
Architectural constraints required to
attain 1 Exaflop/s for scientific applications

Abhinav Bhatele, Pritish Jetley, Hormozd Gahvari,
Lukasz Wesolowski, William D. Gropp, Laxmikant V. Kale

Department of Computer Science
University of Illinois at Urbana-Champaign

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Motivation

• First Teraflop/s computer (ASCI Red, 1997), first
Petaflop/s computer (RoadRunner, 2008), Exaflop/s
2018 ?

• Hardware challenges: power/energy, memory,
communication

• Software challenges: algorithms and implementations
that will scale

• Architectural features to attain 1 Exaflop/s ?

2

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

A possible exascale machine

• 220 = 1,048,576 nodes

• 210 cores per node

• 10 Gflop/s cores, time
to compute a flop, tc =
0.1 ns

• 10.74 Exaflop/s peak
performance

3

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Modeling methodology

• Estimate the floating point calculations/operations
per iteration,

• Time for communication based on number and size
of messages

• Using total number of floating point operations and
time per iteration,

4

manner. To solve these problems, finite element method (FEM)
solvers are most commonly employed. A detailed treatment of
the finite element method can be found in [12], but the basic
principle is to represent the solution to the problem as a sum of
basis functions over elements in a mesh, and this matches up
well with the setup of an unstructured grid problem. There are
many ways to apply finite element solvers, but they generally
center around assembling and solving a sparse linear system,
which can be done once or repeated several times depending
on the problem being solved. This is the approach we consider
in this study.

We first introduce the performance model used in the paper.
Each application class is then analyzed for its computation and
communication requirements for weak scaling. The analysis
helps derive constraints on the hardware, and then the analysis
is repeated for smaller problem instances. We also analyze
peak memory requirements of each application at scale. A
recent paper by Gahvari et al. [13] does a similar analysis
studying the feasibility of 3D FFT and multigrid at exascale.

II. MACHINE PARAMETERS AND ASSUMPTIONS

This section describes the methodology we use to model
the computation and communication behavior of parallel al-
gorithms. The amount of computation for each problem is
described in terms of the number of calculations, which is a
function of the problem size, N , and the number of processing
cores, Pc. For each calculation, we estimate the number of
floating point operations, n and multiply that by the time
for computing a flop, tc. Since the sequential performance
often does not achieve the peak flop/s rating, we multiply the
expression by an efficiency factor 1/η, This gives the equation
for computation time as,

Tcomp =
1

η
× f(N,Pc)× n× tc (II.1)

Communication on parallel machines can be described in
terms of three parameters:

• Start-up time (ts): This is the time required for handling
of a message at the sender and receiver. It is often referred
to as overhead and is incurred once per message.

• Per-hop time (th): This is the time spent at every
switch/router on the network that the message goes
through. It is multiplied by the number of hops or links,
l, traversed by the message.

• Per-word time (tw): If the bandwidth of each link on the
network is Bw GB/s and the size of a word is 4 bytes,
each word spends tw = 4/Bw time to traverse the link.
This is referred to as the per-word transfer time.

Using these three parameters, we can express the time for
sending a message on the network as,

ts + l × th +m× tw

where m is the size of the message in words. We assume that
the exascale machine will use wormhole routing to send flits
on the network (as is the case for most supercomputers today).
This suggests that, in absence of contention and for messages

of sufficiently large size, the second term in the equation above
will be significantly smaller than the third term. Also, it should
be possible to limit the number of links traversed to a few
hops using an intelligent topology aware mapping [14]. So,
for the analysis in this paper we ignore the second term in the
equation. If an application sends M = g(N,Pc) messages and
each message is of size h(N,Pc), the time for communication
will be given by:

Tcomm = M × (ts + h(N,Pc)× tw) (II.2)

We want to make as few assumptions as possible about
the architectural details of an Exaflop/s machine. However,
we must fix a few parameters for our analysis. Most large
supercomputers today have multiple cores per node and the
number of cores on each node is expected to rise. Let
us assume that our hypothetical machine will have 1 GHz
processing cores and each node will contain 1024 such cores.
The peak performance of the machine will be 10.74 Exaflop/s,
requiring Pc = 230 10 Gflop/s processing elements (number
of nodes, Pn = 220). The compute time per floating point
operation, tc = 0.1 ns (assuming 10 flops per cycle).

Using the parameters and assumptions described above, we
estimate the range of values for network latency and bandwidth
and memory requirements for performing exascale simulations
for the three application classes.

III. MOLECULAR DYNAMICS

Molecular dynamics (MD) codes constitute an important
class of parallel applications. We will focus on MD codes that
are used for simulating the life of biomolecules to understand
their structure and facilitate drug design. Over the years, a
plethora of parallel codes have been written to simulate MD
– NAMD [3], AMBER [4], Gromacs [15], Desmond [6] and
Blue Matter [7] to name a few.

MD is a difficult problem to parallelize because of the small
number of atoms and extremely small time scales (typically
1 to 2 femtoseconds) involved. Over the years, various par-
allelization techniques have been developed for scaling MD.
Plimpton gives a detailed overview of different approaches to
parallelizing MD in [16]. The traditional methods of paral-
lelizing classical MD computations are atom decomposition
and force decomposition. In atom decomposition, the atoms
involved in the simulation are distributed among the proces-
sors, in no particular order and each processor is responsible
for calculating forces for its atoms. In force decomposition, the
force matrix for the atoms is distributed among the processors.
If the number of atoms in the simulation is N and the number
of processing cores is Pc, the communication to computation
ratios for the two methods are:

C/C ratioatom =
N

N/Pc
= Pc

C/C ratioforce =
N/

√
Pc

N/Pc
=

�
Pc

Both of these approaches are non-isoefficient and hence not
used in modern, highly scaling MD codes. So, we focus on

manner. To solve these problems, finite element method (FEM)
solvers are most commonly employed. A detailed treatment of
the finite element method can be found in [12], but the basic
principle is to represent the solution to the problem as a sum of
basis functions over elements in a mesh, and this matches up
well with the setup of an unstructured grid problem. There are
many ways to apply finite element solvers, but they generally
center around assembling and solving a sparse linear system,
which can be done once or repeated several times depending
on the problem being solved. This is the approach we consider
in this study.

We first introduce the performance model used in the paper.
Each application class is then analyzed for its computation and
communication requirements for weak scaling. The analysis
helps derive constraints on the hardware, and then the analysis
is repeated for smaller problem instances. We also analyze
peak memory requirements of each application at scale. A
recent paper by Gahvari et al. [13] does a similar analysis
studying the feasibility of 3D FFT and multigrid at exascale.

II. MACHINE PARAMETERS AND ASSUMPTIONS

This section describes the methodology we use to model
the computation and communication behavior of parallel al-
gorithms. The amount of computation for each problem is
described in terms of the number of calculations, which is a
function of the problem size, N , and the number of processing
cores, Pc. For each calculation, we estimate the number of
floating point operations, n and multiply that by the time
for computing a flop, tc. Since the sequential performance
often does not achieve the peak flop/s rating, we multiply the
expression by an efficiency factor 1/η, This gives the equation
for computation time as,

Tcomp =
1

η
× f(N,Pc)× n× tc (II.1)

Communication on parallel machines can be described in
terms of three parameters:

• Start-up time (ts): This is the time required for handling
of a message at the sender and receiver. It is often referred
to as overhead and is incurred once per message.

• Per-hop time (th): This is the time spent at every
switch/router on the network that the message goes
through. It is multiplied by the number of hops or links,
l, traversed by the message.

• Per-word time (tw): If the bandwidth of each link on the
network is Bw GB/s and the size of a word is 4 bytes,
each word spends tw = 4/Bw time to traverse the link.
This is referred to as the per-word transfer time.

Using these three parameters, we can express the time for
sending a message on the network as,

ts + l × th +m× tw

where m is the size of the message in words. We assume that
the exascale machine will use wormhole routing to send flits
on the network (as is the case for most supercomputers today).
This suggests that, in absence of contention and for messages

of sufficiently large size, the second term in the equation above
will be significantly smaller than the third term. Also, it should
be possible to limit the number of links traversed to a few
hops using an intelligent topology aware mapping [14]. So,
for the analysis in this paper we ignore the second term in the
equation. If an application sends M = g(N,Pc) messages and
each message is of size h(N,Pc), the time for communication
will be given by:

Tcomm = M × (ts + h(N,Pc)× tw) (II.2)

We want to make as few assumptions as possible about
the architectural details of an Exaflop/s machine. However,
we must fix a few parameters for our analysis. Most large
supercomputers today have multiple cores per node and the
number of cores on each node is expected to rise. Let
us assume that our hypothetical machine will have 1 GHz
processing cores and each node will contain 1024 such cores.
The peak performance of the machine will be 10.74 Exaflop/s,
requiring Pc = 230 10 Gflop/s processing elements (number
of nodes, Pn = 220). The compute time per floating point
operation, tc = 0.1 ns (assuming 10 flops per cycle).

Using the parameters and assumptions described above, we
estimate the range of values for network latency and bandwidth
and memory requirements for performing exascale simulations
for the three application classes.

III. MOLECULAR DYNAMICS

Molecular dynamics (MD) codes constitute an important
class of parallel applications. We will focus on MD codes that
are used for simulating the life of biomolecules to understand
their structure and facilitate drug design. Over the years, a
plethora of parallel codes have been written to simulate MD
– NAMD [3], AMBER [4], Gromacs [15], Desmond [6] and
Blue Matter [7] to name a few.

MD is a difficult problem to parallelize because of the small
number of atoms and extremely small time scales (typically
1 to 2 femtoseconds) involved. Over the years, various par-
allelization techniques have been developed for scaling MD.
Plimpton gives a detailed overview of different approaches to
parallelizing MD in [16]. The traditional methods of paral-
lelizing classical MD computations are atom decomposition
and force decomposition. In atom decomposition, the atoms
involved in the simulation are distributed among the proces-
sors, in no particular order and each processor is responsible
for calculating forces for its atoms. In force decomposition, the
force matrix for the atoms is distributed among the processors.
If the number of atoms in the simulation is N and the number
of processing cores is Pc, the communication to computation
ratios for the two methods are:

C/C ratioatom =
N

N/Pc
= Pc

C/C ratioforce =
N/

√
Pc

N/Pc
=

�
Pc

Both of these approaches are non-isoefficient and hence not
used in modern, highly scaling MD codes. So, we focus on

the spatial decomposition method in this paper. In this method,

the three-dimensional (3D) simulation box is spatially divided

among the processors. Let us assume that the simulation box

has dimensions Bx × By × Bz; then, each processor holds

a cell of dimensions Bx/
3
√
Pc × By/

3
√
Pc × Bz/

3
√
Pc and

is responsible for calculating forces for the atoms within its

cell. For most MD simulations, we can safely assume that the

density of atoms in any cell is roughly the same, which leads

to approximately the same number of atoms per processor.

For the spatial decomposition method, the communication to

computation ratio is given by:

C/C ratiospatial =
N/Pc

N/Pc
= 1

Modern methods of parallelizing MD, which are a hybrid

between spatial and force decomposition [17] (also known

by other names such as the midpoint method and the neu-

tral territory method [18]) improve the communication to

computation ratio as the cell size decreases, compared to

the spatial decomposition method. However, their asymptotic

complexities are similar to the spatial decomposition method

and hence, we will not consider them separately.

To aid our complexity analysis, let us understand the parallel

set-up of a “short-range” molecular dynamics simulation. The

simulation time is broken down into a large number of small

time steps (typically 1 fs each). At each time step, each

processor calculates forces on the atoms that reside on it due

to all other atoms within a certain distance, rc + margin ,

where rc is the cutoff radius and margin accounts for atom

movements between migration steps. To calculate the forces,

each processor communicates with its neighbors in the 3D

space to obtain the current positions of atoms within this

radius. New positions and velocities are then calculated and

updated, based on the force calculations within a time step.

Based on the new positions, some atoms may move into a

cell assigned to a different processor and they have to be

migrated. Typically, migrations are not done every time step

and to account for this, the size of each cell is chosen to be

rc+margin . Algorithm 1 shows the pseudocode for one time

step of an MD simulation.

Algorithm 1 Computation in one time step of MD

Receive atoms from neighboring processors

for i = 1 to Np do
for j = 1 to Ni do

if atoms are within cutoff radius, rc then
Compute forces on pairs of atoms

end if
end for

end for
Update atom positions and velocities

A. Weak Scaling
We begin with analyzing the weak scaling behavior of the

spatial decomposition method. For this analysis, we need a

lower bound on the number of atoms assigned to each core

for maintaining good efficiency. Both Blue Matter [7] and

NAMD [3] have demonstrated that for ratios of atoms to

cores greater than 100, the non-bonded force calculation is

the dominant contribution to the step time. And in this regime,

the performance follows a “universal curve” irrespective of the

molecular system, only depending on the number of atoms

per core. This is achievable for short-range MD computations

because the number of floating point operations per core is

a linear function of the number of atoms. Assuming that our

hypothetical system will have 100 atoms per core for achieving

10% of the peak which will be ≈ 1 Exaflop/s, total size of the

molecular system would be 230 × 100 ≈ 107 billion atoms.

Total number of floating point operations for a simulation

system with N atoms is 33547×N (empirically obtained value

for NAMD for a 12 Å cutoff). Considering that we want the

flop/s to be greater than or equal to 1 Exaflop/s, dividing the

total number of flops by the time for one time step gives:

flops

T
> 1018 (III.1)

33547×N

1018
> T

Putting the value of N = 230 × 100,

T < 3.6× 10−3
(III.2)

This says that, to achieve 1 Exaflop/s performance for a

107 billion atom system running on 230 cores, the time per

step should be smaller than 3.6 ms. The time per step for each

application class is the performance target to attain 1 Exaflop/s

performance. Since all applications considered in the paper are

iterative, the equations derived for T , Tcomm and Tcomp are

for one time step.

Let us now estimate the amount of communication per node

for this molecular system of 107 billion atoms. For a standard

MD simulation, the size of each cell in the simulation box

is 16 Å in each dimension (for a cutoff rc = 12 Å and a

margin = 4 Å) and the number of atoms in each cell is

400 (see Figure 1, extreme left). Since for the 100 billion

atom system, we will have only 100 atoms on each core, this

necessitates splitting each cell into half in two of the three

dimensions (see Figure 1, center). In this mode, each cell

communicates with approximately 5×5×3 = 75 other cells to

obtain the atoms necessary for calculating forces on its atoms.

However, having multiple (1024) cores on each node implies

that most of these messages are not sent on the network. If we

assign a three-dimensional space containing 8×8×16 = 1024
cells to a node, inter-node messages will be required only

for cells on the surface. The number of messages will be

12 × 10 × 20 − 8 × 8 × 16 = 1376 (two “ghost” layers of

cells each in two dimensions and one layer of cells in the

third dimension).

Based on the above derivations for communication and

computation in an MD code for weak scaling, we can now use

equations (II.1) and (II.2) to obtain the time for one time step

of MD. In the case where there is no overlap of communication

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Applications

• Molecular Dynamics

• Short-range forces, spatial decomposition

• Cosmological Simulations

• Tree algorithms

• Unstructured grid problems

• Finite element solvers

5

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Molecular Dynamics

• Spatial decomposition

6

16 Å

16 Å

8 Å
8 Å

4 Å
4 Å

Fig. 1. A biomolecular simulation box (only two dimensions shown) split into cells of size 16× 16× 16 Å (extreme left). Each processor holds one such

cell containing approximately 400 atoms. When there are fewer atoms per processor (say 50), the three dimensions are further split to give cells of size

8× 8× 8 Å (center). When there are around 6 atoms per processor, each dimension is reduced to one-fourth the original size (extreme right).

and computation, at every time step, each node sends positions

and velocities of the atoms to its communicating neighbors and

once it has received its incoming messages, calculates forces

on its atoms. The expression for the time per step of an MD

computation is:

T =
1

η
× N

Pc
× 33547× tc + 1376×

�
ts +

N

Pc
4tw

�
(III.3)

Substituting the expression for T from equation (III.3) in

equation (III.2),

1

η
× N

Pc
× 33547× tc + 1376×

�
ts +

N

Pc
4tw

�
< 3.6× 10−3

For the weak scaling analysis, putting in the values of ratio

of atoms to processors, N/Pc = 100 and tc = 10−10
seconds,

1

η
× 33547× 10−8 + 1376× (ts + 400tw) < 3.6× 10−3

1376× (ts + 400tw) < 3.6× 10−3 − 1

η
× 3.35× 10−4

ts + 400tw < 2.62× 10−6 − 1

η
× 2.44× 10−7

Figure 2 plots the values of ts and tw based on the

equation above for different values of η. For the case of

perfect efficiency, MD simulations do not put a considerable

requirement on the per-processor communication bandwidth.

However, it does require that the network latencies be small.

If we look at the case of η = 0.125, the application would

require a latency of below a microsecond and a per-processor

communication bandwidth of 2 GB/s. It is also important to

mention that our analysis assumes serialization of messages

put on the network by a node arising from all of its 1024
cores. We expect that for future machines, multiple cores on a

node will be able to inject messages on the network in parallel.

B. Memory requirements
MD codes have a relatively small memory footprint since

the number of atoms on each core is small (between 5 to

400). However at the start of each time step, when atoms

 0.1

 1

 10

 100

 1000

10-4 10-3 10-2 10-1 100 101

B
an

dw
id

th
 (4

/t w
) i

n
G

B
/s

Latency (ts) in microseconds

Feasibility Region for MD

η = 0.1
η = 0.125
η = 0.25
η = 0.5

η = 1

Fig. 2. Latency and bandwidth requirements for MD (weak scaling)

are received by the processing cores, the amount of memory

needed increases. This is proportional to the total number

of messages received by each core (75 for the case above).

The size of each message is equal to N/Pc multiplied by

the memory requirements for the atom data structure. The

information about each atom sent in the message is the

charge on the atom and its position. Hence the increase in

memory consumption at the beginning of each time is equal

to 75 × (N/Pc) × 32 bytes = 0.23 MB. However, even this

transient memory usage in MD simulations is not significant.

C. Smaller problem sizes

An important observation is that building a 107 billion

atom molecular system and doing useful science with it, will

be a challenge for biophysicists. Simulating such a large

system to observe anything meaningful will require long

simulations (milliseconds to seconds). The largest classical

MD simulations done so far involve up to 3 million atoms,

a five orders of magnitude difference. Hence, many scientists

will still simulate systems smaller than 107 billion atoms and

the spatial decomposition method in this paper. In this method,

the three-dimensional (3D) simulation box is spatially divided

among the processors. Let us assume that the simulation box

has dimensions Bx × By × Bz; then, each processor holds

a cell of dimensions Bx/
3
√
Pc × By/

3
√
Pc × Bz/

3
√
Pc and

is responsible for calculating forces for the atoms within its

cell. For most MD simulations, we can safely assume that the

density of atoms in any cell is roughly the same, which leads

to approximately the same number of atoms per processor.

For the spatial decomposition method, the communication to

computation ratio is given by:

C/C ratiospatial =
N/Pc

N/Pc
= 1

Modern methods of parallelizing MD, which are a hybrid

between spatial and force decomposition [17] (also known

by other names such as the midpoint method and the neu-

tral territory method [18]) improve the communication to

computation ratio as the cell size decreases, compared to

the spatial decomposition method. However, their asymptotic

complexities are similar to the spatial decomposition method

and hence, we will not consider them separately.

To aid our complexity analysis, let us understand the parallel

set-up of a “short-range” molecular dynamics simulation. The

simulation time is broken down into a large number of small

time steps (typically 1 fs each). At each time step, each

processor calculates forces on the atoms that reside on it due

to all other atoms within a certain distance, rc + margin ,

where rc is the cutoff radius and margin accounts for atom

movements between migration steps. To calculate the forces,

each processor communicates with its neighbors in the 3D

space to obtain the current positions of atoms within this

radius. New positions and velocities are then calculated and

updated, based on the force calculations within a time step.

Based on the new positions, some atoms may move into a

cell assigned to a different processor and they have to be

migrated. Typically, migrations are not done every time step

and to account for this, the size of each cell is chosen to be

rc+margin . Algorithm 1 shows the pseudocode for one time

step of an MD simulation.

Algorithm 1 Computation in one time step of MD

Receive atoms from neighboring processors

for i = 1 to Np do
for j = 1 to Ni do

if atoms are within cutoff radius, rc then
Compute forces on pairs of atoms

end if
end for

end for
Update atom positions and velocities

A. Weak Scaling
We begin with analyzing the weak scaling behavior of the

spatial decomposition method. For this analysis, we need a

lower bound on the number of atoms assigned to each core

for maintaining good efficiency. Both Blue Matter [7] and

NAMD [3] have demonstrated that for ratios of atoms to

cores greater than 100, the non-bonded force calculation is

the dominant contribution to the step time. And in this regime,

the performance follows a “universal curve” irrespective of the

molecular system, only depending on the number of atoms

per core. This is achievable for short-range MD computations

because the number of floating point operations per core is

a linear function of the number of atoms. Assuming that our

hypothetical system will have 100 atoms per core for achieving

10% of the peak which will be ≈ 1 Exaflop/s, total size of the

molecular system would be 230 × 100 ≈ 107 billion atoms.

Total number of floating point operations for a simulation

system with N atoms is 33547×N (empirically obtained value

for NAMD for a 12 Å cutoff). Considering that we want the

flop/s to be greater than or equal to 1 Exaflop/s, dividing the

total number of flops by the time for one time step gives:

flops

T
> 1018 (III.1)

33547×N

1018
> T

Putting the value of N = 230 × 100,

T < 3.6× 10−3
(III.2)

This says that, to achieve 1 Exaflop/s performance for a

107 billion atom system running on 230 cores, the time per

step should be smaller than 3.6 ms. The time per step for each

application class is the performance target to attain 1 Exaflop/s

performance. Since all applications considered in the paper are

iterative, the equations derived for T , Tcomm and Tcomp are

for one time step.

Let us now estimate the amount of communication per node

for this molecular system of 107 billion atoms. For a standard

MD simulation, the size of each cell in the simulation box

is 16 Å in each dimension (for a cutoff rc = 12 Å and a

margin = 4 Å) and the number of atoms in each cell is

400 (see Figure 1, extreme left). Since for the 100 billion

atom system, we will have only 100 atoms on each core, this

necessitates splitting each cell into half in two of the three

dimensions (see Figure 1, center). In this mode, each cell

communicates with approximately 5×5×3 = 75 other cells to

obtain the atoms necessary for calculating forces on its atoms.

However, having multiple (1024) cores on each node implies

that most of these messages are not sent on the network. If we

assign a three-dimensional space containing 8×8×16 = 1024
cells to a node, inter-node messages will be required only

for cells on the surface. The number of messages will be

12 × 10 × 20 − 8 × 8 × 16 = 1376 (two “ghost” layers of

cells each in two dimensions and one layer of cells in the

third dimension).

Based on the above derivations for communication and

computation in an MD code for weak scaling, we can now use

equations (II.1) and (II.2) to obtain the time for one time step

of MD. In the case where there is no overlap of communication

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Weak scaling of MD

• Size of molecular system = 100 * 230 = 107 billion
atoms

• Number of floating point operations = 33547 * N

• Putting N = 100 * 230,

7

the spatial decomposition method in this paper. In this method,

the three-dimensional (3D) simulation box is spatially divided

among the processors. Let us assume that the simulation box

has dimensions Bx × By × Bz; then, each processor holds

a cell of dimensions Bx/
3
√
Pc × By/

3
√
Pc × Bz/

3
√
Pc and

is responsible for calculating forces for the atoms within its

cell. For most MD simulations, we can safely assume that the

density of atoms in any cell is roughly the same, which leads

to approximately the same number of atoms per processor.

For the spatial decomposition method, the communication to

computation ratio is given by:

C/C ratiospatial =
N/Pc

N/Pc
= 1

Modern methods of parallelizing MD, which are a hybrid

between spatial and force decomposition [17] (also known

by other names such as the midpoint method and the neu-

tral territory method [18]) improve the communication to

computation ratio as the cell size decreases, compared to

the spatial decomposition method. However, their asymptotic

complexities are similar to the spatial decomposition method

and hence, we will not consider them separately.

To aid our complexity analysis, let us understand the parallel

set-up of a “short-range” molecular dynamics simulation. The

simulation time is broken down into a large number of small

time steps (typically 1 fs each). At each time step, each

processor calculates forces on the atoms that reside on it due

to all other atoms within a certain distance, rc + margin ,

where rc is the cutoff radius and margin accounts for atom

movements between migration steps. To calculate the forces,

each processor communicates with its neighbors in the 3D

space to obtain the current positions of atoms within this

radius. New positions and velocities are then calculated and

updated, based on the force calculations within a time step.

Based on the new positions, some atoms may move into a

cell assigned to a different processor and they have to be

migrated. Typically, migrations are not done every time step

and to account for this, the size of each cell is chosen to be

rc+margin . Algorithm 1 shows the pseudocode for one time

step of an MD simulation.

Algorithm 1 Computation in one time step of MD

Receive atoms from neighboring processors

for i = 1 to Np do
for j = 1 to Ni do

if atoms are within cutoff radius, rc then
Compute forces on pairs of atoms

end if
end for

end for
Update atom positions and velocities

A. Weak Scaling
We begin with analyzing the weak scaling behavior of the

spatial decomposition method. For this analysis, we need a

lower bound on the number of atoms assigned to each core

for maintaining good efficiency. Both Blue Matter [7] and

NAMD [3] have demonstrated that for ratios of atoms to

cores greater than 100, the non-bonded force calculation is

the dominant contribution to the step time. And in this regime,

the performance follows a “universal curve” irrespective of the

molecular system, only depending on the number of atoms

per core. This is achievable for short-range MD computations

because the number of floating point operations per core is

a linear function of the number of atoms. Assuming that our

hypothetical system will have 100 atoms per core for achieving

10% of the peak which will be ≈ 1 Exaflop/s, total size of the

molecular system would be 230 × 100 ≈ 107 billion atoms.

Total number of floating point operations for a simulation

system with N atoms is 33547×N (empirically obtained value

for NAMD for a 12 Å cutoff). Considering that we want the

flop/s to be greater than or equal to 1 Exaflop/s, dividing the

total number of flops by the time for one time step gives:

flops

T
> 1018 (III.1)

33547×N

1018
> T

Putting the value of N = 230 × 100,

T < 3.6× 10−3
(III.2)

This says that, to achieve 1 Exaflop/s performance for a

107 billion atom system running on 230 cores, the time per

step should be smaller than 3.6 ms. The time per step for each

application class is the performance target to attain 1 Exaflop/s

performance. Since all applications considered in the paper are

iterative, the equations derived for T , Tcomm and Tcomp are

for one time step.

Let us now estimate the amount of communication per node

for this molecular system of 107 billion atoms. For a standard

MD simulation, the size of each cell in the simulation box

is 16 Å in each dimension (for a cutoff rc = 12 Å and a

margin = 4 Å) and the number of atoms in each cell is

400 (see Figure 1, extreme left). Since for the 100 billion

atom system, we will have only 100 atoms on each core, this

necessitates splitting each cell into half in two of the three

dimensions (see Figure 1, center). In this mode, each cell

communicates with approximately 5×5×3 = 75 other cells to

obtain the atoms necessary for calculating forces on its atoms.

However, having multiple (1024) cores on each node implies

that most of these messages are not sent on the network. If we

assign a three-dimensional space containing 8×8×16 = 1024
cells to a node, inter-node messages will be required only

for cells on the surface. The number of messages will be

12 × 10 × 20 − 8 × 8 × 16 = 1376 (two “ghost” layers of

cells each in two dimensions and one layer of cells in the

third dimension).

Based on the above derivations for communication and

computation in an MD code for weak scaling, we can now use

equations (II.1) and (II.2) to obtain the time for one time step

of MD. In the case where there is no overlap of communication

the spatial decomposition method in this paper. In this method,

the three-dimensional (3D) simulation box is spatially divided

among the processors. Let us assume that the simulation box

has dimensions Bx × By × Bz; then, each processor holds

a cell of dimensions Bx/
3
√
Pc × By/

3
√
Pc × Bz/

3
√
Pc and

is responsible for calculating forces for the atoms within its

cell. For most MD simulations, we can safely assume that the

density of atoms in any cell is roughly the same, which leads

to approximately the same number of atoms per processor.

For the spatial decomposition method, the communication to

computation ratio is given by:

C/C ratiospatial =
N/Pc

N/Pc
= 1

Modern methods of parallelizing MD, which are a hybrid

between spatial and force decomposition [17] (also known

by other names such as the midpoint method and the neu-

tral territory method [18]) improve the communication to

computation ratio as the cell size decreases, compared to

the spatial decomposition method. However, their asymptotic

complexities are similar to the spatial decomposition method

and hence, we will not consider them separately.

To aid our complexity analysis, let us understand the parallel

set-up of a “short-range” molecular dynamics simulation. The

simulation time is broken down into a large number of small

time steps (typically 1 fs each). At each time step, each

processor calculates forces on the atoms that reside on it due

to all other atoms within a certain distance, rc + margin ,

where rc is the cutoff radius and margin accounts for atom

movements between migration steps. To calculate the forces,

each processor communicates with its neighbors in the 3D

space to obtain the current positions of atoms within this

radius. New positions and velocities are then calculated and

updated, based on the force calculations within a time step.

Based on the new positions, some atoms may move into a

cell assigned to a different processor and they have to be

migrated. Typically, migrations are not done every time step

and to account for this, the size of each cell is chosen to be

rc+margin . Algorithm 1 shows the pseudocode for one time

step of an MD simulation.

Algorithm 1 Computation in one time step of MD

Receive atoms from neighboring processors

for i = 1 to Np do
for j = 1 to Ni do

if atoms are within cutoff radius, rc then
Compute forces on pairs of atoms

end if
end for

end for
Update atom positions and velocities

A. Weak Scaling
We begin with analyzing the weak scaling behavior of the

spatial decomposition method. For this analysis, we need a

lower bound on the number of atoms assigned to each core

for maintaining good efficiency. Both Blue Matter [7] and

NAMD [3] have demonstrated that for ratios of atoms to

cores greater than 100, the non-bonded force calculation is

the dominant contribution to the step time. And in this regime,

the performance follows a “universal curve” irrespective of the

molecular system, only depending on the number of atoms

per core. This is achievable for short-range MD computations

because the number of floating point operations per core is

a linear function of the number of atoms. Assuming that our

hypothetical system will have 100 atoms per core for achieving

10% of the peak which will be ≈ 1 Exaflop/s, total size of the

molecular system would be 230 × 100 ≈ 107 billion atoms.

Total number of floating point operations for a simulation

system with N atoms is 33547×N (empirically obtained value

for NAMD for a 12 Å cutoff). Considering that we want the

flop/s to be greater than or equal to 1 Exaflop/s, dividing the

total number of flops by the time for one time step gives:

flops

T
> 1018 (III.1)

33547×N

1018
> T

Putting the value of N = 230 × 100,

T < 3.6× 10−3
(III.2)

This says that, to achieve 1 Exaflop/s performance for a

107 billion atom system running on 230 cores, the time per

step should be smaller than 3.6 ms. The time per step for each

application class is the performance target to attain 1 Exaflop/s

performance. Since all applications considered in the paper are

iterative, the equations derived for T , Tcomm and Tcomp are

for one time step.

Let us now estimate the amount of communication per node

for this molecular system of 107 billion atoms. For a standard

MD simulation, the size of each cell in the simulation box

is 16 Å in each dimension (for a cutoff rc = 12 Å and a

margin = 4 Å) and the number of atoms in each cell is

400 (see Figure 1, extreme left). Since for the 100 billion

atom system, we will have only 100 atoms on each core, this

necessitates splitting each cell into half in two of the three

dimensions (see Figure 1, center). In this mode, each cell

communicates with approximately 5×5×3 = 75 other cells to

obtain the atoms necessary for calculating forces on its atoms.

However, having multiple (1024) cores on each node implies

that most of these messages are not sent on the network. If we

assign a three-dimensional space containing 8×8×16 = 1024
cells to a node, inter-node messages will be required only

for cells on the surface. The number of messages will be

12 × 10 × 20 − 8 × 8 × 16 = 1376 (two “ghost” layers of

cells each in two dimensions and one layer of cells in the

third dimension).

Based on the above derivations for communication and

computation in an MD code for weak scaling, we can now use

equations (II.1) and (II.2) to obtain the time for one time step

of MD. In the case where there is no overlap of communication

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

• 100 atoms per cell

• Split the cells in two of the three
dimensions

• Each cell communicates with
5*5*3 = 75 other cells

• For a block of 8*8*16 cells
placed on a node only the ones
on the boundary communicate
inter-node

8

16 Å

16 Å

8 Å
8 Å

4 Å
4 Å

Fig. 1. A biomolecular simulation box (only two dimensions shown) split into cells of size 16× 16× 16 Å (extreme left). Each processor holds one such

cell containing approximately 400 atoms. When there are fewer atoms per processor (say 50), the three dimensions are further split to give cells of size

8× 8× 8 Å (center). When there are around 6 atoms per processor, each dimension is reduced to one-fourth the original size (extreme right).

and computation, at every time step, each node sends positions

and velocities of the atoms to its communicating neighbors and

once it has received its incoming messages, calculates forces

on its atoms. The expression for the time per step of an MD

computation is:

T =
1

η
× N

Pc
× 33547× tc + 1376×

�
ts +

N

Pc
4tw

�
(III.3)

Substituting the expression for T from equation (III.3) in

equation (III.2),

1

η
× N

Pc
× 33547× tc + 1376×

�
ts +

N

Pc
4tw

�
< 3.6× 10−3

For the weak scaling analysis, putting in the values of ratio

of atoms to processors, N/Pc = 100 and tc = 10−10
seconds,

1

η
× 33547× 10−8 + 1376× (ts + 400tw) < 3.6× 10−3

1376× (ts + 400tw) < 3.6× 10−3 − 1

η
× 3.35× 10−4

ts + 400tw < 2.62× 10−6 − 1

η
× 2.44× 10−7

Figure 2 plots the values of ts and tw based on the

equation above for different values of η. For the case of

perfect efficiency, MD simulations do not put a considerable

requirement on the per-processor communication bandwidth.

However, it does require that the network latencies be small.

If we look at the case of η = 0.125, the application would

require a latency of below a microsecond and a per-processor

communication bandwidth of 2 GB/s. It is also important to

mention that our analysis assumes serialization of messages

put on the network by a node arising from all of its 1024
cores. We expect that for future machines, multiple cores on a

node will be able to inject messages on the network in parallel.

B. Memory requirements
MD codes have a relatively small memory footprint since

the number of atoms on each core is small (between 5 to

400). However at the start of each time step, when atoms

 0.1

 1

 10

 100

 1000

10-4 10-3 10-2 10-1 100 101

B
an

dw
id

th
 (4

/t w
) i

n
G

B
/s

Latency (ts) in microseconds

Feasibility Region for MD

η = 0.1
η = 0.125

η = 0.25
η = 0.5

η = 1

Fig. 2. Latency and bandwidth requirements for MD (weak scaling)

are received by the processing cores, the amount of memory

needed increases. This is proportional to the total number

of messages received by each core (75 for the case above).

The size of each message is equal to N/Pc multiplied by

the memory requirements for the atom data structure. The

information about each atom sent in the message is the

charge on the atom and its position. Hence the increase in

memory consumption at the beginning of each time is equal

to 75 × (N/Pc) × 32 bytes = 0.23 MB. However, even this

transient memory usage in MD simulations is not significant.

C. Smaller problem sizes

An important observation is that building a 107 billion

atom molecular system and doing useful science with it, will

be a challenge for biophysicists. Simulating such a large

system to observe anything meaningful will require long

simulations (milliseconds to seconds). The largest classical

MD simulations done so far involve up to 3 million atoms,

a five orders of magnitude difference. Hence, many scientists

will still simulate systems smaller than 107 billion atoms and

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Inferring network parameters

9

16 Å

16 Å

8 Å
8 Å

4 Å
4 Å

Fig. 1. A biomolecular simulation box (only two dimensions shown) split into cells of size 16× 16× 16 Å (extreme left). Each processor holds one such

cell containing approximately 400 atoms. When there are fewer atoms per processor (say 50), the three dimensions are further split to give cells of size

8× 8× 8 Å (center). When there are around 6 atoms per processor, each dimension is reduced to one-fourth the original size (extreme right).

and computation, at every time step, each node sends positions

and velocities of the atoms to its communicating neighbors and

once it has received its incoming messages, calculates forces

on its atoms. The expression for the time per step of an MD

computation is:

T =
1

η
× N

Pc
× 33547× tc + 1376×

�
ts +

N

Pc
4tw

�
(III.3)

Substituting the expression for T from equation (III.3) in

equation (III.2),

1

η
× N

Pc
× 33547× tc + 1376×

�
ts +

N

Pc
4tw

�
< 3.6× 10−3

For the weak scaling analysis, putting in the values of ratio

of atoms to processors, N/Pc = 100 and tc = 10−10
seconds,

1

η
× 33547× 10−8 + 1376× (ts + 400tw) < 3.6× 10−3

1376× (ts + 400tw) < 3.6× 10−3 − 1

η
× 3.35× 10−4

ts + 400tw < 2.62× 10−6 − 1

η
× 2.44× 10−7

Figure 2 plots the values of ts and tw based on the

equation above for different values of η. For the case of

perfect efficiency, MD simulations do not put a considerable

requirement on the per-processor communication bandwidth.

However, it does require that the network latencies be small.

If we look at the case of η = 0.125, the application would

require a latency of below a microsecond and a per-processor

communication bandwidth of 2 GB/s. It is also important to

mention that our analysis assumes serialization of messages

put on the network by a node arising from all of its 1024
cores. We expect that for future machines, multiple cores on a

node will be able to inject messages on the network in parallel.

B. Memory requirements
MD codes have a relatively small memory footprint since

the number of atoms on each core is small (between 5 to

400). However at the start of each time step, when atoms

 0.1

 1

 10

 100

 1000

10-4 10-3 10-2 10-1 100 101

B
an

dw
id

th
 (4

/t w
) i

n
G

B
/s

Latency (ts) in microseconds

Feasibility Region for MD

η = 0.1
η = 0.125

η = 0.25
η = 0.5

η = 1

Fig. 2. Latency and bandwidth requirements for MD (weak scaling)

are received by the processing cores, the amount of memory

needed increases. This is proportional to the total number

of messages received by each core (75 for the case above).

The size of each message is equal to N/Pc multiplied by

the memory requirements for the atom data structure. The

information about each atom sent in the message is the

charge on the atom and its position. Hence the increase in

memory consumption at the beginning of each time is equal

to 75 × (N/Pc) × 32 bytes = 0.23 MB. However, even this

transient memory usage in MD simulations is not significant.

C. Smaller problem sizes

An important observation is that building a 107 billion

atom molecular system and doing useful science with it, will

be a challenge for biophysicists. Simulating such a large

system to observe anything meaningful will require long

simulations (milliseconds to seconds). The largest classical

MD simulations done so far involve up to 3 million atoms,

a five orders of magnitude difference. Hence, many scientists

will still simulate systems smaller than 107 billion atoms and

16 Å

16 Å

8 Å
8 Å

4 Å
4 Å

Fig. 1. A biomolecular simulation box (only two dimensions shown) split into cells of size 16× 16× 16 Å (extreme left). Each processor holds one such

cell containing approximately 400 atoms. When there are fewer atoms per processor (say 50), the three dimensions are further split to give cells of size

8× 8× 8 Å (center). When there are around 6 atoms per processor, each dimension is reduced to one-fourth the original size (extreme right).

and computation, at every time step, each node sends positions

and velocities of the atoms to its communicating neighbors and

once it has received its incoming messages, calculates forces

on its atoms. The expression for the time per step of an MD

computation is:

T =
1

η
× N

Pc
× 33547× tc + 1376×

�
ts +

N

Pc
4tw

�
(III.3)

Substituting the expression for T from equation (III.3) in

equation (III.2),

1

η
× N

Pc
× 33547× tc + 1376×

�
ts +

N

Pc
4tw

�
< 3.6× 10−3

For the weak scaling analysis, putting in the values of ratio

of atoms to processors, N/Pc = 100 and tc = 10−10
seconds,

1

η
× 33547× 10−8 + 1376× (ts + 400tw) < 3.6× 10−3

1376× (ts + 400tw) < 3.6× 10−3 − 1

η
× 3.35× 10−4

ts + 400tw < 2.62× 10−6 − 1

η
× 2.44× 10−7

Figure 2 plots the values of ts and tw based on the

equation above for different values of η. For the case of

perfect efficiency, MD simulations do not put a considerable

requirement on the per-processor communication bandwidth.

However, it does require that the network latencies be small.

If we look at the case of η = 0.125, the application would

require a latency of below a microsecond and a per-processor

communication bandwidth of 2 GB/s. It is also important to

mention that our analysis assumes serialization of messages

put on the network by a node arising from all of its 1024
cores. We expect that for future machines, multiple cores on a

node will be able to inject messages on the network in parallel.

B. Memory requirements
MD codes have a relatively small memory footprint since

the number of atoms on each core is small (between 5 to

400). However at the start of each time step, when atoms

 0.1

 1

 10

 100

 1000

10-4 10-3 10-2 10-1 100 101

B
an

dw
id

th
 (4

/t w
) i

n
G

B
/s

Latency (ts) in microseconds

Feasibility Region for MD

η = 0.1
η = 0.125

η = 0.25
η = 0.5

η = 1

Fig. 2. Latency and bandwidth requirements for MD (weak scaling)

are received by the processing cores, the amount of memory

needed increases. This is proportional to the total number

of messages received by each core (75 for the case above).

The size of each message is equal to N/Pc multiplied by

the memory requirements for the atom data structure. The

information about each atom sent in the message is the

charge on the atom and its position. Hence the increase in

memory consumption at the beginning of each time is equal

to 75 × (N/Pc) × 32 bytes = 0.23 MB. However, even this

transient memory usage in MD simulations is not significant.

C. Smaller problem sizes

An important observation is that building a 107 billion

atom molecular system and doing useful science with it, will

be a challenge for biophysicists. Simulating such a large

system to observe anything meaningful will require long

simulations (milliseconds to seconds). The largest classical

MD simulations done so far involve up to 3 million atoms,

a five orders of magnitude difference. Hence, many scientists

will still simulate systems smaller than 107 billion atoms and

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Inferring network parameters

9

16 Å

16 Å

8 Å
8 Å

4 Å
4 Å

Fig. 1. A biomolecular simulation box (only two dimensions shown) split into cells of size 16× 16× 16 Å (extreme left). Each processor holds one such

cell containing approximately 400 atoms. When there are fewer atoms per processor (say 50), the three dimensions are further split to give cells of size

8× 8× 8 Å (center). When there are around 6 atoms per processor, each dimension is reduced to one-fourth the original size (extreme right).

and computation, at every time step, each node sends positions

and velocities of the atoms to its communicating neighbors and

once it has received its incoming messages, calculates forces

on its atoms. The expression for the time per step of an MD

computation is:

T =
1

η
× N

Pc
× 33547× tc + 1376×

�
ts +

N

Pc
4tw

�
(III.3)

Substituting the expression for T from equation (III.3) in

equation (III.2),

1

η
× N

Pc
× 33547× tc + 1376×

�
ts +

N

Pc
4tw

�
< 3.6× 10−3

For the weak scaling analysis, putting in the values of ratio

of atoms to processors, N/Pc = 100 and tc = 10−10
seconds,

1

η
× 33547× 10−8 + 1376× (ts + 400tw) < 3.6× 10−3

1376× (ts + 400tw) < 3.6× 10−3 − 1

η
× 3.35× 10−4

ts + 400tw < 2.62× 10−6 − 1

η
× 2.44× 10−7

Figure 2 plots the values of ts and tw based on the

equation above for different values of η. For the case of

perfect efficiency, MD simulations do not put a considerable

requirement on the per-processor communication bandwidth.

However, it does require that the network latencies be small.

If we look at the case of η = 0.125, the application would

require a latency of below a microsecond and a per-processor

communication bandwidth of 2 GB/s. It is also important to

mention that our analysis assumes serialization of messages

put on the network by a node arising from all of its 1024
cores. We expect that for future machines, multiple cores on a

node will be able to inject messages on the network in parallel.

B. Memory requirements
MD codes have a relatively small memory footprint since

the number of atoms on each core is small (between 5 to

400). However at the start of each time step, when atoms

 0.1

 1

 10

 100

 1000

10-4 10-3 10-2 10-1 100 101

B
an

dw
id

th
 (4

/t w
) i

n
G

B
/s

Latency (ts) in microseconds

Feasibility Region for MD

η = 0.1
η = 0.125

η = 0.25
η = 0.5

η = 1

Fig. 2. Latency and bandwidth requirements for MD (weak scaling)

are received by the processing cores, the amount of memory

needed increases. This is proportional to the total number

of messages received by each core (75 for the case above).

The size of each message is equal to N/Pc multiplied by

the memory requirements for the atom data structure. The

information about each atom sent in the message is the

charge on the atom and its position. Hence the increase in

memory consumption at the beginning of each time is equal

to 75 × (N/Pc) × 32 bytes = 0.23 MB. However, even this

transient memory usage in MD simulations is not significant.

C. Smaller problem sizes

An important observation is that building a 107 billion

atom molecular system and doing useful science with it, will

be a challenge for biophysicists. Simulating such a large

system to observe anything meaningful will require long

simulations (milliseconds to seconds). The largest classical

MD simulations done so far involve up to 3 million atoms,

a five orders of magnitude difference. Hence, many scientists

will still simulate systems smaller than 107 billion atoms and

16 Å

16 Å

8 Å
8 Å

4 Å
4 Å

Fig. 1. A biomolecular simulation box (only two dimensions shown) split into cells of size 16× 16× 16 Å (extreme left). Each processor holds one such

cell containing approximately 400 atoms. When there are fewer atoms per processor (say 50), the three dimensions are further split to give cells of size

8× 8× 8 Å (center). When there are around 6 atoms per processor, each dimension is reduced to one-fourth the original size (extreme right).

and computation, at every time step, each node sends positions

and velocities of the atoms to its communicating neighbors and

once it has received its incoming messages, calculates forces

on its atoms. The expression for the time per step of an MD

computation is:

T =
1

η
× N

Pc
× 33547× tc + 1376×

�
ts +

N

Pc
4tw

�
(III.3)

Substituting the expression for T from equation (III.3) in

equation (III.2),

1

η
× N

Pc
× 33547× tc + 1376×

�
ts +

N

Pc
4tw

�
< 3.6× 10−3

For the weak scaling analysis, putting in the values of ratio

of atoms to processors, N/Pc = 100 and tc = 10−10
seconds,

1

η
× 33547× 10−8 + 1376× (ts + 400tw) < 3.6× 10−3

1376× (ts + 400tw) < 3.6× 10−3 − 1

η
× 3.35× 10−4

ts + 400tw < 2.62× 10−6 − 1

η
× 2.44× 10−7

Figure 2 plots the values of ts and tw based on the

equation above for different values of η. For the case of

perfect efficiency, MD simulations do not put a considerable

requirement on the per-processor communication bandwidth.

However, it does require that the network latencies be small.

If we look at the case of η = 0.125, the application would

require a latency of below a microsecond and a per-processor

communication bandwidth of 2 GB/s. It is also important to

mention that our analysis assumes serialization of messages

put on the network by a node arising from all of its 1024
cores. We expect that for future machines, multiple cores on a

node will be able to inject messages on the network in parallel.

B. Memory requirements
MD codes have a relatively small memory footprint since

the number of atoms on each core is small (between 5 to

400). However at the start of each time step, when atoms

 0.1

 1

 10

 100

 1000

10-4 10-3 10-2 10-1 100 101

B
an

dw
id

th
 (4

/t w
) i

n
G

B
/s

Latency (ts) in microseconds

Feasibility Region for MD

η = 0.1
η = 0.125

η = 0.25
η = 0.5

η = 1

Fig. 2. Latency and bandwidth requirements for MD (weak scaling)

are received by the processing cores, the amount of memory

needed increases. This is proportional to the total number

of messages received by each core (75 for the case above).

The size of each message is equal to N/Pc multiplied by

the memory requirements for the atom data structure. The

information about each atom sent in the message is the

charge on the atom and its position. Hence the increase in

memory consumption at the beginning of each time is equal

to 75 × (N/Pc) × 32 bytes = 0.23 MB. However, even this

transient memory usage in MD simulations is not significant.

C. Smaller problem sizes

An important observation is that building a 107 billion

atom molecular system and doing useful science with it, will

be a challenge for biophysicists. Simulating such a large

system to observe anything meaningful will require long

simulations (milliseconds to seconds). The largest classical

MD simulations done so far involve up to 3 million atoms,

a five orders of magnitude difference. Hence, many scientists

will still simulate systems smaller than 107 billion atoms and

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Smaller problem sizes

10

it is important to analyze how MD codes will perform in this
regime, which we can loosely call “strong scaling”.

We will consider three cases for smaller problem sizes
where the ratio of number of atoms to cores is 50, 20 and
5 respectively. Each of these cases will require the splitting of
the basic cell of dimensions 16× 16× 16 Å, containing 400
atoms, into a number of smaller cells:

• 50 atoms per core (50 billion atoms) – Dimensions of
each cell will be 8× 8× 8 Å.

• 20 atoms per core (20 billion atoms) – Dimensions of
each cell will be 5.33× 5.33× 8 Å.

• 5 atoms per core (5 billion atoms) – Dimensions of each
cell will be 4× 4× 4 Å (see Figure 1, extreme right).

Based on the total number of atoms in each of these smaller
simulations, we can calculate the time per step for these cases
(see Table I).

Atoms Atoms/core Time (ms)

107 billion 100 3.602
53.6 billion 50 1.801
21.5 billion 20 0.720
5.4 billion 5 0.180

TABLE I
TIME PER STEP BOUNDS FOR MD SYSTEMS OF VARYING SIZES

Each case leads to different amounts of computation and
communication and we can write equations for the smaller
problems, similar to the weak scaling case:

T50 =
1

η
× N50

Pc
× 33547× tc + 1856×

�
ts +

N50

Pc
4tw

�

T20 =
1

η
× N20

Pc
× 33547× tc + 2672×

�
ts +

N20

Pc
4tw

�

T5 =
1

η
× N5

Pc
× 33547× tc + 5120×

�
ts +

N5

Pc
4tw

�

Putting the values of N50/Pc = 50, N20/Pc = 20, N5/Pc = 5
and tc = 0.1 ns,

ts + 200tw < 9.7× 10−7 − 1

η
× 9.04× 10−8

ts + 80tw < 2.69× 10−7 − 1

η
× 2.51× 10−8

ts + 20tw < 3.52× 10−8 − 1

η
× 3.28× 10−9

Using these equations, we plot the feasibility regions for 5 to
107 billion atoms in Figure 3. It is evident that smaller problem
sizes put stronger constraints on the network. For example,
doing a 5.4 billion atom simulation at exascale would require
a latency in the range of 10 nanoseconds and a bandwidth in
the range of 10 GB/s.

IV. COSMOLOGICAL SIMULATIONS

Cosmological simulations are used to understand the origin
and evolution of stars, galaxies and the universe. The uni-

 1

 10

 100

 1000

10-5 10-4 10-3 10-2 10-1 100

B
an

dw
id

th
 (4

/t w
) i

n
G

B
/s

Latency (ts) in microseconds

Feasibility Region for MD

5 atoms per core
20 atoms per core
50 atoms per core

100 atoms per core

Fig. 3. Latency and bandwidth requirements for MD (smaller problem sizes)

verse consists of two basic types of matter–baryonic matter
composed of atoms and molecules and non-baryonic “dark”
matter whose composition is unknown. Baryonic matter forms
the part of the universe that astronomers can see directly and
requires gas dynamics simulations. Dark matter, the dominant
constituent of the universe for a significant portion of the time
scales of interest, can be considered a collisionless fluid and
can be simulated using N -body dynamics.

For the purpose of discussion in this paper, we will concen-
trate on N -body simulations which are performed by codes
known as gravity solvers. There are different approaches
to solving the N -body problem: 1. Direct methods where
all particle interactions are considered explicitly leading to
O(N2) computation, 2. Tree methods which involve a hi-
erarchical multipole expansion reducing the complexity to
O(N lgN), and 3. Particle-mesh or “grid” methods where
forces are calculated on a structured mesh. Examples of
applications which use tree methods are PkdGRAV [8] and
ChaNGa [9]. Examples of grid/AMR codes are Enzo [10]
and FLASH [11]. We conduct our analysis in the context
of the tree-based Barnes-Hut method [19], which gives an
O(N lgN) algorithm for simulating self-gravitating systems.

We begin by presenting an overview of N -body compu-
tations with the Barnes-Hut algorithm. First, particles are
divided among cores through domain decomposition of the
simulated universe, represented by a cube. We perform our
analysis in the context of Oct decomposition, which entails the
division of the simulation space into geometrically uniform
subregions (or cells) in a recursive manner. This division
places a tree-structure on the simulation space: the root of the
tree represents the entire simulation space, which we assume
to be a cube of length c. This cube is divided into eight
cells of length c/2, each representing a child of the root cell.
Each of these eight cells has eight children of its own, and so
on. Particles are grouped into appropriately sized buckets of
particles, which form the leaves of this tree. Each of the Pc

cores holds a section of the space represented by a contiguous
set of buckets. Therefore, the tree is distributed across cores.

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Computational Cosmology

• Several approaches to computing trajectories of
bodies under gravitational attraction

• Direct, all-pairs

• Tree-based approximate methods

• Particle-mesh or “grid” methods

• We consider locality-aware tree codes

11

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Modeling problem size

• What problems will be of interest given an exascale-
level machine

• Extrapolate from current state-of-the-art simulations

• About 8192 particles are required per core for good
parallel efficiency at petascale

• Given O(N log N)/P work per core, about 6350
particles per core are needed at exascale (total 6.8
trillion)

12

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Barnes-Hut computation

• Analyze algorithm:

• Domain decomposition =>
distributed spatial tree

• Every processor core gets a
number of leaves

• For each leaf l, Traverse(l,
root)

13

Traverse(leaf l, node n) {
 if(IsLeaf(n)) {
 LeafForces(l, n);
 }
 else if(Side(n)/|r(n)-r(l)| < ϴt)
{
 CellForces(l, n);
 }
 else {
 foreach(node c in Children(n)) {
 Traverse(l, c);
 }
}

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Total computation

• Number of floating point operations per iteration,

• To attain a rate of 1 Exaflop/s,

• T < 6.52s

Forces on particles are calculated by performing a traversal

of the Barnes-Hut tree for each bucket. This procedure is

carried out on a per-bucket (as opposed to a per-particle) basis

to amortize the traversal cost over several proximal particles,

while keeping the amount of extra work done because of

clustering to a minimum. The traversal for a bucket b at

depth d begins at the root of the tree. For each cell n that

is encountered, an acceptance criterion is applied to decide

whether or not n is sufficiently distant from b. The acceptance

criterion is parameterized by the opening angle, θT , which is

constant. Let Dn be the length of cell n, and rb,n = |rb−rn|,
the distance between b and n. If Dn/rb,n < θT , the force on

b due to all the particles within cell n may be approximated

by the multipole expansion of n, Mn. If not, each child

c of n must be considered in turn by expanding the cell

n. Note that expanding a cell may require communication,

since the tree is distributed across processors. The per-bucket

traversal procedure is outlined in Algorithm 2 below. The force

computed for each particle is used to update its position and

velocity. Subsequently, domain decomposition is performed

and a new iteration of force evaluation begins.

Algorithm 2 BarnesHut(n, b) : Cell n, Bucket b

if n is a bucket then
bucketForces(b,n)

else if Dn/|rb − rn| < θT then
cellForces(b,Mn)

else
for all c ∈ children(n) do

BarnesHut(c, b)
end for

end if

We estimate the resolution of exascale simulations by ex-

trapolating from state-of-the art simulations at the Petaflop/s

level. It has been observed that about 213 particles per core are

required to maintain a good scaling profile for ChaNGa [9] for

current machines. Recall that the total number of interactions

per time step for an N -body system using the Barnes-Hut

technique is O(N lgN). This suggests that in order to generate

an equivalent amount of work per processor core as we scale,

the number of particles required per core decreases slightly:

N � lgN �

P �
c

=
N lgN

Pc

where N �
and N are the numbers of particles required at petas-

cale (P �
c cores) and exascale (Pc cores). Given P �

c = 220, and

particles per core at petascale = 213, we get N � = 233. Using

Pc = 230, results in a total of N = 6.2 × 240 ≈ 6.82 trillion

particles, i.e. roughly 6350 particles per core at exascale.

A. Computation
Realistic simulations treat the input set of particles as part of

larger structures through the application of periodic boundary

conditions. When coupled with the uniformity of particle

distribution, the assumption of periodic boundary conditions

simplifies our analysis. In essence, each bucket of particles in

the root cell, regardless of its position, interacts with exactly

the same number of cells and particles as every other. This

allows us to focus our analysis of the number of expansions

to a single, arbitrary bucket. In order to calculate the number

of cell expansions required to compute the gravitational forces

on the particles of a bucket b, we consider each level of the

tree in turn. Let the center of mass of b be situated at O. In

general, a cell n at level d of the tree has an edge length of

c/2d. This cell will be expanded by b if the distance between

O and the center of mass of n, written rb,n(d), is such that

rb,n(d) ≤
c

2d.θT

Therefore, bucket b expands all the cells at level d whose

centers lie within the sphere of radius rT (d) = c/2d.θT
described around O. Usually, 0.5 ≤ θT < 1, so that c/2d ≤
rT (d) < c/2d−1

. This means that we can calculate lower and

upper bounds on the number of cells at level d that b expands

by considering two spheres around O, of radius r0(d) = c/2d

and 2r0(d) = c/2d−1
, respectively. In particular, the centers

of mass of 7 cells of length c/2d fall within the first sphere.

Furthermore, 125 cells of the same edge length intersect with

the second sphere. However, the centers of mass of only 33 of

these 125 fall within the second sphere. By definition these are

the only cells that are expanded. Therefore, bucket b expands

between 7 and 33 cells at depth d, for every d. Therefore,

the total number of calls to the acceptance criterion can be

bounded above by:

33× N

B
× lg

N

B
× 1

lg 8
= 11× N

B
× lg

N

B

A similar argument can be used to calculate the number

of interactions performed. Consider a bucket b for which the

Barnes-Hut tree is being traversed. Let Ibc(d) be the number of

bucket-to-cell interactions at depth d and Ce(d), the number

of cells expanded at depth d. Then, Ibc(d) = 8 × Ce(d −
1) − Ce(d). Since Ce(d) = 33 for all d, we have Ibc(d) =
7 × 33. With B particles per bucket and lg(N/B)/3 levels

in the tree, the total number of interactions per bucket equals

77 × B lg(N/B). For N/B buckets, this implies a total of

Ipc = 77 × N lg(N/B) particle-cell interactions. To this, we

add the number of particle-particle interactions: each bucket

expands 32 other buckets, resulting in ≈ 33×B×B particle-

particle interactions per bucket, and Ipp = 33×BN particle-

particle interactions in all. The total number of flops for each

type of interaction is listed below:

312× 77×N × lg
N

B
+ 38× 33×B ×N

The figures of 312 flops for each hexadecapole particle-cell

interaction and 38 flops per particle-particle interaction are

obtained from ChaNGa. In order to obtain a computational

rate of at least 1 Exaflop/s, for N = 6.2 × 240 and B = 10,

using equation (III.1) we get,

24024×N lg(N/B) + 1254×BN

T
> 1018

Forces on particles are calculated by performing a traversal

of the Barnes-Hut tree for each bucket. This procedure is

carried out on a per-bucket (as opposed to a per-particle) basis

to amortize the traversal cost over several proximal particles,

while keeping the amount of extra work done because of

clustering to a minimum. The traversal for a bucket b at

depth d begins at the root of the tree. For each cell n that

is encountered, an acceptance criterion is applied to decide

whether or not n is sufficiently distant from b. The acceptance

criterion is parameterized by the opening angle, θT , which is

constant. Let Dn be the length of cell n, and rb,n = |rb−rn|,
the distance between b and n. If Dn/rb,n < θT , the force on

b due to all the particles within cell n may be approximated

by the multipole expansion of n, Mn. If not, each child

c of n must be considered in turn by expanding the cell

n. Note that expanding a cell may require communication,

since the tree is distributed across processors. The per-bucket

traversal procedure is outlined in Algorithm 2 below. The force

computed for each particle is used to update its position and

velocity. Subsequently, domain decomposition is performed

and a new iteration of force evaluation begins.

Algorithm 2 BarnesHut(n, b) : Cell n, Bucket b

if n is a bucket then
bucketForces(b,n)

else if Dn/|rb − rn| < θT then
cellForces(b,Mn)

else
for all c ∈ children(n) do

BarnesHut(c, b)
end for

end if

We estimate the resolution of exascale simulations by ex-

trapolating from state-of-the art simulations at the Petaflop/s

level. It has been observed that about 213 particles per core are

required to maintain a good scaling profile for ChaNGa [9] for

current machines. Recall that the total number of interactions

per time step for an N -body system using the Barnes-Hut

technique is O(N lgN). This suggests that in order to generate

an equivalent amount of work per processor core as we scale,

the number of particles required per core decreases slightly:

N � lgN �

P �
c

=
N lgN

Pc

where N �
and N are the numbers of particles required at petas-

cale (P �
c cores) and exascale (Pc cores). Given P �

c = 220, and

particles per core at petascale = 213, we get N � = 233. Using

Pc = 230, results in a total of N = 6.2 × 240 ≈ 6.82 trillion

particles, i.e. roughly 6350 particles per core at exascale.

A. Computation
Realistic simulations treat the input set of particles as part of

larger structures through the application of periodic boundary

conditions. When coupled with the uniformity of particle

distribution, the assumption of periodic boundary conditions

simplifies our analysis. In essence, each bucket of particles in

the root cell, regardless of its position, interacts with exactly

the same number of cells and particles as every other. This

allows us to focus our analysis of the number of expansions

to a single, arbitrary bucket. In order to calculate the number

of cell expansions required to compute the gravitational forces

on the particles of a bucket b, we consider each level of the

tree in turn. Let the center of mass of b be situated at O. In

general, a cell n at level d of the tree has an edge length of

c/2d. This cell will be expanded by b if the distance between

O and the center of mass of n, written rb,n(d), is such that

rb,n(d) ≤
c

2d.θT

Therefore, bucket b expands all the cells at level d whose

centers lie within the sphere of radius rT (d) = c/2d.θT
described around O. Usually, 0.5 ≤ θT < 1, so that c/2d ≤
rT (d) < c/2d−1

. This means that we can calculate lower and

upper bounds on the number of cells at level d that b expands

by considering two spheres around O, of radius r0(d) = c/2d

and 2r0(d) = c/2d−1
, respectively. In particular, the centers

of mass of 7 cells of length c/2d fall within the first sphere.

Furthermore, 125 cells of the same edge length intersect with

the second sphere. However, the centers of mass of only 33 of

these 125 fall within the second sphere. By definition these are

the only cells that are expanded. Therefore, bucket b expands

between 7 and 33 cells at depth d, for every d. Therefore,

the total number of calls to the acceptance criterion can be

bounded above by:

33× N

B
× lg

N

B
× 1

lg 8
= 11× N

B
× lg

N

B

A similar argument can be used to calculate the number

of interactions performed. Consider a bucket b for which the

Barnes-Hut tree is being traversed. Let Ibc(d) be the number of

bucket-to-cell interactions at depth d and Ce(d), the number

of cells expanded at depth d. Then, Ibc(d) = 8 × Ce(d −
1) − Ce(d). Since Ce(d) = 33 for all d, we have Ibc(d) =
7 × 33. With B particles per bucket and lg(N/B)/3 levels

in the tree, the total number of interactions per bucket equals

77 × B lg(N/B). For N/B buckets, this implies a total of

Ipc = 77 × N lg(N/B) particle-cell interactions. To this, we

add the number of particle-particle interactions: each bucket

expands 32 other buckets, resulting in ≈ 33×B×B particle-

particle interactions per bucket, and Ipp = 33×BN particle-

particle interactions in all. The total number of flops for each

type of interaction is listed below:

312× 77×N × lg
N

B
+ 38× 33×B ×N

The figures of 312 flops for each hexadecapole particle-cell

interaction and 38 flops per particle-particle interaction are

obtained from ChaNGa. In order to obtain a computational

rate of at least 1 Exaflop/s, for N = 6.2 × 240 and B = 10,

using equation (III.1) we get,

24024×N lg(N/B) + 1254×BN

T
> 1018

14

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Total communication

15

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Total communication

• Could obtain communication from number of
expansions E(l) for every level l

15

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Total communication

• Could obtain communication from number of
expansions E(l) for every level l

• However, cores on an SMP node can reuse remote
data through software caching

15

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Total communication

• Could obtain communication from number of
expansions E(l) for every level l

• However, cores on an SMP node can reuse remote
data through software caching

• Communication with remote data caching:

• Each SMP node holds a cube of space

• Cores holding particles near surface of cube request remote
data - other cores reuse data

• Find each SMP node’s halo of requests at each level of tree

15

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Communication analysis

or T < 6.52 (IV.1)

This suggests that we need a time per step of 6.52 seconds to

achieve 1 Exaflop/s performance.

B. Communication

Now, we estimate the volume of communication generated

by the Barnes-Hut algorithm. Recall that particles are grouped

into buckets of size B each. The even distribution of N
particles among Pn processor nodes results in N/(PnB)
buckets per processor node. Furthermore, given the even

distribution of particles, each node receives an approximately

cubic subdomain of edge length a = c/ 3
√
Pn. This is depicted

as the striped area in Figure 4. Let nb be the number of buckets

along an edge of the cube. Then, n3
b = N/(PnB), so that

nb = 3
�

N/(PnB). The processor cores that perform traversals

for buckets within this volume request data in the form of cells

and particles, both from remote nodes and local cores within

the same node. However, buckets closer to the center of this

cube request strictly a subset of the remote cells and particles

requested by buckets closer to the faces. This observation

is leveraged in production quality simulators by “caching”

cells and particles fetched from remote sources, resulting in

the reuse of remote data, and reducing the communication

cost of the algorithm. Therefore, we attribute the aggregate

remote communication generated by a processor node to the

union of all cells and particles requested by the buckets along

the faces of the cube. As shown in Figure 4, with a bound

of θT = 0.5, buckets along the faces of the cube expand

a total of 12n2
b + 12 × 3nb + 8 remote buckets of edge

length c 3
�

B/N . Therefore, each node requests the particles

of Cbkts = 12n2
b + 36nb + 8 buckets. The buckets along the

faces also expand a total of 12(nb/2)2 + 36(nb/2) + 8 cells

with edge length 2c 3
�

B/N , 12(nb/4)2 + 36(nb/4) + 8 cells

with edge length 22c 3
�

B/N , etc. Therefore, the number of

cells requested from remote nodes up to size a = c/ 3
√
Pn is:

Ccell

1 =
lgnb�

i=0

�
12

�nb

2i

�2
+ 36

�nb

2i

�
+ 8

�

= 16n2
b + 72nb + 8 lg nb − 32 cells

For i ≤ lg nb, the above reasoning is valid since there are

multiple cells (or for i = lg nb, a single cell of edge length

a) lining a processor node’s subvolume. We must consider

cells with edge length greater than a separately. Notice that

there is an asymmetry of communication volume between

processor nodes: two nodes may request slightly different

numbers of higher-level cells depending on their positions

within the simulated space. The greatest difference in the

number of cells expanded occurs between the eight central

processor nodes and the ones situated at the eight corners of

the simulated universe. Even so, with θT = 0.5, the number of

cells expanded by the processor nodes in the corners equals 31,

whereas 30 cells are expanded by the eight central processor

nodes. We assume that each processor stores the root cell

representing the entire simulation space. Therefore, we bound

2b

4b

8b

b

Fig. 4. Communication pattern of a single node at the bottom three depths

in the Barnes-Hut tree. The striped region in the center represents the cubic

subvolume of particles assigned to the node, and the immediate squares

surrounding it represent the buckets along its faces. Progressively larger

squares represent remote cells at different depths that are requested by the

node for θT = 0.5. Circles of radii 2b, 4b and 8b described around the

centers of corner buckets determine which cells are requested.

the amount of communication generated per processor by the

expansion of higher-level cells as follows:

Ccell

2 = 31

�
lgPn

3
− 1

�
cells

The expansion of each cell yields eight children. We assume

that for each expanded cell, a single message is generated

which contains all its children. This model may be extended

so that whenever a cell is expanded by a processor node, it

receives a subtree of depth m below that cell. The tradeoff to

consider there is that between the number of messages (fewer

for larger m) and the amount of network bandwidth wasted

(more for larger m) because of requests for cells that are

never needed by the traversal. We keep our analysis simple

by setting m = 1. This results in about (Ccell

1 + Ccell

2)/8
messages containing eight cells each, and Cbkts

messages to

communicate B particles each.

We now use Ccell

1 , Ccell

2 and Cbkts
to calculate constraints on

ts and tw. In the following, we assume that the total number of

flops are distributed evenly across processors (i.e. we assume

perfect load balance). By setting Pn = 220, we get nb ≈ 87.

Therefore, the total number of cell expansion messages equals

(Ccell

1 + Ccell

2)/8 ≈ 15946, and the total number of particle

messages is Cbkts = 93968. We take the multipole moments

of each cell to require 224 bytes (56 words) and each particle’s

coordinate information to be 40 bytes. This leads to 100 words

for 10 particles in one bucket (these values are taken from

ChaNGa). Assuming a network free of contention, this results

in a communication time of

Tcomm = 15946(ts + 56tw) + 93968(ts + 100tw)

Leaf level:
 12nb2 + 36nb + 8
1 level above leaves:
 12(nb/2)2 + 36(nb/2) + 8
2 levels above leaves:
 12(nb/4)2 + 36(nb/4) + 8
3 levels above leaves:
 12(nb/8)2 + 36(nb/8) + 8
…

Total:

or T < 6.52 (IV.1)

This suggests that we need a time per step of 6.52 seconds to

achieve 1 Exaflop/s performance.

B. Communication

Now, we estimate the volume of communication generated

by the Barnes-Hut algorithm. Recall that particles are grouped

into buckets of size B each. The even distribution of N
particles among Pn processor nodes results in N/(PnB)
buckets per processor node. Furthermore, given the even

distribution of particles, each node receives an approximately

cubic subdomain of edge length a = c/ 3
√
Pn. This is depicted

as the striped area in Figure 4. Let nb be the number of buckets

along an edge of the cube. Then, n3
b = N/(PnB), so that

nb = 3
�

N/(PnB). The processor cores that perform traversals

for buckets within this volume request data in the form of cells

and particles, both from remote nodes and local cores within

the same node. However, buckets closer to the center of this

cube request strictly a subset of the remote cells and particles

requested by buckets closer to the faces. This observation

is leveraged in production quality simulators by “caching”

cells and particles fetched from remote sources, resulting in

the reuse of remote data, and reducing the communication

cost of the algorithm. Therefore, we attribute the aggregate

remote communication generated by a processor node to the

union of all cells and particles requested by the buckets along

the faces of the cube. As shown in Figure 4, with a bound

of θT = 0.5, buckets along the faces of the cube expand

a total of 12n2
b + 12 × 3nb + 8 remote buckets of edge

length c 3
�

B/N . Therefore, each node requests the particles

of Cbkts = 12n2
b + 36nb + 8 buckets. The buckets along the

faces also expand a total of 12(nb/2)2 + 36(nb/2) + 8 cells

with edge length 2c 3
�

B/N , 12(nb/4)2 + 36(nb/4) + 8 cells

with edge length 22c 3
�

B/N , etc. Therefore, the number of

cells requested from remote nodes up to size a = c/ 3
√
Pn is:

Ccell

1 =
lgnb�

i=0

�
12

�nb

2i

�2
+ 36

�nb

2i

�
+ 8

�

= 16n2
b + 72nb + 8 lg nb − 32 cells

For i ≤ lg nb, the above reasoning is valid since there are

multiple cells (or for i = lg nb, a single cell of edge length

a) lining a processor node’s subvolume. We must consider

cells with edge length greater than a separately. Notice that

there is an asymmetry of communication volume between

processor nodes: two nodes may request slightly different

numbers of higher-level cells depending on their positions

within the simulated space. The greatest difference in the

number of cells expanded occurs between the eight central

processor nodes and the ones situated at the eight corners of

the simulated universe. Even so, with θT = 0.5, the number of

cells expanded by the processor nodes in the corners equals 31,

whereas 30 cells are expanded by the eight central processor

nodes. We assume that each processor stores the root cell

representing the entire simulation space. Therefore, we bound

2b

4b

8b

b

Fig. 4. Communication pattern of a single node at the bottom three depths

in the Barnes-Hut tree. The striped region in the center represents the cubic

subvolume of particles assigned to the node, and the immediate squares

surrounding it represent the buckets along its faces. Progressively larger

squares represent remote cells at different depths that are requested by the

node for θT = 0.5. Circles of radii 2b, 4b and 8b described around the

centers of corner buckets determine which cells are requested.

the amount of communication generated per processor by the

expansion of higher-level cells as follows:

Ccell

2 = 31

�
lgPn

3
− 1

�
cells

The expansion of each cell yields eight children. We assume

that for each expanded cell, a single message is generated

which contains all its children. This model may be extended

so that whenever a cell is expanded by a processor node, it

receives a subtree of depth m below that cell. The tradeoff to

consider there is that between the number of messages (fewer

for larger m) and the amount of network bandwidth wasted

(more for larger m) because of requests for cells that are

never needed by the traversal. We keep our analysis simple

by setting m = 1. This results in about (Ccell

1 + Ccell

2)/8
messages containing eight cells each, and Cbkts

messages to

communicate B particles each.

We now use Ccell

1 , Ccell

2 and Cbkts
to calculate constraints on

ts and tw. In the following, we assume that the total number of

flops are distributed evenly across processors (i.e. we assume

perfect load balance). By setting Pn = 220, we get nb ≈ 87.

Therefore, the total number of cell expansion messages equals

(Ccell

1 + Ccell

2)/8 ≈ 15946, and the total number of particle

messages is Cbkts = 93968. We take the multipole moments

of each cell to require 224 bytes (56 words) and each particle’s

coordinate information to be 40 bytes. This leads to 100 words

for 10 particles in one bucket (these values are taken from

ChaNGa). Assuming a network free of contention, this results

in a communication time of

Tcomm = 15946(ts + 56tw) + 93968(ts + 100tw)

16

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Upper-level calls

• Previous reasoning valid as long as edge length of
requested calls <= c/(Pn)1/3

• Use reasoning similar to calculation of E(l) to get
number of larger, upper-level cells requested per
SMP node,

17

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Upper-level calls

• Previous reasoning valid as long as edge length of
requested calls <= c/(Pn)1/3

• Use reasoning similar to calculation of E(l) to get
number of larger, upper-level cells requested per
SMP node,

or T < 6.52 (IV.1)

This suggests that we need a time per step of 6.52 seconds to

achieve 1 Exaflop/s performance.

B. Communication

Now, we estimate the volume of communication generated

by the Barnes-Hut algorithm. Recall that particles are grouped

into buckets of size B each. The even distribution of N
particles among Pn processor nodes results in N/(PnB)
buckets per processor node. Furthermore, given the even

distribution of particles, each node receives an approximately

cubic subdomain of edge length a = c/ 3
√
Pn. This is depicted

as the striped area in Figure 4. Let nb be the number of buckets

along an edge of the cube. Then, n3
b = N/(PnB), so that

nb = 3
�

N/(PnB). The processor cores that perform traversals

for buckets within this volume request data in the form of cells

and particles, both from remote nodes and local cores within

the same node. However, buckets closer to the center of this

cube request strictly a subset of the remote cells and particles

requested by buckets closer to the faces. This observation

is leveraged in production quality simulators by “caching”

cells and particles fetched from remote sources, resulting in

the reuse of remote data, and reducing the communication

cost of the algorithm. Therefore, we attribute the aggregate

remote communication generated by a processor node to the

union of all cells and particles requested by the buckets along

the faces of the cube. As shown in Figure 4, with a bound

of θT = 0.5, buckets along the faces of the cube expand

a total of 12n2
b + 12 × 3nb + 8 remote buckets of edge

length c 3
�

B/N . Therefore, each node requests the particles

of Cbkts = 12n2
b + 36nb + 8 buckets. The buckets along the

faces also expand a total of 12(nb/2)2 + 36(nb/2) + 8 cells

with edge length 2c 3
�

B/N , 12(nb/4)2 + 36(nb/4) + 8 cells

with edge length 22c 3
�

B/N , etc. Therefore, the number of

cells requested from remote nodes up to size a = c/ 3
√
Pn is:

Ccell

1 =
lgnb�

i=0

�
12

�nb

2i

�2
+ 36

�nb

2i

�
+ 8

�

= 16n2
b + 72nb + 8 lg nb − 32 cells

For i ≤ lg nb, the above reasoning is valid since there are

multiple cells (or for i = lg nb, a single cell of edge length

a) lining a processor node’s subvolume. We must consider

cells with edge length greater than a separately. Notice that

there is an asymmetry of communication volume between

processor nodes: two nodes may request slightly different

numbers of higher-level cells depending on their positions

within the simulated space. The greatest difference in the

number of cells expanded occurs between the eight central

processor nodes and the ones situated at the eight corners of

the simulated universe. Even so, with θT = 0.5, the number of

cells expanded by the processor nodes in the corners equals 31,

whereas 30 cells are expanded by the eight central processor

nodes. We assume that each processor stores the root cell

representing the entire simulation space. Therefore, we bound

2b

4b

8b

b

Fig. 4. Communication pattern of a single node at the bottom three depths

in the Barnes-Hut tree. The striped region in the center represents the cubic

subvolume of particles assigned to the node, and the immediate squares

surrounding it represent the buckets along its faces. Progressively larger

squares represent remote cells at different depths that are requested by the

node for θT = 0.5. Circles of radii 2b, 4b and 8b described around the

centers of corner buckets determine which cells are requested.

the amount of communication generated per processor by the

expansion of higher-level cells as follows:

Ccell

2 = 31

�
lgPn

3
− 1

�
cells

The expansion of each cell yields eight children. We assume

that for each expanded cell, a single message is generated

which contains all its children. This model may be extended

so that whenever a cell is expanded by a processor node, it

receives a subtree of depth m below that cell. The tradeoff to

consider there is that between the number of messages (fewer

for larger m) and the amount of network bandwidth wasted

(more for larger m) because of requests for cells that are

never needed by the traversal. We keep our analysis simple

by setting m = 1. This results in about (Ccell

1 + Ccell

2)/8
messages containing eight cells each, and Cbkts

messages to

communicate B particles each.

We now use Ccell

1 , Ccell

2 and Cbkts
to calculate constraints on

ts and tw. In the following, we assume that the total number of

flops are distributed evenly across processors (i.e. we assume

perfect load balance). By setting Pn = 220, we get nb ≈ 87.

Therefore, the total number of cell expansion messages equals

(Ccell

1 + Ccell

2)/8 ≈ 15946, and the total number of particle

messages is Cbkts = 93968. We take the multipole moments

of each cell to require 224 bytes (56 words) and each particle’s

coordinate information to be 40 bytes. This leads to 100 words

for 10 particles in one bucket (these values are taken from

ChaNGa). Assuming a network free of contention, this results

in a communication time of

Tcomm = 15946(ts + 56tw) + 93968(ts + 100tw)

or T < 6.52 (IV.1)

This suggests that we need a time per step of 6.52 seconds to

achieve 1 Exaflop/s performance.

B. Communication

Now, we estimate the volume of communication generated

by the Barnes-Hut algorithm. Recall that particles are grouped

into buckets of size B each. The even distribution of N
particles among Pn processor nodes results in N/(PnB)
buckets per processor node. Furthermore, given the even

distribution of particles, each node receives an approximately

cubic subdomain of edge length a = c/ 3
√
Pn. This is depicted

as the striped area in Figure 4. Let nb be the number of buckets

along an edge of the cube. Then, n3
b = N/(PnB), so that

nb = 3
�

N/(PnB). The processor cores that perform traversals

for buckets within this volume request data in the form of cells

and particles, both from remote nodes and local cores within

the same node. However, buckets closer to the center of this

cube request strictly a subset of the remote cells and particles

requested by buckets closer to the faces. This observation

is leveraged in production quality simulators by “caching”

cells and particles fetched from remote sources, resulting in

the reuse of remote data, and reducing the communication

cost of the algorithm. Therefore, we attribute the aggregate

remote communication generated by a processor node to the

union of all cells and particles requested by the buckets along

the faces of the cube. As shown in Figure 4, with a bound

of θT = 0.5, buckets along the faces of the cube expand

a total of 12n2
b + 12 × 3nb + 8 remote buckets of edge

length c 3
�

B/N . Therefore, each node requests the particles

of Cbkts = 12n2
b + 36nb + 8 buckets. The buckets along the

faces also expand a total of 12(nb/2)2 + 36(nb/2) + 8 cells

with edge length 2c 3
�

B/N , 12(nb/4)2 + 36(nb/4) + 8 cells

with edge length 22c 3
�

B/N , etc. Therefore, the number of

cells requested from remote nodes up to size a = c/ 3
√
Pn is:

Ccell

1 =
lgnb�

i=0

�
12

�nb

2i

�2
+ 36

�nb

2i

�
+ 8

�

= 16n2
b + 72nb + 8 lg nb − 32 cells

For i ≤ lg nb, the above reasoning is valid since there are

multiple cells (or for i = lg nb, a single cell of edge length

a) lining a processor node’s subvolume. We must consider

cells with edge length greater than a separately. Notice that

there is an asymmetry of communication volume between

processor nodes: two nodes may request slightly different

numbers of higher-level cells depending on their positions

within the simulated space. The greatest difference in the

number of cells expanded occurs between the eight central

processor nodes and the ones situated at the eight corners of

the simulated universe. Even so, with θT = 0.5, the number of

cells expanded by the processor nodes in the corners equals 31,

whereas 30 cells are expanded by the eight central processor

nodes. We assume that each processor stores the root cell

representing the entire simulation space. Therefore, we bound

2b

4b

8b

b

Fig. 4. Communication pattern of a single node at the bottom three depths

in the Barnes-Hut tree. The striped region in the center represents the cubic

subvolume of particles assigned to the node, and the immediate squares

surrounding it represent the buckets along its faces. Progressively larger

squares represent remote cells at different depths that are requested by the

node for θT = 0.5. Circles of radii 2b, 4b and 8b described around the

centers of corner buckets determine which cells are requested.

the amount of communication generated per processor by the

expansion of higher-level cells as follows:

Ccell

2 = 31

�
lgPn

3
− 1

�
cells

The expansion of each cell yields eight children. We assume

that for each expanded cell, a single message is generated

which contains all its children. This model may be extended

so that whenever a cell is expanded by a processor node, it

receives a subtree of depth m below that cell. The tradeoff to

consider there is that between the number of messages (fewer

for larger m) and the amount of network bandwidth wasted

(more for larger m) because of requests for cells that are

never needed by the traversal. We keep our analysis simple

by setting m = 1. This results in about (Ccell

1 + Ccell

2)/8
messages containing eight cells each, and Cbkts

messages to

communicate B particles each.

We now use Ccell

1 , Ccell

2 and Cbkts
to calculate constraints on

ts and tw. In the following, we assume that the total number of

flops are distributed evenly across processors (i.e. we assume

perfect load balance). By setting Pn = 220, we get nb ≈ 87.

Therefore, the total number of cell expansion messages equals

(Ccell

1 + Ccell

2)/8 ≈ 15946, and the total number of particle

messages is Cbkts = 93968. We take the multipole moments

of each cell to require 224 bytes (56 words) and each particle’s

coordinate information to be 40 bytes. This leads to 100 words

for 10 particles in one bucket (these values are taken from

ChaNGa). Assuming a network free of contention, this results

in a communication time of

Tcomm = 15946(ts + 56tw) + 93968(ts + 100tw)

17

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Inferring network parameters

18

Finally, we use the above expression for communication in
equation (IV.1),

6.52× 1018

Pc
× tc

η
+ (1.1× 105ts + 1.03× 107tw) < 6.52

ts + 93.62tw < 59.2

�
1− 0.093

η

�
× 10−6

This equation is plotted in Figure 5. If we keep message
latency constant, the bandwidth requirements increase as η
decreases. It has been observed that an optimized version
of ChaNGa delivers about 15% of the theoretical maximum
performance on a single core. Therefore, a value of η = 0.125
is appropriate.

 0.1

 1

 10

 100

 1000

10
-3

10
-2

10
-1

10
0

10
1

10
2

B
a
n
d
w

id
th

 (
4
/t

w
)
 i

n
 G

B
/s

Latency (t
s
) in microseconds

Feasibility Region for Barnes-Hut

η = 0.1

η = 0.125

η = 0.25

η = 0.5

η = 1

Fig. 5. Latency and bandwidth requirements for the Barnes-Hut simulation
of 6.8 trillion uniformly distributed particles.

C. Memory requirements

In addition to its local cell and particle data, a processor
node in our model must store particle and cell data requested
from remote sources. This allows the caching and reuse of
requested data, thereby reducing the amount of communication
that must be performed. At the same time, this cache increases
the transient memory requirements of each processor node.
The local data comprises N/Pn particles and an octree of
depth lg(N/PnB)/3. Furthermore, each processor node stores
the path from the root cell to the cell that represents its
subvolume. The length of this path is lgPn/3 nodes. Assuming
the amount of data stored per local particle to be Sp = 152
bytes and that stored per cell to be Sc = 224 bytes, the amount
of memory required for the local data is:

Mlocal =

�
8

lg(N/PnB)
3 +

lgPn

3

�
Sc +

N

Pn
Sp

=

�
N

PnB
+

lgPn

3

�
Sc +

N

Pn
Sp

Substituting the values for the various variables, we get
Mlocal = 1.08 GB per node. We estimate the amount of
memory required to cache remote data by using the number of

cells and buckets requested from remote sources. Recall that
these values are given by (Ccell

1 +Ccell
2) and Cbkts, respectively.

Therefore, the total memory required per processor node to
cache remote data is:

Mremote = (Ccell
1 + Ccell

2)Sc + CbktsBS�
p

where S�
p = 40 bytes is the amount of memory required

per cached remote particle. Fixing the values of the various
variables, we get Mremote = 171 MB per node.

D. Smaller problem sizes
Not all cosmological simulations conducted at exascale will

use such large systems of particles. In particular, studies
of isolated star clusters and planet disk formation require
far fewer particles for faithful simulation. Such simulations
on small-scale structures are fairly important in themselves.
For this reason, we discuss the feasibility of conducting
experiments of sizes significantly smaller than the large, 6.8
trillion particle simulation discussed previously. In particular,
we analyze the constraints on machine characteristics as we
scale down the problem size and attempt to maintain the same
level of performance as seen with the large simulation.

We consider three particle systems of similar distribution
characteristics to the 6.8 trillion particle data set introduced
previously. The total number of particles for each of these
data sets is given in Table II. The number of particles per
core for each is also shown. In each case, the analysis for
communication volume is roughly the same as outlined in
Section IV-A and Section IV-B. each of the cases, we set η to
a realistic value of 0.125, or ≈ 13%. The equations relating
ts and tw for the three systems are listed below, in order:

ts + 93.56tw < 8.94× 10−6

ts + 93.45tw < 5.16× 10−6

ts + 93.29tw < 2.92× 10−6

Particles Particles/core Time (s)

6.8 trillion 6350 6.52
1.7 trillion 1588 1.55
0.43 trillion 397 0.37
0.11 trillion 99 0.09

TABLE II
TIME PER STEP FOR BARNES-HUT SIMULATIONS OF DIFFERENT SIZES.

These constraints are depicted graphically in Figure 6. No-
tice that with fewer particles per core, keeping the overhead of
transmission constant, we require more bandwidth to maintain
a performance level of one Exaflop/s.

V. FINITE ELEMENT SOLVERS

Finite element solvers are the ones that are most commonly
employed to solve unstructured grid problems, as their expres-
sion of the solution as a sum of basis functions over elements
dovetails naturally with setup of an unstructured grid problem

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Smaller problem sizes

19

Finally, we use the above expression for communication in
equation (IV.1),

6.52× 1018

Pc
× tc

η
+ (1.1× 105ts + 1.03× 107tw) < 6.52

ts + 93.62tw < 59.2

�
1− 0.093

η

�
× 10−6

This equation is plotted in Figure 5. If we keep message
latency constant, the bandwidth requirements increase as η
decreases. It has been observed that an optimized version
of ChaNGa delivers about 15% of the theoretical maximum
performance on a single core. Therefore, a value of η = 0.125
is appropriate.

 0.1

 1

 10

 100

 1000

10
-3

10
-2

10
-1

10
0

10
1

10
2

B
a
n
d
w

id
th

 (
4
/t

w
)
 i

n
 G

B
/s

Latency (t
s
) in microseconds

Feasibility Region for Barnes-Hut

η = 0.1

η = 0.125

η = 0.25

η = 0.5

η = 1

Fig. 5. Latency and bandwidth requirements for the Barnes-Hut simulation
of 6.8 trillion uniformly distributed particles.

C. Memory requirements

In addition to its local cell and particle data, a processor
node in our model must store particle and cell data requested
from remote sources. This allows the caching and reuse of
requested data, thereby reducing the amount of communication
that must be performed. At the same time, this cache increases
the transient memory requirements of each processor node.
The local data comprises N/Pn particles and an octree of
depth lg(N/PnB)/3. Furthermore, each processor node stores
the path from the root cell to the cell that represents its
subvolume. The length of this path is lgPn/3 nodes. Assuming
the amount of data stored per local particle to be Sp = 152
bytes and that stored per cell to be Sc = 224 bytes, the amount
of memory required for the local data is:

Mlocal =

�
8

lg(N/PnB)
3 +

lgPn

3

�
Sc +

N

Pn
Sp

=

�
N

PnB
+

lgPn

3

�
Sc +

N

Pn
Sp

Substituting the values for the various variables, we get
Mlocal = 1.08 GB per node. We estimate the amount of
memory required to cache remote data by using the number of

cells and buckets requested from remote sources. Recall that
these values are given by (Ccell

1 +Ccell
2) and Cbkts, respectively.

Therefore, the total memory required per processor node to
cache remote data is:

Mremote = (Ccell
1 + Ccell

2)Sc + CbktsBS�
p

where S�
p = 40 bytes is the amount of memory required

per cached remote particle. Fixing the values of the various
variables, we get Mremote = 171 MB per node.

D. Smaller problem sizes
Not all cosmological simulations conducted at exascale will

use such large systems of particles. In particular, studies
of isolated star clusters and planet disk formation require
far fewer particles for faithful simulation. Such simulations
on small-scale structures are fairly important in themselves.
For this reason, we discuss the feasibility of conducting
experiments of sizes significantly smaller than the large, 6.8
trillion particle simulation discussed previously. In particular,
we analyze the constraints on machine characteristics as we
scale down the problem size and attempt to maintain the same
level of performance as seen with the large simulation.

We consider three particle systems of similar distribution
characteristics to the 6.8 trillion particle data set introduced
previously. The total number of particles for each of these
data sets is given in Table II. The number of particles per
core for each is also shown. In each case, the analysis for
communication volume is roughly the same as outlined in
Section IV-A and Section IV-B. each of the cases, we set η to
a realistic value of 0.125, or ≈ 13%. The equations relating
ts and tw for the three systems are listed below, in order:

ts + 93.56tw < 8.94× 10−6

ts + 93.45tw < 5.16× 10−6

ts + 93.29tw < 2.92× 10−6

Particles Particles/core Time (s)

6.8 trillion 6350 6.52
1.7 trillion 1588 1.55
0.43 trillion 397 0.37
0.11 trillion 99 0.09

TABLE II
TIME PER STEP FOR BARNES-HUT SIMULATIONS OF DIFFERENT SIZES.

These constraints are depicted graphically in Figure 6. No-
tice that with fewer particles per core, keeping the overhead of
transmission constant, we require more bandwidth to maintain
a performance level of one Exaflop/s.

V. FINITE ELEMENT SOLVERS

Finite element solvers are the ones that are most commonly
employed to solve unstructured grid problems, as their expres-
sion of the solution as a sum of basis functions over elements
dovetails naturally with setup of an unstructured grid problem

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Finite Element Solvers

• Method of choice for unstructured grid problems

• Involves two phases:

• Assembly: put linear system together

• Solve: the system

• Linear problems: one assembly, one (time-
independent) or more (time-dependent) solves

• Nonlinear problems: repeat assembly/solve process
until convergence

20

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Approach to Solution

• Based on recent work by Sahni et al. that scales FEM
to near-petascale

• Partition the problem by elements, storing shared
DOFs redundantly

• Assembly becomes nearest-neighbor: focus on solve

21 1

 10

 100

 1000

 10000

10
-2

10
-1

10
0

10
1

10
2

B
a
n
d
w

id
th

 (
4
/t

w
)
 i

n
 G

B
/s

Latency (t
s
) in microseconds

Feasibility Region for Barnes-Hut

6.8 trillion

1.7 trillion

0.43 trillion

0.11 trillion

Fig. 6. Constraints on machine characteristics for Barnes-Hut simulations

of different data sets. A value of η = 0.125 was used for each data set.

as a domain partitioned into a mesh of elements. A typical

application of a finite element solver involves two phases to

consider. There is an assembly phase, in which a linear system

is put together, and a solve phase in which that system is

solved. For a linear problem, there is just one assembly phase,

and one or more solve phases – one for a time-independent

problem, and one per time step for a time-dependent problem.

For a nonlinear problem, for which the solution process is an

iterative scheme comprised of the formation and solution of

multiple linear systems, the process of assembly and solve for

linear problems is repeated until convergence.

The problem setup in our analysis is based on the recent

work [20], which strongly scales a finite element solver to

near-petascale machines. Problem partitioning is by elements,

so that each processor has complete information about the

elements in its individual domain. Shared degrees of freedom,

which occur wherever there are mesh points on a processor

boundary, are stored redundantly. Figure 7 gives a simple

example. Assuming a good partitioning of the problem among

processors, the amount of shared degrees of freedom will

just be the surface area of the individual processor domains,

O

��
N
P

�
for a 2D problem and O

��
N
P

�2/3�
for a 3D prob-

lem, assuming N global degrees of freedom. System assembly,

which involves summing the contributions of each element into

a global sparse matrix, can be accomplished with just nearest-

neighbor communication of local values for shared degrees

of freedom. As the matrix and vector entries themselves are

integrals, the number of floating-point operations depends on

the specific integration rule used.

There is a concern of scalability in terms of the amount

of data transferred. Completely assembling the matrix entries

requires the square of the surface area. However, this is not

necessary. Completely assembling only the vector entries,

which involves data transfer that is just linear in the surface

area, is sufficient if a Krylov subspace method, which is based

on matrix-vector multiplication, is used for the linear solve.

P1

P2

Fig. 7. Example of redundant storage of an unstructured mesh. The triangles

belong to two different processors, P1 and P2, and each node represents a

degree of freedom. Red entries are stored on P1, blue entries on P2, and

purple entries on both processors.

If only the non-shared degrees of freedom are assembled, a

nearest-neighbor exchange and summation of shared degrees

of freedom after the product of this matrix with a completely

assembled vector will give the same result as a product

between a completely assembled matrix and completely as-

sembled vector. With nearest-neighbor communication and

a scalable amount of data being transferred, we turn our

attention to the solve phase.

In the solve phase, a linear solver is used to solve the

previously assembled linear system. Krylov subspace meth-

ods, which are based on matrix-vector multiplication, are a

popular choice, and in fact the only choice when performing

assembly as previously outlined. There are many different

Krylov subspace methods [21], and the choice of method

depends on the specific problem being solved. As our study

is introductory, we examine here the simplest Krylov method,

conjugate gradient (CG), which is the method of choice for

problems that are symmetric and positive definite. Pseudocode

is given in Algorithm 3.

Algorithm 3 CG(A,b,x0,rtol)

r0 ← b−Ax0

p0 ← r0
k ← 0
while ||rk||2 ≥ rtol do

αk ← rTk rk
pT
k Apk

xk+1 ← xk + αkpk
rk+1 ← rk − αkApk
βk ← rTk+1rk+1

rTk rk
pk+1 ← rk+1 + βkpk
k ← k + 1

end while
return xk

The setup to CG requires one matrix-vector product (Ax0),

one vector subtraction (b−Ax0), and one dot product (rT0 r0).

The iteration loop requires one matrix-vector product (Apk),

two vector additions (xk+αkpk and rk+1+βkpk), one vector

subtraction (rk − αkApk), and two dot products (pTkApk and

rTk+1rk+1). We define the terms we will use to construct a

performance model below:

• N – global number of degrees of freedom

• ni – number of degrees of freedom stored on processor

i

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Approach to Solution

• Assume conjugate
gradient linear solver

• Setup: one mat-vec product,
one vector subtraction, one
dot product

• Iteration loop: one mat-vec
product, two vector
additions, one vector
subtraction, two dot products

22

 1

 10

 100

 1000

 10000

10
-2

10
-1

10
0

10
1

10
2

B
a
n

d
w

id
th

 (
4

/t
w

)
 i

n
 G

B
/s

Latency (t
s
) in microseconds

Feasibility Region for Barnes-Hut

6.8 trillion

1.7 trillion

0.43 trillion

0.11 trillion

Fig. 6. Constraints on machine characteristics for Barnes-Hut simulations

of different data sets. A value of η = 0.125 was used for each data set.

as a domain partitioned into a mesh of elements. A typical

application of a finite element solver involves two phases to

consider. There is an assembly phase, in which a linear system

is put together, and a solve phase in which that system is

solved. For a linear problem, there is just one assembly phase,

and one or more solve phases – one for a time-independent

problem, and one per time step for a time-dependent problem.

For a nonlinear problem, for which the solution process is an

iterative scheme comprised of the formation and solution of

multiple linear systems, the process of assembly and solve for

linear problems is repeated until convergence.

The problem setup in our analysis is based on the recent

work [20], which strongly scales a finite element solver to

near-petascale machines. Problem partitioning is by elements,

so that each processor has complete information about the

elements in its individual domain. Shared degrees of freedom,

which occur wherever there are mesh points on a processor

boundary, are stored redundantly. Figure 7 gives a simple

example. Assuming a good partitioning of the problem among

processors, the amount of shared degrees of freedom will

just be the surface area of the individual processor domains,

O

��
N
P

�
for a 2D problem and O

��
N
P

�2/3�
for a 3D prob-

lem, assuming N global degrees of freedom. System assembly,

which involves summing the contributions of each element into

a global sparse matrix, can be accomplished with just nearest-

neighbor communication of local values for shared degrees

of freedom. As the matrix and vector entries themselves are

integrals, the number of floating-point operations depends on

the specific integration rule used.

There is a concern of scalability in terms of the amount

of data transferred. Completely assembling the matrix entries

requires the square of the surface area. However, this is not

necessary. Completely assembling only the vector entries,

which involves data transfer that is just linear in the surface

area, is sufficient if a Krylov subspace method, which is based

on matrix-vector multiplication, is used for the linear solve.

P1

P2

Fig. 7. Example of redundant storage of an unstructured mesh. The triangles

belong to two different processors, P1 and P2, and each node represents a

degree of freedom. Red entries are stored on P1, blue entries on P2, and

purple entries on both processors.

If only the non-shared degrees of freedom are assembled, a

nearest-neighbor exchange and summation of shared degrees

of freedom after the product of this matrix with a completely

assembled vector will give the same result as a product

between a completely assembled matrix and completely as-

sembled vector. With nearest-neighbor communication and

a scalable amount of data being transferred, we turn our

attention to the solve phase.

In the solve phase, a linear solver is used to solve the

previously assembled linear system. Krylov subspace meth-

ods, which are based on matrix-vector multiplication, are a

popular choice, and in fact the only choice when performing

assembly as previously outlined. There are many different

Krylov subspace methods [21], and the choice of method

depends on the specific problem being solved. As our study

is introductory, we examine here the simplest Krylov method,

conjugate gradient (CG), which is the method of choice for

problems that are symmetric and positive definite. Pseudocode

is given in Algorithm 3.

Algorithm 3 CG(A,b,x0,rtol)

r0 ← b−Ax0

p0 ← r0
k ← 0
while ||rk||2 ≥ rtol do

αk ← rTk rk
pT
k Apk

xk+1 ← xk + αkpk
rk+1 ← rk − αkApk
βk ← rTk+1rk+1

rTk rk
pk+1 ← rk+1 + βkpk
k ← k + 1

end while
return xk

The setup to CG requires one matrix-vector product (Ax0),

one vector subtraction (b−Ax0), and one dot product (rT0 r0).

The iteration loop requires one matrix-vector product (Apk),

two vector additions (xk+αkpk and rk+1+βkpk), one vector

subtraction (rk − αkApk), and two dot products (pTkApk and

rTk+1rk+1). We define the terms we will use to construct a

performance model below:

• N – global number of degrees of freedom

• ni – number of degrees of freedom stored on processor

i

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

FEM: Weak Scaling

• Consider problem on 3D cubic tet mesh

• Each core gets 163 cubes

• Degrees of freedom on each processor = 173

• Global DOFs = 4.4 trillion

• Solve time per iteration:

23

• ñi – number of degrees of freedom stored on processor

i that are shared with other processors

• si – average number of neighbors for degrees of freedom

stored on processor i
• pi – number of processor neighbors of processor i

On processor i, each matrix-vector multiply requires 2sini

flops, and pi sends each consisting of ñi floating-point values.

The vector additions and subtractions require ni flops in the

setup and 2ni flops in the loop, with no communication.

The dot products, which are accomplished using allreduce

operations, require
N
P + lgP flops and 2 × lgP sends of

one floating-point value for the allreduce and another ñi flops

coupled with pi sends of ñi floating-point values for the

completion of the result.

A. Weak Scaling

We now analyze a simple weak-scaling scenario. We con-

sider a problem solved on a 3D cubic mesh consisting of

cubes each cut into five tetrahedra, as shown in Figure 8. We

give each core 4K cubes, or 20K tetrahedra, to correspond to

common elements per core counts for problems being solved

today, with each processor’s portion a 16×16×16 cube. This

results in ni = 173 = 4, 913 degrees of freedom stored on

each processor, and N = 163853 ≈ 4.4 trillion global degrees

of freedom. Each processor would send messages to at most

pi = 6 neighbors during point-to-point communication, with a

total of ñi = 173−153 = 1538 floating-point entries sent. The

average number of neighboring degrees of freedom is si = 18
excluding points on the boundary of the global domain.

Fig. 8. Base unit of mesh, cube cut into five tetrahedra. Four tetrahedra

surround the one in the center, with one of those four hidden behind the

center tetrahedron.

Since there are 1024 cores per node on our hypothetical

exascale machine, we for each node group the portions of all

the cores on that node into an 8× 8× 16 cube. This requires

us to modify the numbers given above when writing down

the performance model equation. The computation terms are

unchanged; however, the number of sends becomes the surface

area of the node, which is 8×8×16−6×6×14 = 520. The

number of elements sent is multiplied by this amount for point-

to-point messages. The logarithmic terms in the allreduce

time become logarithms of the number of nodes instead of

the number of cores. Assuming a binary tree pattern for the

allreduce, we get that the setup time for CG is

T setup

CG
=

1

η
×
�
(2si + 1)ni +

N

Pc
+ lgPn

�
tc

+ 2(520 + lgPn)ts

+ 2(520ñi + lgPn)tw

and the solve time is, per iteration

T iter

CG
=

1

η
×

�
(2si + 6)ni +

N

Pc
+ 2 lgPn

�
tc

+ 2(520 + 2 lgPn)ts

+ 2(520ñi + 2 lgPn)tw

Allowing ts and tw to vary and fixing all other parameters,

we plot the region

Pc(2si + 1)ni +N + 2 lgPn

T iter

CG

≥ 1018

which simplifies to

1120ts + 1599600tw ≤ 2.26× 10−4 − 1

η
× 2.10× 10−5

to see what machine parameters are required to achieve

exascale performance for an iteration of CG. The plot, which

is in Figure 9, shows a latency requirement on the order of

tenths of microseconds and a node bandwidth requirement of

tens of gigabytes per second.

101

102

103

104

10-6 10-5 10-4 10-3 10-2 10-1 100

B
an

dw
id

th
 (4

/t w
) i

n
G

B
/s

Latency (ts) in microseconds

Feasibility Region for CG

η = 0.1
η = 0.124
η = 0.25
η = 0.5

η = 1

Fig. 9. Feasibility region for conjugate gradient iteration.

B. Memory Requirements
Finite element codes require storage of the mesh and the

(sparse) linear system. This is not a scalability concern, as the

storage of each scales with the number of degrees of freedom.

The storage beyond this is not a concern either. The redundant

storage in the scheme presented above is proportional to the

surface area of the elements, and beyond the linear system, CG

keeps only four additional vectors in memory. Even if another

Krylov solver were used, the memory used by the solver is not

• ñi – number of degrees of freedom stored on processor

i that are shared with other processors

• si – average number of neighbors for degrees of freedom

stored on processor i
• pi – number of processor neighbors of processor i

On processor i, each matrix-vector multiply requires 2sini

flops, and pi sends each consisting of ñi floating-point values.

The vector additions and subtractions require ni flops in the

setup and 2ni flops in the loop, with no communication.

The dot products, which are accomplished using allreduce

operations, require
N
P + lgP flops and 2 × lgP sends of

one floating-point value for the allreduce and another ñi flops

coupled with pi sends of ñi floating-point values for the

completion of the result.

A. Weak Scaling

We now analyze a simple weak-scaling scenario. We con-

sider a problem solved on a 3D cubic mesh consisting of

cubes each cut into five tetrahedra, as shown in Figure 8. We

give each core 4K cubes, or 20K tetrahedra, to correspond to

common elements per core counts for problems being solved

today, with each processor’s portion a 16×16×16 cube. This

results in ni = 173 = 4, 913 degrees of freedom stored on

each processor, and N = 163853 ≈ 4.4 trillion global degrees

of freedom. Each processor would send messages to at most

pi = 6 neighbors during point-to-point communication, with a

total of ñi = 173−153 = 1538 floating-point entries sent. The

average number of neighboring degrees of freedom is si = 18
excluding points on the boundary of the global domain.

Fig. 8. Base unit of mesh, cube cut into five tetrahedra. Four tetrahedra

surround the one in the center, with one of those four hidden behind the

center tetrahedron.

Since there are 1024 cores per node on our hypothetical

exascale machine, we for each node group the portions of all

the cores on that node into an 8× 8× 16 cube. This requires

us to modify the numbers given above when writing down

the performance model equation. The computation terms are

unchanged; however, the number of sends becomes the surface

area of the node, which is 8×8×16−6×6×14 = 520. The

number of elements sent is multiplied by this amount for point-

to-point messages. The logarithmic terms in the allreduce

time become logarithms of the number of nodes instead of

the number of cores. Assuming a binary tree pattern for the

allreduce, we get that the setup time for CG is

T setup

CG
=

1

η
×
�
(2si + 1)ni +

N

Pc
+ lgPn

�
tc

+ 2(520 + lgPn)ts

+ 2(520ñi + lgPn)tw

and the solve time is, per iteration

T iter

CG
=

1

η
×

�
(2si + 6)ni +

N

Pc
+ 2 lgPn

�
tc

+ 2(520 + 2 lgPn)ts

+ 2(520ñi + 2 lgPn)tw

Allowing ts and tw to vary and fixing all other parameters,

we plot the region

Pc(2si + 1)ni +N + 2 lgPn

T iter

CG

≥ 1018

which simplifies to

1120ts + 1599600tw ≤ 2.26× 10−4 − 1

η
× 2.10× 10−5

to see what machine parameters are required to achieve

exascale performance for an iteration of CG. The plot, which

is in Figure 9, shows a latency requirement on the order of

tenths of microseconds and a node bandwidth requirement of

tens of gigabytes per second.

101

102

103

104

10-6 10-5 10-4 10-3 10-2 10-1 100

B
an

dw
id

th
 (4

/t w
) i

n
G

B
/s

Latency (ts) in microseconds

Feasibility Region for CG

η = 0.1
η = 0.124

η = 0.25
η = 0.5

η = 1

Fig. 9. Feasibility region for conjugate gradient iteration.

B. Memory Requirements
Finite element codes require storage of the mesh and the

(sparse) linear system. This is not a scalability concern, as the

storage of each scales with the number of degrees of freedom.

The storage beyond this is not a concern either. The redundant

storage in the scheme presented above is proportional to the

surface area of the elements, and beyond the linear system, CG

keeps only four additional vectors in memory. Even if another

Krylov solver were used, the memory used by the solver is not

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Inferring network parameters

24

• ñi – number of degrees of freedom stored on processor

i that are shared with other processors

• si – average number of neighbors for degrees of freedom

stored on processor i
• pi – number of processor neighbors of processor i

On processor i, each matrix-vector multiply requires 2sini

flops, and pi sends each consisting of ñi floating-point values.

The vector additions and subtractions require ni flops in the

setup and 2ni flops in the loop, with no communication.

The dot products, which are accomplished using allreduce

operations, require
N
P + lgP flops and 2 × lgP sends of

one floating-point value for the allreduce and another ñi flops

coupled with pi sends of ñi floating-point values for the

completion of the result.

A. Weak Scaling

We now analyze a simple weak-scaling scenario. We con-

sider a problem solved on a 3D cubic mesh consisting of

cubes each cut into five tetrahedra, as shown in Figure 8. We

give each core 4K cubes, or 20K tetrahedra, to correspond to

common elements per core counts for problems being solved

today, with each processor’s portion a 16×16×16 cube. This

results in ni = 173 = 4, 913 degrees of freedom stored on

each processor, and N = 163853 ≈ 4.4 trillion global degrees

of freedom. Each processor would send messages to at most

pi = 6 neighbors during point-to-point communication, with a

total of ñi = 173−153 = 1538 floating-point entries sent. The

average number of neighboring degrees of freedom is si = 18
excluding points on the boundary of the global domain.

Fig. 8. Base unit of mesh, cube cut into five tetrahedra. Four tetrahedra

surround the one in the center, with one of those four hidden behind the

center tetrahedron.

Since there are 1024 cores per node on our hypothetical

exascale machine, we for each node group the portions of all

the cores on that node into an 8× 8× 16 cube. This requires

us to modify the numbers given above when writing down

the performance model equation. The computation terms are

unchanged; however, the number of sends becomes the surface

area of the node, which is 8×8×16−6×6×14 = 520. The

number of elements sent is multiplied by this amount for point-

to-point messages. The logarithmic terms in the allreduce

time become logarithms of the number of nodes instead of

the number of cores. Assuming a binary tree pattern for the

allreduce, we get that the setup time for CG is

T setup

CG
=

1

η
×
�
(2si + 1)ni +

N

Pc
+ lgPn

�
tc

+ 2(520 + lgPn)ts

+ 2(520ñi + lgPn)tw

and the solve time is, per iteration

T iter

CG
=

1

η
×

�
(2si + 6)ni +

N

Pc
+ 2 lgPn

�
tc

+ 2(520 + 2 lgPn)ts

+ 2(520ñi + 2 lgPn)tw

Allowing ts and tw to vary and fixing all other parameters,

we plot the region

Pc(2si + 1)ni +N + 2 lgPn

T iter

CG

≥ 1018

which simplifies to

1120ts + 1599600tw ≤ 2.26× 10−4 − 1

η
× 2.10× 10−5

to see what machine parameters are required to achieve

exascale performance for an iteration of CG. The plot, which

is in Figure 9, shows a latency requirement on the order of

tenths of microseconds and a node bandwidth requirement of

tens of gigabytes per second.

101

102

103

104

10-6 10-5 10-4 10-3 10-2 10-1 100

B
an

dw
id

th
 (4

/t w
) i

n
G

B
/s

Latency (ts) in microseconds

Feasibility Region for CG

η = 0.1
η = 0.124

η = 0.25
η = 0.5

η = 1

Fig. 9. Feasibility region for conjugate gradient iteration.

B. Memory Requirements
Finite element codes require storage of the mesh and the

(sparse) linear system. This is not a scalability concern, as the

storage of each scales with the number of degrees of freedom.

The storage beyond this is not a concern either. The redundant

storage in the scheme presented above is proportional to the

surface area of the elements, and beyond the linear system, CG

keeps only four additional vectors in memory. Even if another

Krylov solver were used, the memory used by the solver is not

• ñi – number of degrees of freedom stored on processor

i that are shared with other processors

• si – average number of neighbors for degrees of freedom

stored on processor i
• pi – number of processor neighbors of processor i

On processor i, each matrix-vector multiply requires 2sini

flops, and pi sends each consisting of ñi floating-point values.

The vector additions and subtractions require ni flops in the

setup and 2ni flops in the loop, with no communication.

The dot products, which are accomplished using allreduce

operations, require
N
P + lgP flops and 2 × lgP sends of

one floating-point value for the allreduce and another ñi flops

coupled with pi sends of ñi floating-point values for the

completion of the result.

A. Weak Scaling

We now analyze a simple weak-scaling scenario. We con-

sider a problem solved on a 3D cubic mesh consisting of

cubes each cut into five tetrahedra, as shown in Figure 8. We

give each core 4K cubes, or 20K tetrahedra, to correspond to

common elements per core counts for problems being solved

today, with each processor’s portion a 16×16×16 cube. This

results in ni = 173 = 4, 913 degrees of freedom stored on

each processor, and N = 163853 ≈ 4.4 trillion global degrees

of freedom. Each processor would send messages to at most

pi = 6 neighbors during point-to-point communication, with a

total of ñi = 173−153 = 1538 floating-point entries sent. The

average number of neighboring degrees of freedom is si = 18
excluding points on the boundary of the global domain.

Fig. 8. Base unit of mesh, cube cut into five tetrahedra. Four tetrahedra

surround the one in the center, with one of those four hidden behind the

center tetrahedron.

Since there are 1024 cores per node on our hypothetical

exascale machine, we for each node group the portions of all

the cores on that node into an 8× 8× 16 cube. This requires

us to modify the numbers given above when writing down

the performance model equation. The computation terms are

unchanged; however, the number of sends becomes the surface

area of the node, which is 8×8×16−6×6×14 = 520. The

number of elements sent is multiplied by this amount for point-

to-point messages. The logarithmic terms in the allreduce

time become logarithms of the number of nodes instead of

the number of cores. Assuming a binary tree pattern for the

allreduce, we get that the setup time for CG is

T setup

CG
=

1

η
×
�
(2si + 1)ni +

N

Pc
+ lgPn

�
tc

+ 2(520 + lgPn)ts

+ 2(520ñi + lgPn)tw

and the solve time is, per iteration

T iter

CG
=

1

η
×

�
(2si + 6)ni +

N

Pc
+ 2 lgPn

�
tc

+ 2(520 + 2 lgPn)ts

+ 2(520ñi + 2 lgPn)tw

Allowing ts and tw to vary and fixing all other parameters,

we plot the region

Pc(2si + 1)ni +N + 2 lgPn

T iter

CG

≥ 1018

which simplifies to

1120ts + 1599600tw ≤ 2.26× 10−4 − 1

η
× 2.10× 10−5

to see what machine parameters are required to achieve

exascale performance for an iteration of CG. The plot, which

is in Figure 9, shows a latency requirement on the order of

tenths of microseconds and a node bandwidth requirement of

tens of gigabytes per second.

101

102

103

104

10-6 10-5 10-4 10-3 10-2 10-1 100

B
an

dw
id

th
 (4

/t w
) i

n
G

B
/s

Latency (ts) in microseconds

Feasibility Region for CG

η = 0.1
η = 0.124

η = 0.25
η = 0.5

η = 1

Fig. 9. Feasibility region for conjugate gradient iteration.

B. Memory Requirements
Finite element codes require storage of the mesh and the

(sparse) linear system. This is not a scalability concern, as the

storage of each scales with the number of degrees of freedom.

The storage beyond this is not a concern either. The redundant

storage in the scheme presented above is proportional to the

surface area of the elements, and beyond the linear system, CG

keeps only four additional vectors in memory. Even if another

Krylov solver were used, the memory used by the solver is not

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Smaller problem sizes

25

a scalability concern: CG-based methods keep only a handful
of vectors in memory in addition to the linear system, and even
the most general-purpose Krylov method, GMRES, in practice
keeps a number of vectors in memory that is constant in the
problem size due to its being restarted after a fixed number of
iterations [21].

C. Smaller Problem Sizes
Applying the same analysis as for weak scaling, we can

see what the feasibility region would be for smaller problem
sizes. Figure 10 shows regions for five problem sizes, ranging
from the weak scaling scenario discussed earlier to the smallest
possible problem, with one cube per core. The successive
feasibility regions are:

1120ts + 1599600tw ≤ 2.26× 10−4 − 1

η
× 2.10× 10−5

1120ts + 401520tw ≤ 3.34× 10−5 − 1

η
× 3.12× 10−6

1120ts + 102000tw ≤ 5.70× 10−6 − 1

η
× 5.35× 10−7

1120ts + 27120tw ≤ 1.23× 10−6 − 1

η
× 1.18× 10−7

1120ts + 8400tw ≤ 3.62× 10−7 − 1

η
× 3.77× 10−8

Specific model parameters for each problem are shown in
Table III. The latency and bandwidth requirements become
increasingly restrictive with each reduction in size, to the point
of needing sub-nanosecond latencies and node bandwidth on
the order of hundreds of gigabytes per second.

Problem Cubes/core N ni ñi

1 4096 4.40× 1012 4913 1538
2 512 5.50× 1011 729 386
3 64 6.88× 1010 125 98
4 8 8.60× 109 27 26
5 1 1.08× 109 8 8

TABLE III
PERFORMANCE MODEL PARAMETERS FOR DIFFERENT PROBLEM SIZES,
RANGING FROM THE ORIGINAL ONE STUDIED IN THE WEAK SCALING

STUDY TO ONE WITH ONE CUBE PER CORE. si IS NOT SHOWN BECAUSE IT
REMAINS UNCHANGED.

D. Additional Issues
The analysis presented here has only scratched the surface

when it comes to solving unstructured grid problems. There
are a number of other factors that would be considered in
a complete analysis. The partitioning of the grid naturally
matters, as a poor partition would substantially degrade per-
formance. The solver itself is a factor. Conjugate gradient is
one of several Krylov subspace methods, and it is applicable
only when the problem being solved is symmetric and positive
definite. Other problems require different solvers that will also
need to be studied.

102

103

104

105

10-7 10-6 10-5 10-4 10-3 10-2 10-1

B
an

dw
id

th
 (4

/t w
) i

n
G

B
/s

Latency (ts) in microseconds

Feasibility Region for CG

8 dofs/core
27 dofs/core

125 dofs/core
729 dofs/core

4913 dofs/core

Fig. 10. Feasibility regions for conjugate gradient iteration for several
problem sizes. For each successively smaller problem size, the number of
cubes per core decreases by 2 in each dimension.

There is also the issue of preconditioning that we did not
consider here. Preconditioning involves applying some kind
of fast incomplete solve to the system during each iteration
with the goal of speeding up convergence [21]. This means
extra expense per iteration, and on a parallel computer care
must be taken to choose a preconditioner that parallelizes well.
Poor or no preconditioning results in a high iteration count that
increases with the global problem size. In the case of conjugate
gradient on a 3D problem, the number of iterations increases
as N1/3 [22], for a (non-ideal) overall asymptotic computation
time of O(N4/3). [22] used multigrid as a preconditioner in
CG to both dramatically reduce the iteration count and the rate
of increase. The scalability of multigrid is itself a subject of
much study [23]. Clearly, the issue of preconditioning is one of
vital importance for ensuring scalability of unstructured grid
problems.

VI. SUMMARY

This paper presented architectural constraints imposed by
weak scaling and smaller problem sizes for several application
classes to achieve 1 Exaflop/s performance on future machines.
In general for all applications discussed, at a lower sequential
efficiency than 1 (η < 1), the constraints on the network
latency and bandwidth tighten. High latency and bandwidth
requirements, especially for η < 1 and smaller problem
sizes emphasize the importance of continuing research in
developing communication-minimizing algorithms, as well as
high-bandwidth network links and system infrastructure that
minimizes the diameters of the interconnect networks.

For comparison between the application classes, Figure 11
presents the feasibility regions of the three classes for weak
scaling (for η = 1). We can see that FEM puts the tightest
constraints on both network latency and bandwidth. MD codes
have the smallest bandwidth requirements because information
of a small number of atoms is exchanged at every step. The
modest communication requirements for MD and N -body

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Summary

26

• Modest communication
requirements for MD and
cosmology at exascale

• Smaller problem sizes lead
to tighter constraints

May 17th, 2011 IPDPS 2011 © Abhinav Bhatele

Future work

• Research required in area of communication-
minimizing algorithms and high-bandwidth low-
latency networks

• Detailed analysis of each application class

• MD: long-range forces

• Cosmology: particle-mesh methods

• FEM: other solvers, preconditioning

• Studies for specific networks and contention

27

