adaptive techniques for HPC. CHARM++ is a parallel pro-
gramming language and a model for parallel computation
based on message-driven object decomposition [15]. A
CHARM++ programmer conceptually decomposes the com-
putation into objects, or chares, in a way that is independent
of the number of physical processors the application will run
on. This independence on the actual number of processors
enables the programmer to overdecompose the program and
create a collection of objects that will be mapped, migrated
and scheduled on the processors by an intelligent runtime
system. The system manages failures using one of several
fault tolerance protocols.

(a) Imbalanced Execution (b) Balanced Execution

Figure 6: Load imbalance in NPB-BT multi-zone.

The CHARM++ framework also supports Adaptive Mes-
sage Passing Interface (AMPI) [16], which enables MPI
programs to run on top of CHARM++, allowing them to
leverage its load balancing and fault tolerance features.
AMPI permits us to evaluate the proposed algorithm with
any MPI program.

CHARM++ provides a flexible interface to define various
load balancers. The load balancing infrastructure collects
information about the load of every object in the system
and its communication with other objects. This information,
along with the current mapping of objects to PEe, is passed
to any load balancer which returns a new mapping for the
objects. In the CHARM++ nomenclature, a load balancer
implementing a particular strategy is called StrategyLB.
For instance, the implementation of the technique laid
out previously on this paper is called TeamLB. We used
SCOTCH graph partitioning library to implement TeamLB
and we used the default partitioning strategy in SCOTCH.

B. Experimental Setup

All our experiments were run on Steele supercomputer at
the Rosen Center for Advanced Computing (RCAC). Steele
has 893 nodes with 16GB of memory each and connected
through Ethernet for a total peak performance of 60 TFlops.

We evaluated our team-based logging protocol on the
applications described in Table I. The common factor of



all of them is that they show load imbalance. If the load
balance is static it means applying the load balancer once is
sufficient to balance the load. The dynamic load imbalance
requires the periodic application of the load balancer.

Table I: Applications

NPB-BT Mol3D LBTest
Field Algebra Biophysics Synthetic

Language MPI Charm++ Charm++
Load Imbalance Static Dynamic Dynamic

The multi-zone version of the NAS Parallel Benchmarks
(NPB) compute discrete solutions in three spatial dimensions
for the unsteady and compressible Navier-Stokes equations.
There are three different benchmarks, Lower-Upper sym-
metric Gauss-Seidel (LU), Scalar Penta-diagonal (SP) and
Block Tri-diagonal (BT). We chose, however, to experiment
with BT since it presents the highest load imbalance among
the three. BT solver operates on a logical cube that is seen
as a structured discretization mesh. Nevertheless, to describe
a complex domain, BT uses multiple meshes (called zones)
to cover it.

Mol3D is a molecular dynamics program that simulates
biomolecular systems by computing the forces between the
atoms of different molecules. Mol3D is based on the same
technology as NAMD [5] and reads the same input format.
Mol3D has two sets of objects: patches which cover all the
tri-dimensional space to simulate and computes which are
in charge of computing the interaction forces between the
atoms in the patches.

Finally, LBTest is a synthetic benchmark in CHARM++
for load balancing experimentation that creates a collection
of objects with different customizable properties. Its parame-
ters include the communication topology among the objects,
a range for the load of objects, frequency of load balancing
and whether the load in each object changes across the
execution. This program allows us to analyze the effect of
one single parameter at a time and measure how susceptible
the load balancer is to different scenarios.

C. Results

We start by illustrating the effects of load balancing on
a relatively small-scale application: NPB-BT with Class C
input, 256 ranks and 64 cores on Abe. At this scale, it is
possible to visually examine the load on each core. Figure 6
shows the load distribution across all the cores during a run
of the benchmark. Each plot shows the percentage of CPU
load on each core, with the Figures 6(a) and (b) showing
the load distribution without a load balancer and with our
load balancing algorithm, respectively. The load distribution
without load-balancing is very skewed, with the first core
spending more than 95% of the time in processing, while
the last core has below 5% CPU utilization. The average
of processor utilization is just 27% and load imbalance I is
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2.52. Figures 6(b) shows that our algorithm can dramatically
improve the application’s load balance. When our algorithm
is employed after iteration 10 (out of 200), the distribution of
load becomes much more even. The average CPU utilization
improves to 59% and the load on all cores is consistently
close to this level. Load imbalance I is brought down to
0.32. In this case we used 8 teams with 8 cores per team.

It is clear that load imbalance is an inherent feature of
NPB-BT multi-zone. Equally important is to know what
its communication features are. Figure 4(b) presents the
communication volume topology for this benchmark. As
opposed to figure 4(a), it is not obvious what the clusters
are. Nevertheless, this communication graph has a clustering
structure. Applying SCOTCH to this graph and looking
for a partition into 8 teams gives us an edge cut ratio of
0.18. This is, only 18% of the total number of bytes sent
between different ranks crosses team boundaries. Another
feature of figure 4(b) is that it shows a skewed distribution
of the communication volume across ranks. Lower index
ranks tend to communicate more bytes than higher index
ranks. Indeed, there is a small positive correlation (index
of 0.32) between the distribution of load (figure 6(a)) and
communication volume of application ranks.

Figure 7 compares the performance of the team-based
load balancer to four others on NPB-BT. The numbers in
the parentheses denote the team size. In all the cases, the
mechanism to form teams consists in grouping consecutive
PEs to make a team. All teams have the same number
of PEs but not necessarily the same number of objects.
We measured the benchmark’s execution time and memory
used to store message logs for recovery. The NoLB creates
teams of PEs but does not migrate objects across PEs. Not
surprisingly, it has the worst performance. The GreedyLB
algorithm maps the heaviest object to the least loaded core.
This reduces the execution time dramatically, for a speedup
of 2.12x. This algorithm has the least load imbalance but
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increases the message log size. The TeamLB algorithm
changes the execution time little compared to GreedyLB,
with just 1% and 2% overhead for team size 1 and team
size 8, correspondingly. This slight performance reduction
is caused by its somewhat worse load imbalance. Team size
1 increases the message log to the maximum because of
the small team sizes but produces the smallest logs, when
using 8-core teams. This is just 56.73% of GreedyLB’s
logs. These results show that team-based load balancing
significantly improves the amount of memory required for
logging messages while having a minimal effect on the
application’s failure-free performance.

We analyzed the 8 clusters generated by TeamLB in figure
7. That partition has an edge cut ratio of 0.26, which is 0.08
higher than what SCOTCH would do without considering
the load of the objects. In other words, we have to log an
additional 8% of the total number of bytes sent if we account
for load balance when the teams are been formed. Since we
originally had 256 objects, on average each team had 32
objects, but with a high dispersion of the data. Standard
deviation in the number of objects per team was 13.76, or
a coefficient of variation equals to 0.43. The maximum and
minimum cluster size were 53 and 19, respectively.

Figure 8 shows the difference in NPB-BT performance
with the NoLB and TeamLB algorithms as the number of
PEs is scaled from 64 to 1024 on Steele. Experiments at all
scales used 8 teams and we focused on weak scaling. Classes
C, D and E were run with 256, 1024 and 4096 objects,
respectively. The data shows that the ratio of objects to PEs
has little effect on the speedup. With class C we obtained
speedups of 2.12 and 2.04 for 64 and 128 PEs, respectively.
For class D, speedups of only 1.21 and 1.20 were obtained
for 256 and 512 PEs. Class E showed an speedup of 1.17
on 1024 PEs.

In the second scaling experiment we analyzed what hap-
pens when we strong scale the Mol3D molecular dynamics
benchmark. Mol3D was executed on the APOA1 benchmark
problem, which models a bloodstream lipoprotein particle
that has around 92,000 atoms. Figure 9 presents the results
with and without TeamLB. We can see it makes sense to

 64

 128

 256

 512

 128  256  512  1024

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e

c
o
n
d
s
)

Number of PEs

Mol3D (Steele)

NoLB
TeamLB

Figure 9: Strong scaling benchmark APOA1 with Mol3D.

apply load balancing in the whole scale. Starting at 128
PEs, the speedup is 2.23. It is reduced to 1.82 at 256 PEs.
For 512 PEs it reaches 1.49 and it finishes in 1.16 at 1024
PEs.

To study load balancer’s ability to adjust to dynamic
changes in load and communication we evaluated it with
the LBTest benchmark, which can be configured to simulate
a wide range of communication behaviors. The communica-
tion topology was a three-dimensional mesh, where each ob-
ject had 6 other neighbors. There were 4096 objects in total
and all of them executed 50,000 iterations. In each iteration,
every object sent a 1KB message to its neighbors and waited
for their reply before computing for t microseconds. The
value t varied in the range of 100 to 1,200 microseconds.
Each object started with the same value of t equal to the
midpoint of this interval and during execution the t value of
each object drifted toward one of the extremes. At the end
of execution, the object with ID 4095 had a t value equals
to the upper limit in the interval, whereas object ID 0 had
a t value equals to the lower limit. The rest of the objects
had an execution time linearly distributed in the interval.

Figure 10 shows the LBTest’s performance in terms of the
time per iteration for an execution of 50,000 iterations where
the load balancer was applied every 10,000 iterations. When
no load balancing is performed, the imbalance and iteration
times increase steadily. The team-based load balancer elim-
inates this imbalance, resulting in drops in iteration times
every 10,000 iterations. TeamLB ultimately causes a factor
of 1.23 speedup in this benchmark.

Since load balancing is easiest when computational and
communication load are uncorrelated, we studied TeamLB’s
limits by measuring its performance in the more complex
case where they are correlated. We did this by parametrizing
LBTest to have the most heavily-loaded object send the
largest messages and use the highly clustered communica-
tion topology from NPB-CG shown in figure 4(a). Since
NPB-CG has a simple cluster structure, we divided load
unevenly among objects. Lower indexed objects computed



 0

 2

 4

 6

 8

 10

 12

 14

 0  10000  20000  30000  40000  50000

T
im

e
 p

e
r 

it
e
ra

ti
o
n
 (

m
ill

is
e
c
o
n
d
s
)

Iteration

LBTest (256 PEs, Steele)

NoLB
TeamLB

Figure 10: Dynamic load imbalance in LBTest.

less and the distribution was increasingly linear up to the last
object, which had the most computation. Thus, we created
light clusters with very low load and heavy clusters with
most of the computation time. We then compared the two
different scenarios. In the uncorrelated case, object would
send a message whose size was not related to the current
load. On the other side, in the correlated case, heavier
objects would send larger messages. The results of table II
show that correlation of load and message size in a clustered
application hurt the performance of TeamLB. Although the
execution time was marginally affected, the portion of the
edge cut that was not captured by the teams increased by
6%.

Table II: Load and Message Size Correlation

Uncorrelated Correlated
Execution time (seconds) 115.09 118.90

Edge cut (ratio) 0.47 0.53

Finally, we decided to show the effect of team size on
the amount of data that can be contained inside the teams.
Although it is clear that larger teams should decrease the
edge cut, it is not easy to see by what margin. We ran
Mol3D on the APOA1 problem with 256 cores on Steele
and compared the results after changing the team size. We
ran the test with (i) a simple team selector that uses no load
balancing and assigns PEs to teams randomly and (ii) the
TeamLB algorithm. Figure 11 presents the comparison of
the two scenarios, showing that TeamLB is superior to the
random approach.

VI. RELATED WORK

The idea of improving rollback-recovery techniques by
decomposing an application into subgroups of tasks has
been applied in various scenarios in the past. Monnet et
al presented the hybrid checkpointing approach [17] to
facilitate the checkpoint of applications running on federated
clusters. An application is run on several supercomputers.
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Figure 11: Effect of team size in edge cut ratio.

Each machine coordinately checkpoints the state of the tasks
running on it and communication induced checkpoint with
optimistic message logging are used to create a recovery line
across machines. They used a simulator to test their algo-
rithm. Wei et al [18] offered a purely theoretical framework
to combine checkpoint in atomic subgroups of tasks with
message logging. They based their algorithm on checkpoint
dependency graph (CDG) and formally demonstrated differ-
ent properties of this technique.

Specifically in parallel computing, Yang et al proposed a
partitioning of the ranks of an MPI program into groups to
improve the efficiency of rollback-recovery protocols [19]
In their algorithm, ranks are divided into g clusters, causal
message logging is used inside a cluster and pessimistic
message logging is used across clusters. Changing the
number of clusters changes the system’s performance both
during normal execution and during recovery. Each cluster
checkpoints independently of the rest and it is assumed
that each cluster has approximately synchronized clocks. No
coordination among ranks of the same cluster is performed.
Clusters are static and created at random. Performance
results include applications up to 16 ranks. Ho et al [20]
proposed a group-based checkpoint/restart scheme to avoid
rolling back all the ranks in an MPI application in case of
a failure. They presented an algorithm to obtain the clusters
out of the communication topology of an application. The
number of clusters is not an input to the algorithm, but
an output of it. Message logging is used to store messages
across groups, but applications have to be deterministic. All
partitions are static and their implementation on LAM/MPI
scaled up to 144 ranks. Singh and Graham [21] studied
groups of MPI ranks in applications in order to perform
partial checkpoint and co-migration. Their work targets
Grid architectures were overloaded machines may involve
a significative loss in performance. By having a group of
closely related MPI ranks, a group of tasks could be migrated
away from overloaded processors and avoid a decrease in
performance. A pattern matching algorithm statically forms
the groups. Results did not scale beyond 8 processors.



VII. CONCLUSIONS AND FUTURE WORK

As computational scientists scale their applications to
larger machine sizes, they will face at least two major
challenges: frequent failures and load imbalance. This paper
argues that we can tackle both in a combined fashion.

Using graph partitioning tools we created a load balancer
that has a small execution time overhead (below 3% for
NPB-BT multi-zone) and that can create groups to drasti-
cally reduce the storage overhead of message logging. The
results showed that our scheme can scale to large system
sizes, providing high performance and low storage overhead.
We showed that although correlations between computation
load and communication intensity present a challenge to our
approach, the effect on application performance is minimal.

In our future work we will examine the effectiveness
of our approach on applications from a wider range of
scientific domains, such as adaptive mesh refinement (AMR)
applications.
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