
Automatic Handling of Global Variables for Multi-threaded MPI Programs

Gengbin Zheng, Stas Negara, Celso L. Mendes, Laxmikant V. Kalé
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{gzheng,snegara2,cmendes,kale}@illinois.edu

Eduardo R. Rodrigues
Institute of Informatics

Federal University of Rio Grande do Sul
Porto Alegre, Brazil

errodrigues@inf.ufrgs.br

Abstract—
Hybrid programming models, such as MPI combined with

threads, are one of the most efficient ways to write parallel ap-
plications for current machines comprising multi-socket/multi-
core nodes and an interconnection network. Global variables in
legacy MPI applications, however, present a challenge because
they may be accessed by multiple MPI threads simultaneously.
Thus, transforming legacy MPI applications to be thread-safe
in order to exploit multi-core architectures requires proper
handling of global variables.

In this paper, we present three approaches to eliminate
global variables to ensure thread-safety for an MPI program.
These approaches include: (a) a compiler-based refactoring
technique, using a Photran-based tool as an example, which
automates the source-to-source transformation for programs
written in Fortran; (b) a technique based on a global offset
table (GOT); and (c) a technique based on thread local
storage (TLS). The second and third methods automatically
detect global variables and privatize them for each thread
at runtime. We discuss the advantages and disadvantages of
these approaches and compare their performance using both
synthetic benchmarks, such as the NAS Benchmarks, and a
real scientific application, the FLASH code.

I. INTRODUCTION

In computer programming, a global variable is a variable
that is accessible in more than one scope of a program. It is
widely and conveniently used in many applications written
in Fortran, C/C++ and many other languages. However,
global variables potentially cause many issues such as lack
of access control and implicit coupling, which make the
program more error-prone. Some of those issues may also
be caused by the use of static variables. Therefore, it is often
desirable to remove global and static variables as a way of
promoting better programming practices.

Since the appearance of multicore processors, there is
an increasing trend towards the use of multi-threaded pro-
gramming to exploit parallelism in those processors, such
as with OpenMP [1] and Intel’s Threading Building Blocks
(TBB) [2]. In many cases, it is desirable that two threads
referring to the same global or static variable actually refer
to different memory locations, thereby making the variable
local to a thread. Unintentional sharing of global variables
often causes race conditions when synchronization is not
properly implemented. Due to this concurrency issue, it is

necessary to privatize global and static variables to ensure
the thread-safety of an application.

In high-performance computing, one way to exploit multi-
core platforms is to adopt hybrid programming models that
combine MPI with threads, where different programming
models are used to address issues such as multiple threads
per core, decreasing amount of memory per core, load
imbalance, etc. When porting legacy MPI applications to
these hybrid models that involve multiple threads, thread-
safety of the applications needs to be addressed again.
Global variables cause no problem with traditional MPI
implementations, since each process image contains a sep-
arate instance of the variable. However, those variables are
not safe in the multi-threading paradigm. Therefore, the
global variables in the MPI code need to be privatized to
become local to each MPI thread in order to preserve their
original semantics. OpenMP solves this problem by offering
a specific privatization directive for the key variables, but
that solution is obviously specific to OpenMP programs.

In this paper, we investigate three approaches that auto-
matically privatize global and static variables via compiler
and runtime techniques. Handling the privatization problem
in an automatic fashion relieves programmers from the
onerous and error-prone process of manually changing their
application codes. Also, it allows the use of the same original
source code on different platforms where distinct privatiza-
tion schemes are available. In addition to these benefits, our
techniques can be uniformly applied to various programming
paradigms that target multi-threaded execution.

We present the advantages and disadvantages of our pri-
vatization approaches, and compare their performance. We
demonstrate the usefulness of these techniques in converting
legacy MPI applications to a multi-threaded environment. In
addition, by employing migratable user-level threads, rather
than kernel threads like in other existing solutions, we show
that significant performance improvements can be obtained
by migrating those threads across processors to achieve
better load balance.

The rest of this paper is organized as follows. Section II
describes in detail the problem posed by global variables and
the importance of properly handling it. Section III presents
the techniques we use to approach the privatization problem.

Section IV contains our experimental performance results.
Finally, Section V reviews related work and Section VI
concludes our presentation.

II. MOTIVATION

The Message Passing Interface (MPI) is a standardized
library API for a set of message passing functions. It has
become the de facto standard for parallel programming
on a wide range of platforms. Due to its high efficiency
in supporting communication, there are a large number of
parallel applications already developed using MPI.

However, the conventional implementations of the MPI
standard tend to associate one MPI process per proces-
sor, which limits their support for increasingly popular
multi-core platforms. Thus, hybrid programming models
that involve both MPI and threads, such as combining
OpenMP with MPI, become attractive. As an example,
the MPI + OpenMP model [3] parallelizes compute-bound
loops with OpenMP, and inter-processor communication is
handled by MPI. This hybrid model allows separation of
concerns, isolating parallelism at multiple levels. However,
this hybrid model can make the parallelization more difficult.
It also requires a special thread-safe MPI implementation
(which in many cases is not available), due to implicit use
of threads in OpenMP. Global variables are handled by using
the threadprivate directive, which specifies a variable
to be private to a thread.

Another approach of combining MPI with threads is
to adopt a finer-grained decomposition model using light-
weight threads and run MPI “processes” in each thread.
Adaptive MPI (AMPI) [4], [5], FG-MPI [6], Phoenix [7]
and TMPI (Threaded MPI) [8] exemplify this approach.
One advantage of this approach is that it allows automatic
adaptive overlap of communication and computation —
when one MPI thread is blocked to receive a message,
another MPI thread on the same processor can be scheduled
to be executed. Another advantage, obtained with user-level
threads implemented in user space, is that the threads can
be made migratable across processors. With sophisticated
thread migration techniques [9], dynamic load balancing via
migratable user-level threads can be supported at run-time.

In this paper, we will focus our work in the context of this
MPI + user-level threads model. Our original motivating
application was Rocstar [10], a very large-scale detailed
whole-system multiphysics simulation of solid rocket motors
under normal and abnormal operating conditions. Another
motivating application was FLASH [11], [12], [13], a large
scale multi-dimensional code used to study astrophysical
fluids. Both codes are written in MPI, either in pure Fortran
or mixed with C/C++ (Rocstar). In both applications, load
imbalances due to different scale of physics make them ideal
cases for the dynamic load balancing. There is virtually
no source code change required to run these applications
with the multi-threaded MPI model, since it is just another

implementation of the MPI standard. However, one major
obstacle for running these legacy MPI applications with the
multi-threaded MPI execution model is global (and static)
variables. In the original MPI codes, those variables cause no
problem, since global and static variables reside in separate
MPI process images. However, they are not thread-safe in
the multi-threaded MPI case.

A. Problem with Global Variables

To concretely understand the problem induced by global
variables in multi-threaded programs, it is instructive to
analyze a real situation where that problem can arise.
Consider the part of a hypothetical MPI program depicted in
Figure 1. This code uses a global variable var to pass values
between the main program and function sub; this illustrates a
typical usage of global variables in traditional programs. In
a pure MPI implementation, this usage is perfectly valid:
there exists a separate instance of variable var for each
MPI task, and all accesses to any particular instance are
done by the corresponding MPI task only. Hence, when this
particular code executes, each task will end up assigning a
well-defined value to local variable x in the function, namely
the value of my rank that was set in the main program. This
happens regardless of the temporal order of execution of the
assignments across the various MPI tasks.

Figure 1. MPI code example showing the use of global variable

However, if the code in Figure 1 is used in a multi-
threaded execution, a severe problem may arise. Suppose
that each thread is executing the parts of the code where the
accesses to var occur. Two threads belonging to the same
process would then access the same instance of var, because
there is a single instance of that global variable in a process.
Two such threads, say those corresponding to MPI ranks 3

and 4, might interleave their accesses to var in a temporal
order such as:

Rank 3: Rank 4:
var=3

var=4
x=4

x=4

Hence, the thread corresponding to rank 3 ends up with
its local variable x being assigned an incorrect value. In
fact, this code makes the values assigned to x in each
thread become totally dependent on the way in which the
threads temporally interleave their executions. Thus, despite
starting from a valid MPI code, the result of a multi-threaded
execution is clearly unacceptable.

The problem illustrated in this example arises from the
shared access to global variable var. Notice that this problem
is not restricted to MPI codes. A similar kind of variable-
sharing across OpenMP threads would present the same
complication. A possible solution to this problem, without
a complete restructuring of the code, is to make those
critical variables become private to each thread (such as in
OpenMP’s threadprivate directive). With this privatization,
each thread accesses a unique instance of the variable, thus
avoiding data races due to unintentional sharing as in the
example above. This paper presents various methods to
automatically accomplish this privatization, in the context
of threads (particularly user-level threads), and compares the
characteristics of each method. We expect these privatization
techniques to be useful to other MPI + threads programming
paradigms as well.

III. TECHNIQUES TO PRIVATIZE GLOBAL/STATIC
VARIABLES

The key to privatize global and static variables in user
code is to identify these variables and automatically make
multiple copies of them so that there is one copy for each
thread. This can be done either at compile or run time. Three
privatization techniques are investigated in this paper.

A. Source Code Transformation — Compiler Refactoring
Tool

Global and static variables can be privatized by trans-
forming the source code of an application. One way to
accomplish this is, essentially, to put all global and static
variables into a large object (a derived type in Fortran, or
structure in C/C++), and then to pass this object around
between subprograms. Thus, each MPI rank is given a dif-
ferent copy of this object. Figure 2 presents such privatizing
transformation applied to the MPI code example of Figure 1.
Note that this approach is valid for Fortran programs as
well: Figure 3 shows a Fortran analogue of the MPI code
example from Figure 1 and the corresponding privatizing
transformation.

A more formal description of the code transformation
required to privatize global and static variables in a Fortran
(or C/C++) program is as follows. First, a new derived type
(structure) is declared in a new module (file). This derived
type (structure) contains a component for every global and
static variable in the program. Every MPI process has its
own instance of this type (structure). A pointer to this type
(structure) is passed as an argument to every subprogram.
Throughout the program, every access to a global or static
variable is replaced with an access to the corresponding field
of the derived type (structure). Finally, the declarations of
global and static variables are removed from the program.

Even moderate size programs may contain hundreds of
global and static variables scattered all over the code, which
makes identifying such variables and, especially, privatizing
them manually not only tedious, but also a highly error-prone
process. To address this problem, we implemented a source-
to-source transformation tool that automates global and
static variables privatization in Fortran programs [14]. Note
that although our implementation is language dependent,
the underlying techniques are valid for other languages,
including C/C++.

Our tool is implemented on top of the refactoring in-
frastructure in Photran [15], an Eclipse-based [16] Inte-
grated Development Environment (IDE) for Fortran. Photran
IDE exposes an Application Programming Interface (API)
that provides functionality to parse a Fortran program and
construct its Abstract Syntax Tree (AST) representation.
The produced AST is rewritable, i.e. Photran’s API allows
AST manipulation and generation of the corresponding
Fortran code. Also, the constructed AST is augmented with
information about binding of program’s entities (variables,
subprograms, interfaces, etc.). Our tool analyzes the under-
lying Fortran program using information from its AST and
transforms the program by manipulating its AST.

An important requirement of our source-to-source trans-
formation tool is to produce efficient code. Our empirical
experience suggests that the way our tool handles global
fixed size arrays has a decisive impact on the performance
of the transformed code. In real-world scientific computation
programs there are many large fixed size arrays declared in
different modules. If all these global arrays are placed in
a single derived type, its size would exceed the maximum
allowed size of a derived type, which may vary for different
Fortran compilers, and is usually around several megabytes.

One solution to this problem is to transform fixed size
arrays into pointer arrays and generate an initialization
subroutine that allocates these arrays according to their
sizes in the original program. This initialization subroutine
is called right after MPI_Init, ensuring that every MPI
process gets its own allocated and initialized copy of the
transformed arrays. The shortcoming of this solution is that
a Fortran compiler can not perform aggressive optimizations
on pointers, and the transformed code is up to 20% slower

int var; /* global variable */
...

int main(...) {
...
MPI_Init(...);
MPI_Comm_rank(...,&my_rank);
...
MPI_Recv(...);
var = my_rank;
sub();
...

}

void sub() {
int x; /* local variable */
...
MPI_Wait(...);
x = var;
...

}

struct data{
int var;

};
...
int main(...) {
struct data *d;
...
MPI_Init(...);
d = (struct data*)malloc(sizeof(struct data));
MPI_Comm_rank(...,&my_rank);
...
MPI_Recv(...);
d->var = my_rank;
sub(d);
...

}
void sub(struct data *d){

int x;
...
MPI_Wait(...);
x = d->var;
...

}

Figure 2. Example of the code transformation that privatizes C global variable var. The original code of a C MPI program is on the left; the transformed
code, which does not contain global variables, is shown on the right.

than the original one [14].
To reduce this significant overhead, we implemented

a different approach, which avoids dynamic allocation of
global fixed size arrays. In this approach, we keep fixed size
arrays and distribute them across multiple derived types, one
array per type. Pointers to all these derived types are placed
in a single derived type, which is used to pass around all
previously global and static variables (including fixed size
arrays). As a result, the overhead is reduced to 1% - 3%,
while for some benchmarks, as demonstrated in Section IV,
we even observed a speed up of up to 8% due to better
spacial locality of these arrays.

Pros: The major advantage of the source-to-source trans-
formation approach is its universality. It does not impose any
additional requirements on a compiler or a runtime system.
The result of the transformation is a regular Fortran code
that can be compiled by any Fortran compiler and executed
on any platform that supports the original code. Another
important advantage of this approach is that it does not rely
on the thread migration mechanisms provided by the runtime
environment to support dynamic load balancing. Instead, our
tool automatically produces a pack/unpack subroutine that
takes care of migrating the generated derived type object,
which contains all originally global and static variables.
Also, by improving locality, the transformation may speed
up small and medium size programs that contain global fixed
size arrays scattered throughout the code.

Cons: Although source code transformation to privatize
global and static variables is a language independent ap-
proach, its implementations are inherently language depen-
dent, because they are analyzing and manipulating language-
specific constructs. For example, our implementation han-
dles only Fortran programs. Another limitation of this ap-

proach is that being independent of a runtime environment,
it may not benefit from some of the runtime’s features.

B. GOT-Globals Scheme — Using Global Offset Table

One interesting partial solution to the privatization prob-
lem is to take advantage of the position-independent code
(PIC), which implements indirect access to global and static
variables in Executable and Linking Format (ELF) binary
format. Due to the support for dynamic shared libraries, data
references to global variables from position-independent
code1 are usually made indirectly through the Global Offset
Table (GOT), which stores the addresses of all accessed
global variables. Note that static variables are treated differ-
ently. They are accessed through offsets from the beginning
of the GOT [17].

At run time, an application can access the GOT in-
formation, and even modify it2. After the loader creates
memory segments for the binary code, the GOT can be
accessed by looking at the section headers through the
address of the dynamic structure, referenced with the symbol
DYNAMIC. All relocatable variables can be identified by

type R_xxx_GLOB_DAT, referring to the GOT. Having
access to the GOT information at run time, an application
can browse through all the global variables in the GOT
entries and determine their sizes. For each thread, the appli-
cation runtime makes a separate copy of the global variables
exclusively for that thread. During execution, before the
application switches to a given thread, the GOT entries are

1To generate position independent code, the source code must be com-
piled using position-independent compilation flags (e.g. -fPIC for GNU
compilers).

2Some recent Linux kernels add protection to GOT, but calling mprotect
can unprotect it

MODULE variables
INTEGER :: var ! global variable

END MODULE variables
...

PROGRAM Main
USE variables
...
CALL MPI_Init(...)
CALL MPI_Comm_rank(...,my_rank)
...
CALL MPI_Recv(...)
var = my_rank
CALL Sub
...

END PROGRAM Main

SUBROUTINE Sub
USE variables
INTEGER :: x ! local variable
...
CALL MPI_Wait(...)
x = var
...

END SUBROUTINE Sub

MODULE variables
TYPE data
INTEGER :: var

END TYPE data
END MODULE variables
...
PROGRAM Main
USE variables
TYPE(data) :: d
...
CALL MPI_Init(...)
CALL MPI_Comm_rank(...,my_rank)
...
CALL MPI_Recv(...)
d%var = my_rank
CALL Sub(d)
...

END PROGRAM Main

SUBROUTINE Sub(d)
USE variables
TYPE(data) :: d
INTEGER :: x
...
CALL MPI_Wait(...)
x = d%var
...

END SUBROUTINE Sub

Figure 3. Example of the code transformation that privatizes Fortran global variable var. The original code of a Fortran MPI program is on the left; the
transformed code, which does not contain global variables, is shown on the right.

rewritten so that each GOT entry points to the global variable
that is local to that thread.

This approach, which we name GOT-Globals, has been
demonstrated on Linux OS on both 32-bit and 64-bit Intel
x86 architectures. However, it does not support privatization
of static variables, because the GOT table does not contain
information on static variables. Clearly, this implementation
relies on the ELF binary format to work. Although the
ELF binary format is widely accepted, it still limits the
scope of this method. It does not work, for example, on
IBM’s BlueGene/P, where shared libraries are not supported.
However, the idea may apply to other object file formats that
support shared libraries and generate position-independent
code (such as XCOFF in IBM’s AIX).

Pros: This approach is based on runtime techniques and
features provided by the ELF object file format, therefore
it does not require any source code modification. It is
also language independent, and works for both C/C++ and
Fortran. Using GOT-Globals allows the thread library to
support the thread migration easily — since the user-level
thread library allocates the memory segments for global and
static variables, it can pack the memory data and move it
together with the thread to a new processor.

Cons: The biggest constraint of this approach is that it
can not handle static variables. Unfortunately, most legacy
C/C++ and Fortran codes do use many static variables.
These variables have to be handled separately by the appli-
cation developer. In terms of overhead, this scheme requires
a compile-time option (e.g. -fPIC) to generate position-

independent code for global variables. Doing this alone,
however, can slow down the application due to the indirect
access to global variables, which can be a considerable factor
depending on how frequently global variables are accessed.
The overhead at thread context switching is O(n), where n
is the total number of global variables. This approach may
also incur some overhead in memory usage, due to certain
alignment requirements for global variables (for example,
16-byte alignment required by Intel’s SSE instructions) that
need to be respected when the application runtime creates
separate copies of these global variables. Since the applica-
tion runtime does not know exactly the alignment require-
ments (those decisions were made by the compiler), it has
to conservatively assume the largest alignment requirement
and apply it to every global variable. This may potentially
result in unnecessary paddings that waste memory.

C. TLS-Globals Scheme — Using Thread Local Storage

Another privatization scheme is based on Thread Local
Storage (TLS). By marking each global variable in a C pro-
gram with the compiler specifier “ thread”, these variables
are allocated such that there is one instance of the variable
per extant thread. This keyword is not an official extension
of the C language, however compiler writers are encouraged
to implement this feature. Currently, the ELF file format
supports Thread Local Storage [18].

This mechanism, which we name TLS-Globals, relies
on the compiler, linker and thread library to work. The
compilers must issue references to private data through a

level of indirection 3. The linker has to initialize a special
section of the executable that holds exclusively thread-local
variables. In addition, the thread library must allocate new
thread-local data segments for newly created threads during
execution, and switch the TLS segment register that points
to the thread’s local copy when a context switching between
threads happens.

There are two issues regarding the use of TLS in our
context of MPI programs. First, the user must explicitly mark
those variables that are intended to be private with the spec-
ifier “ thread”, in C, or an equivalent in other paradigms
(such as OpenMP’s threadprivate directive). However, if the
user’s intention is to privatize the entire set of global and
static variables as in our use case, this may become a tedious
process. A possible approach is to customize a compiler so
that all global and static variables are treated as private by
default. In this paper, we show examples where we modified
the GFortran compiler to perform this kind of privatization.
This was achieved by changing GFortran’s back-end to
generate code with the proper form of access to thread-
private variables, i.e. by means of a level of indirection. That
was simple to perform, since that back-end (which is the
same as in GCC) already had routines to generate this type
of code. In this way, all global, save and common variables
are placed in the TLS segment.

A second issue with respect to the use of TLS is that
the support of TLS is typically provided by the kernel
thread library. For example, the pthread library directly
supports this feature. However, until recently there was no
user-level thread library that provided support for TLS.
Nevertheless, the implementation of that support can be
easily achieved [19].

Pros: The TLS scheme has the advantage that when it
is applicable, it works uniformly on both kernel and user-
level threads. It provides a simple and reliable privatization
mechanism for both global and static variables. The over-
head at thread context switch is to change the TLS segment
register, which is O(1). Compared with the GOT-Globals
scheme, the overhead does not increase as the number of
global/static variables increases. Similar to the GOT-Globals
scheme, when the TLS-Globals scheme is used with user-
level threads, migration of threads is easily supported —
since the user-level thread library allocates the memory
segments for global and static variables, it can pack the
memory data and move it together with the thread to a new
processor.

Cons: The main disadvantage of the TLS scheme, at this
moment, is the fact that it is not yet universally supported.
We believe, however, that such support is becoming increas-
ingly common among system development tools, and thus
it should gain wide adoption in the near future. Another

3This sometimes requires that the source code be compiled with special
flags e.g. -mno-tls-direct-seg-refs for GNU compilers.

disadvantage is that it may require modifications to the
compiler such that every global and static variable be treated
as thread-private. The use of such modified compilers would
relieve the programmer from the burden of adding the
“ thread” qualifier in C/C++ codes, or provide similar
functionality in Fortran codes where an equivalent qualifier
is not available. Although the modification to the compiler
is simple (as we demonstrate with the GFortran compiler),
it is not always possible if the compiler is not open source.
Another practical limitation in our implementation is that the
source code needs to be linked statically to ensure that there
is only one TLS segment. This is to avoid the complexity
incurred by linking with shared libraries, where new TLS
segments are created when dynamic libraries are loaded.

D. Implementation

We evaluated the three previously described privatization
schemes in a multi-threaded implementation of MPI called
Adaptive MPI (AMPI) [4], [5]. AMPI executes MPI pro-
cesses in light-weight user-level threads. These threads can
be implemented by AMPI in various ways, depending on
the underlying architectures. The most frequently used im-
plementation is based on the system calls setcontext()
and swapcontext().

Figure 4. Diagram of AMPI model of virtualization of MPI processes.

Standard MPI programs divide the computation onto P
MPI processes, and typical MPI implementations simply
execute each process on one of the P processors. In contrast,
an AMPI program divides the computation into a number V
of AMPI user-level threads, and a runtime system maps these
threads onto P physical processors, as illustrated in Figure 4.
The number of threads V and the number of physical
processors P are independent, allowing more flexibility.
Dynamic load balancing is achieved in AMPI by means
of moving user-level threads from overloaded processors
to underloaded ones. When a thread migrates, it moves its

Privatization Scheme X86 IA64 Opteron Mac OS X IBM SP SUN BG/P Cray/XT Windows
Transformation Yes Yes Yes Yes Yes Yes Yes Yes Yes
GOT-Globals Yes Yes Yes No No Maybe No No No
TLS-Globals Yes Maybe Yes No Maybe Maybe No Yes Maybe

Table I
PORTABILITY OF CURRENT IMPLEMENTATIONS OF THREE PRIVATIZATION SCHEMES. “YES” MEANS WE HAVE IMPLEMENTED THIS TECHNIQUE.

“MAYBE” INDICATES THERE ARE NO THEORETICAL PROBLEMS, BUT NO IMPLEMENTATION EXISTS. “NO” INDICATES THE TECHNIQUE IS IMPOSSIBLE
ON THIS PLATFORM.

private copy of global and static variables, together with its
stack and heap data, using a runtime memory management
technique called isomalloc [9].

E. Portability

Table I illustrates the portability of our implementation of
each privatization technique on various platforms. Not sur-
prisingly, the program transformation technique is portable
across all platforms. This is because the transformed/new
MPI code is still a legitimate MPI program that can run
on all the platforms that support MPI. The restriction on
GOT-Globals is the requirement that the compiler be capable
of generating ELF position-independent code with GOT.
The ELF binary format is widely accepted (e.g. on Linux
OS), which makes this GOT-Globals scheme fairly portable.
However, note that in some scenarios, such as on the
Cray/XT, although the ELF binary format is supported, the
GOT is still missing in the produced binary (due to the light-
weight Linux kernel used on that system). This limits the
applicability of the GOT-Globals scheme. By contrast, the
TLS-Globals scheme is constrained by OS support for TLS.
Our implementation of TLS-Globals is for Linux x86 ELF
object file format. However, as TLS becomes more widely
supported on a variety of platforms, it should be possible to
implement our TLS-Globals scheme on those platforms.

IV. PERFORMANCE COMPARISON

This section offers comparative evaluations for all three
privatization schemes. We ran several micro-benchmarks,
NAS benchmarks and a real-world application, FLASH.
Enabled by the privatization techniques presented in this
paper to handle the global variables, we demonstrate one of
the benefits of using multi-threaded AMPI, namely dynamic
load balancing, with the NAS benchmarks and FLASH code.

A. Micro-benchmarks

We started our experiments by comparing the three pri-
vatization schemes in terms of their basic performance
effects on computation and communication. An important
factor in a multi-threaded execution is the cost of context
switch between threads. We created a simple benchmark
that executes a few floating-point operations followed by
a call to MPI Barrier. This sequence is repeated multiple
times, and we execute the code with two threads on one
processor, under our AMPI environment. Because each call

 0.001

 0.01

 0.1

 1

 10

 100 1000 10000 100000

E
xe

cu
tio

n
T

im
e

(s
)

Number of Global Variables

GOT-Globals
TLS-Globals
Transformed

Figure 5. Effects of context switch overhead with all three schemes

 10

 100

 1000

 10000

 4096 8192 16384 32768 65536 131072 262144

E
xe

cu
tio

n
T

im
e

(s
)

Number of Threads

GOT-Globals
TLS-Globals
Transformed

Figure 6. Execution times for test with 100 globals and varying number
of threads

to MPI Barrier implies a context-switch, the duration of
this execution is directly affected by the cost of context-
switching. Figure 5 shows the durations obtained with the
three schemes, for executions with versions of the program
containing a varying number of global variables (we stress
that the amount of computation done is fixed, and we simply
varied the number of declared global variables).

Since the GOT-Globals scheme changes all the existing
globals at each context-switch moment, the cost of the
executions with GOT-Globals in Figure 5 grows propor-
tionally to the number of globals in use. Meanwhile, the

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

131,072 262,144 524,288

R
in

g
 T

im
e

(m
s)

Number of Threads

transformation
got−globals
tls−globals

Figure 7. Ring execution times with up to half million threads with all
three schemes

TLS-Globals and Transformation schemes do not suffer this
effect: the context-switch time is constant, regardless of how
many globals exist in the code. Hence, the performance of
an application with a large number of global variables can
be severely hurt when GOT privatization is used.

We also executed the same program with multiple threads
under the three privatization schemes, to assess their scal-
ability with an increasing number of threads per processor.
We employed the program version containing 100 global
variables. Figure 6 shows the measured results. Since the
amount of computation done by each thread is fixed at the
same level as before, the execution durations depend only
on the context-switch time and on the time for the threads
to perform their work. Hence, the durations grow linearly
with the number of threads, as confirmed by Figure 6. GOT-
Globals, which requires copying global variables at context
switch, is slightly more expensive than the other schemes.

Another simple benchmark we created to compare the
three privatization schemes is an MPI ring program. In this
program, the ring pattern communication starts from MPI
rank 0 by sending a small message (around 100 bytes) to its
next rank, and so on until the message comes back to rank
0. This sequence is repeated 100 times, and the average
execution time of a single ring is reported. The only global
variable in this program is “my rank id”. We executed the
program varying the number of threads from 1/8 million to
half million threads, all running on a multicore desktop; each
thread had an 8K-byte stack. The measured total number of
context-switching with 131,072 threads is about 27,000,831,
and 108,003,327 with 524,288 threads. Due to the fact that
the number of global variables is so small, we see in Figure 7
that all three privatization schemes perform almost equally
well. This experiment also shows that the AMPI runtime is
capable of handling hundreds of thousands of threads on one
processor.

B. 7-point Stencil

Next, we used a 7-point stencil program with 3-D do-
main decomposition written in MPI to evaluate our three

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

 1.8

32PE 64PE

E
x

ec
u

ti
o

n
 T

im
e

/
It

er
at

io
n

 (
s)

Number of Processors

transformation
got−globals
tls−globals

Figure 8. 7-point stencil execution time with 524,288 MPI threads with
all three schemes (Ranger cluster)

privatization schemes. The stencil program was written so
that in every iteration each MPI thread exchanges messages
with its six neighbors and then performs Jacobi relaxation
computations.

We ran this program for a total of 524,288 MPI threads
(i.e. the size of the MPI COMM WORLD) with a 3-D block
data of size 5120 ∗ 2560 ∗ 40. Each MPI thread calculates a
small block of size 10∗10∗10, which is declared as a global
array variable. Our test environment is a Sun Constellation
Linux Cluster called Ranger installed at the Texas Advanced
Computing Center. Ranger is comprised of 3, 936 16-way
SMP compute nodes providing a total of 62, 976 compute
cores.

Figure 8 shows the execution times obtained with the
three schemes using 32 and 64 processors of the Ranger
cluster, respectively, where the 524,288 MPI threads were
evenly distributed. The results, again, show that the three
privatization schemes present nearly the same performance.

C. Multi-zone NAS Benchmarks

The NAS multi-zone benchmarks [20] are derived from
the well-known NAS Parallel Benchmarks (NPB) suite.
Application benchmarks LU-MZ, SP-MZ and BT-MZ solve
discretized versions of the unsteady, compressible Navier-
Stokes equations in three spatial dimensions. Multi-zone
benchmarks use a strategy that exploits coarse-grain paral-
lelism between meshes. Specifically, in BT, the partitioning
of the mesh is done such that the sizes of the zones span a
significant range, therefore creating imbalance in workload
across processors, which provides a good case study for
AMPI and its load balancing capability.

We transformed the three benchmarks, BT-MZ, LU-MZ
and SP-MZ, which are all written in Fortran, using the
Photran-based transformation tool, and compared them with
GOT-Globals and TLS-Globals versions for various configu-
rations of problem sizes and number of MPI ranks. Table II
shows the total number of global and static variables, in
the three benchmarks, that are handled by our privatization
schemes. Note that although there are two static variables

 1

 2

 4

 8

 16

 32

 64

B
T.A

.1
6

B
T.B

.6
4

LU
.A

.1
6

LU
.B

.1
6

SP.A
.1

6

SP.B
.6

4

N
A

S
 B

en
ch

m
ar

k
 T

im
e

(s
)

NAS Benchmarks

original/MVAPICH
original/AMPI
transformed
got−globals
tls−globals

Figure 9. NAS Benchmark times on all three schemes vs. non-threaded
MPI (Ranger cluster)

in these benchmarks, they do not cause problem for the
GOT-Globals scheme because those two variables are never
changed. The test environment was the Ranger cluster.

Benchmark Global variables Static variables Total
BT-MZ 156 2 158
LU-MZ 99 2 101
SP-MZ 157 2 159

Table II
NUMBER OF GLOBAL AND STATIC VARIABLES IN NAS BENCHMARKS

For a fair comparison to the normal non-threaded MPI
case (which was MVAPICH), in the first experiment with
AMPI we limited the total number of MPI threads so that
there was only one MPI thread per processor. The results of
comparison of all three privatization schemes to the original
code are shown in Figure 9. The first two bars represent a
comparison between MVAPICH and AMPI with the same
code, without any handling of global variables (the AMPI
execution corresponding to the second bar had one thread
per processor, so there was no concurrent access to global
variables). Except for LU.B.16, AMPI performs almost as
well as MVAPICH. Note that due to practical limitations
on Ranger, there is no statically built Infiniband-ibverbs
library. At the same time, our TLS-Globals scheme should
be built statically, and thus, can not use the dynamically
built Infiniband-ibverbs library. So, for a fair comparison
among all three schemes, we built AMPI without specialized
support for Infiniband. The significant difference between
MVAPICH and AMPI in the case of LU.B.16 is probably
due to the fact that the LU program is a communication
intensive application.

Focusing on the AMPI cases (the last four bars in each
test-case in Figure 9), we see that all three privatization
schemes performed equally well, and did not add noticeable

overhead in comparison to the AMPI execution of the
original code. The transformed code performs substantially
better in the BT benchmark case: instead of an overhead in
comparison to the AMPI execution of the original code, we
observed a speed up of almost 6% for BT.A.16 and more
than 8% for BT.B.64 due to better spatial locality of the
originally global fixed size arrays that became components
of the same derived type object in the transformed code.

With the global variables properly handled in these bench-
marks by the three privatization techniques, we ran the
BT-MZ and LU-MZ benchmarks with AMPI and multi-
threading, enabling dynamic load balancing. We employed
a greedy-based load balancer that is invoked once after the
third simulation step. For simple illustration, we always
ran 4 MPI threads per processor when the program started.
For example, the BT.B.64 test-case that is designed for 64
MPI ranks was executed on 16 real processors with 4 MPI
threads each. However, since the load balancer may move
MPI threads across processors during execution, the number
of threads on a processor is not fixed.

The results with the BT-MZ and LU-MZ benchmarks are
shown in Figure 10 and Figure 11, respectively. In BT-MZ,
for all three privatization schemes, execution time improves
dramatically after applying dynamic load balancing. The
transformed code runs noticeably faster with and without
dynamic load balancing. This is probably due to the runtime
overhead that the other two schemes incur in order to enable
migration of heap/stack data across processors, while the
transformed code has pack/unpack functions automatically
generated and therefore, it does not rely on the runtime
memory management technique to move thread data across
processors. The LU-MZ case does not benefit from dynamic
load balancing, possibly because there is no load imbalance
problem in LU. However, we can see that all three priva-
tization schemes work equally well, and there is very little
overhead when load balancing is enabled.

D. FLASH

We evaluated the three privatization schemes on a large-
scale project: FLASH, version 3 [11], [12], [13]. FLASH
is a parallel, multi-dimensional code used to study astro-
physical fluids. Many astrophysical environments are highly
turbulent, and have structure on scales varying from large
scale, like galaxy clusters, to small scale, like active galactic
nuclei, in the same system. Thus, load balance issues become
critical in recent computational astrophysics research, which
makes it a good case for AMPI and its dynamic load
balancing capability.

The FLASH code is written mainly in Fortran 90 and
is parallelized using MPI. It is essentially a collection of
code pieces, which can be customized in different ways
to produce different simulation problems. FLASH supports
both a uniform grid and a block-structured adaptive mesh
refinement (AMR) grid based on the PARAMESH library.

 0

 10

 20

 30

 40

 50

 60

transformed got−globals tls−globals

B
T

 B
en

ch
m

ar
k

 T
im

e
(s

)

w/o load balancing
with load balancing

(a) BT.A.16

 0

 20

 40

 60

 80

transformed swap−globals tls−globals

B
T

 B
en

ch
m

ar
k

 T
im

e
(s

)

w/o load balancing
with load balancing

(b) BT.B.64

Figure 10. BT-MZ Benchmark time with all three schemes (with and without load balancing)

 0

 5

 10

 15

 20

 25

 30

 35

transformed got−globals tls−globals

L
U

 B
en

ch
m

ar
k

 T
im

e
(s

)

w/o load balancing
with load balancing

(a) LU.A.16

 0

 50

 100

 150

 200

 250

 300

transformed got−globals tls−globals

L
U

 B
en

ch
m

ar
k

 T
im

e
(s

)

w/o load balancing
with load balancing

(b) LU.B.64

Figure 11. LU-MZ Benchmark time with all three schemes (with and without load balancing)

In the following experiments, we chose a certain simulation
problem, Sedov-Taylor explosion, to evaluate our privatiza-
tion schemes. We use 9 AMR levels and two-dimensional
fluids for our tests.

The FLASH code contains 855 global and 399 static
variables (total of 1254 variables) in this simulation test case.
Due to the wide presence of static variables, we were not
able to use the GOT-Globals scheme without a significant
manual effort to handle them. The comparison between
using the transformation and the TLS-Globals schemes is
illustrated in Figure 12(a). The runs were performed with
one AMPI thread per processor, so that we could compare
them to the case of the original code that does not privatize
the global/static variables. We see that the transformed code
is only marginally slower than the original code, due to
minimal overhead at runtime. The TLS-Globals scheme runs
noticeably slower than the transformed code. This is possibly
due to the fact that unlike the transformed code, the TLS-
Globals scheme incurs considerable runtime overhead, in
particular for the memory management of the TLS segment.

Finally, to demonstrate the load balancing capability, we

executed 4 MPI threads on each processor to give enough
opportunity for AMPI’s load balancer to move threads
around. We inserted load balancing calls in the simulation at
every 100 steps. A greedy-based load balancer was invoked
at the first load balancing step, and a refinement-based
load balancer was used thereafter. The Sedov2D simulation
execution times with and without load balancing are illus-
trated in Figure 12(b). We see about 10% of performance
improvement after load balancing in the 16 MPI thread case
(on 4 real processors), and 5% improvement for the 24-
thread case. There is virtually no performance improvement
for the 32-thread case, possibly due to the performance gain
being offset by the load balancing overhead itself. These
results are still encouraging, considering that PARAMESH,
used in FLASH, is also performing its own load balancing
at every refinement step, and the load balancing strategies
we used here are simple off-the-shelf load balancers that do
not take mesh refinement into account.

 0.0

 100.0

 200.0

 300.0

 400.0

 500.0

 600.0

16 24 32

F
L

A
S

H
 S

ed
o

v
e2

D
 T

im
e

(s
)

Number of MPI Threads

original
transformed
tls−globals

(a) Comparison of two privatization schemes

 0.0

 500.0

 1,000.0

 1,500.0

 2,000.0

 2,500.0

16 24 32

F
L

A
S

H
 S

ed
o

v
e2

D
 T

im
e

(s
)

Number of MPI Threads

w/o load balancing
with load balancing

(b) Load balancing with the transformed code

Figure 12. FLASH Sedov2D simulation (Ranger cluster)

V. RELATED WORK

Much work has been done in hybrid programming mod-
els that involve MPI and threads. Hybrid programming
model with MPI+OpenMP [3] approaches the problem by
distributing OpenMP threads among MPI processes. Users
need to specify thread private variables by explicitly using
“threadprivate” OpenMP directives. A compiler that supports
OpenMP is required to compile such applications.

TMPI [8] uses multithreading for performance enhance-
ment of multi-threaded MPI programs on shared-memory
machines. Because it targets a shared-memory scenario, its
main goal in implementing MPI tasks via threads is to
provide a common address space to the threads such that
memory copy in message-passing is avoided. There is no
way to use more than one thread per processor, hence the
number of threads is limited to the number of available
processors.

More recent work, in FG-MPI [6], shares the same idea
with AMPI by exploiting fine-grained decomposition using
threads. However, FG-MPI does not support thread migra-
tion and dynamic load balancing. The three techniques to
handle global variables described in this paper will benefit
these MPI implementations as well.

Phoenix [7] is a runtime environment that, like our
AMPI, transforms MPI processes into light-weight threads.
However, Phoenix implements those threads with pthreads,
and no support for thread migration exists. In addition, the
Phoenix creators did not propose any scheme for variable
privatization; they simply rely on the use of an existing
source-to-source translator for C/C++ codes. Hence, Fortran
programs would have to be be manually transformed. Here,
again, our presented techniques could be effectively used to
handle existing MPI programs.

SPAG [21] is a tool for analyzing and transforming For-
tran programs. It provides both static and dynamic analysis,
but its transformation capabilities are limited to a predefined

set. ROSE [22] is a source-to-source compiler infrastructure
to analyze and transform C, C++, and Fortran programs.
Like in Photran, programs are represented with ASTs that
can be manipulated and unparsed back to source code, but,
to the best of our knowledge, no work has been done in
ROSE to implement a tool that automatically privatizes
global variables in legacy Fortran applications.

Weaves [23] is a run-time framework for an object-based
compositional design and development of high performance
codes. It uses similar ELF analysis techniques as our GOT-
Globals scheme, although with a different purpose. It is
used to enables selective sharing of code and state between
parallel subprograms, whereas we used the same technique
for privatization of global variables.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented three techniques to automati-
cally privatize global and static variables for any MPI imple-
mentation that supports a multi-threaded execution model.
These approaches include: (a) a compiler-based refactoring
technique, using a Photran-based tool as an example, which
automates the source-to-source transformation for programs
written in Fortran; (b) a technique based on a global offset
table (GOT); and (c) a technique based on thread local
storage (TLS). We discussed the advantages and disadvan-
tages of these approaches and compared their performance
using both synthetic benchmarks, such as the NAS Bench-
marks, and a real scientific application, the FLASH code.
We demonstrated that all these techniques work effectively
in their domains, and they support thread migration for
dynamic load balancing. When a thread migrates its data
and execution to a new processor, it carries its “global”
variables, which have been properly privatized. Using the
NAS Benchmark and FLASH code as examples, we showed
considerable performance improvement by dynamic load
balancing, which is made possible partially by the techniques
presented in this paper. With these techniques, legacy MPI

applications can be executed in the new MPI + threads
model without change in their source code (or via automatic
source transformation).

We plan to extend our privatization techniques to more
platforms such as the upcoming Blue Waters machine. We
also plan to apply these techniques to new applications,
such as the emerging climate simulation model ESCM,
and BigDFT, a density functional theory (DFT) massively
parallel electronic structure code.

ACKNOWLEDGMENTS

This work was supported in part by NSF grant OCI-
0725070 for Blue Waters deployment, by the Institute for
Advanced Computing Applications and Technologies (IA-
CAT) at the University of Illinois at Urbana-Champaign,
and by Department of Energy grant DE-SC0001845. We
used machine resources on the Range cluster (TACC), under
TeraGrid allocation grant TG-ASC050039N supported by
NSF. FLASH was developed by the DOE-supported ASC
/ Alliance Center for Astrophysical Thermonuclear Flashes
at the University of Chicago.

REFERENCES

[1] L. Dagum and R. Menon, “OpenMP: An Industry-Standard
API for Shared-Memory Programming,” IEEE Computational
Science & Engineering, vol. 5, no. 1, January-March 1998.

[2] J. Reinders, Intel Threading Building Blocks: Outfitting C++
for Multi-Core Processor Parallelism. O’Reilly Media, 2007.

[3] L. Smith and M. Bull, “Development of mixed mode mpi
/ openmp applications,” Scientific Programming, vol. 9, no.
2-3/2001, pp. 83–98, 2001.

[4] C. Huang, O. Lawlor, and L. V. Kalé, “Adaptive MPI,” in Pro-
ceedings of the 16th International Workshop on Languages
and Compilers for Parallel Computing (LCPC 2003), LNCS
2958, College Station, Texas, October 2003, pp. 306–322.

[5] C. Huang, G. Zheng, S. Kumar, and L. V. Kalé, “Perfor-
mance Evaluation of Adaptive MPI,” in Proceedings of ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming 2006, March 2006.

[6] H. Kamal and A. Wagner, “Fg-mpi: Fine-grain mpi for
multicore and clusters,” in The 11th IEEE International Work-
shop on Parallel and Distributed Scientific and Engineering
Computing (PDESC). IEEE, Apr. 2010.

[7] A. Pant, H. Jafri, and V. Kindratenko, “Phoenix: A run-
time environment for high performance computing on chip
multiprocessors,” Parallel, Distributed, and Network-Based
Processing, Euromicro Conference on, vol. 0, pp. 119–126,
2009.

[8] H. Tang, K. Shen, and T. Yang, “Program transformation
and runtime support for threaded MPI execution on shared-
memory machines,” ACM Transactions on Programming Lan-
guages and Systems, vol. 22, no. 4, pp. 673–700, 2000.

[9] G. Zheng, O. S. Lawlor, and L. V. Kalé, “Multiple flows
of control in migratable parallel programs,” in 2006 In-
ternational Conference on Parallel Processing Workshops
(ICPPW’06). Columbus, Ohio: IEEE Computer Society,
August 2006, pp. 435–444.

[10] X. Jiao, G. Zheng, P. A. Alexander, M. T. Campbell, O. S.
Lawlor, J. Norris, A. Haselbacher, and M. T. Heath, “A system
integration framework for coupled multiphysics simulations,”
Engineering with Computers, vol. 22, no. 3, pp. 293–309,
2006.

[11] G. Weirs, V. Dwarkadas, T. Plewa, C. Tomkins, and M. Marr-
Lyon, “Validating the Flash code: vortex-dominated flows,” in
Astrophysics and Space Science. Springer Netherlands, 2005,
vol. 298, pp. 341–346.

[12] B. Fryxell et al., “Flash: An adaptive mesh hydrodynam-
ics code for modeling astrophysical thermonuclear flashes,”
ApJS, vol. 131, p. 273, Nov 2000.

[13] A. Dubey, L. B. Reid, and R. Fisher, “Introduction to
flash 3.0, with application to supersonic turbulence,” Physica
Scripta, vol. T132, p. 014046, 2008. [Online]. Available:
http://stacks.iop.org/1402-4896/T132/014046

[14] S. Negara, G. Zheng, K.-C. Pan, N. Negara, R. E. Johnson,
L. V. Kale, and P. M. Ricker, “Automatic MPI to AMPI
Program Transformation using Photran,” in 3rd Workshop on
Productivity and Performance (PROPER 2010), no. 10-14,
Ischia/Naples/Italy, August 2010.

[15] J. Overbey, S. Xanthos, R. Johnson, and B. Foote, “Refac-
torings for Fortran and High-Performance Computing,” in
Second International Workshop on Software Engineering
for High Performance Computing System Applications, May
2005.

[16] T. E. Foundation, “Eclipse - an open development platform,”
http://www.eclipse.org/.

[17] J. R. Levine, Linkers and Loaders. Morgan Kaufmann
Publishers, 1999.

[18] U. Drepper, “ELF handling for thread-local storage,” Version
0.20, Red Hat Inc., Feb, vol. 8, 2003.

[19] E. R. Rodrigues, P. O. A. Navaux, J. Panetta, and C. L.
Mendes, “A new technique for data privatization in user-level
threads and its use in parallel applications,” in ACM 25th
Symposium On Applied Computing (SAC), Sierre, Switzer-
land, 2010.

[20] H. Jin and R. F. V. der Wijngaart, “Performance characteris-
tics of the multi-zone nas parallel benchmarks.” in Proceed-
ings of the International Parallel and Distributed Processing
Symposium (IPDPS), 2004.

[21] “SPAG,” http://www.polyhedron.co.uk/spag0html.

[22] “ROSE,” http://www.rosecompiler.org/.

[23] J. Mukherjee and S. Varadarajan, “Weaves: A framework
for reconfigurable programming.” International Journal of
Parallel Programming, vol. 33, no. 2-3, pp. 279–305, 2005.

