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ABSTRACT
High performance parallel machines with hundreds of thou-
sands of processors and petascale performance are already in
use, and even larger Exaflops scale computing systems which
may have hundreds of millions of cores are planned. To run
parallel applications on machines of such massive scale, one
of the biggest challenges is the parallel startup process. This
task involves two components: (1) parallel launching of ap-
propriate processes on the given set of processors and (2)
setting up communication channels to enable the processes
to communicate with each other after process launching has
completed. Most current startup mechanisms focus on ei-
ther using daemons which waste system resources or using
a startup manager which becomes a scalability bottleneck.
In this paper, we investigate the design and scalability of
a SMP-aware, multi-level startup scheme with batching of
remote shell sessions, which provides a complete solution to
startup of a parallel application and facilitates its manage-
ment during execution. It monitors process health and can
be used to support recovery from failures and provide scal-
able interaction with the application. We demonstrate the
performance and scalability of this scheme by applying it to
startup Charm++ applications. In particular, starting up
a Charm++ program on 16,384 cores of Ranger (at TACC)
with Ethernet as the underlying communication layer takes
only 25 seconds and attains a speedup of over 400% com-
pared to MPICH2 startup (using hydra as process manager)
and over 800% compared to Open MPI startup on Ranger.

1. INTRODUCTION
High performance parallel machines with hundreds of thou-

sands of processors and petascale performance are already in
use, which provide unprecedented computing power to solve
scientific and engineering problems. Even larger Exaflop/s
scale computing systems which may have hundreds of mil-
lions of cores are planned. To run parallel applications on
machines of such massive scale, one of the biggest challenges
is the parallel startup process, i.e. how to start the appli-
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cation on all the computation nodes (as an example, this
is what mpirun does to start MPI [6] applications). On a
large machine, there may be a significant delay between job
allocation and application execution.

Furthermore, as another important part of the startup
process, all the processes on the computation nodes need to
exchange information with each other to set up communica-
tion channels for inter-process communication during execu-
tion. This inter-process communication requires that each
process knows about the existence of other processes and
also where to send a message if it needs to communicate
with a particular process. This information can be in the
form of a socket address (in case of using TCP/UDP) con-
sisting of IP address and a port. In general, each process
can potentially communicate with any of the processes and
hence should have information which enables it to send mes-
sages to them.

Hence, the task of parallel startup involves two compo-
nents: (1) parallel launching of appropriate processes on
the given set of processors and (2) setting up communica-
tion channels to enable the processes to communicate with
each other after startup has completed. In case of MPI, the
startup time would be from the time mpirun starts launching
processes on computation nodes to the time MPI_Init fin-
ishes, at which point communication channels are setup and
MPI processes are ready to communicate with each other.
Note that our definition of the startup process is different
with the ones that only consider parallel launching, e.g. re-
mote execution tools such as GXP [25] and TakTuk [11],
which are typically exploited for administrative purposes
such as running updates and setting up configuration on
all computation nodes. This paper focuses on the startup
process of parallel applications and scalable techniques to
speed up both components in the process.

The absence of fast startup mechanisms presents a major
obstacle to the full utilization of high performance comput-
ing power by the research community. Users of supercom-
puters are charged in Service Units (SU) to run their exper-
iments. One SU is equal to one core-hour of computations.
Also, the typical allocation size for research groups is a few
tens of thousands of SUs. Existing parallel startup mecha-
nism such as those used by Charm++ and Open MPI [12]
take 2 to 4 minutes for startup on 8K processors and perform
even worse for higher core counts. This results in tremen-
dous SU usage just to startup the application. As an exam-
ple, startup time of 4 minutes for 16K processors would mean
that a single experiment on 16K processors results in con-
sumption of more than 1K SUs for application startup. This



results in limiting the number of experiments a researcher
can perform given the fixed allocation size.

There are two types of approaches that have been adopted
by researchers to address the problem of parallel startup.
The first one assumes the presence of special daemons run-
ning on compute nodes to facilitate the startup process [9,
18, 22]. An example of this is a system called Multi-purpose
Daemons (MPD) [9] used for MPICH [15] jobs. Here, when
an application starts, the launcher contacts these daemons
to start the processes on each compute node. The draw-
back of this approach is that these daemons keep running
even when no MPI application is running and hence waste
system resources. The second type of approach is to use
a launcher which starts processes on compute nodes using
rsh or ssh and then sets up communication channels among
them. However, as we go up to high core counts, the central-
ized launcher becomes a bottleneck and imposes scalability
limitations (demonstrated by Figure 4).

In this paper, we present a multi-level scalable startup
method which is generic and can be applied to most parallel
programming environments, including MPI and Charm++
[20]. The fundamental idea is to use multiple launchers
which form a startup tree and reside on different proces-
sors. This makes the process of parallel application startup
decentralized and hence it scales well with increasing num-
ber of processors. We also incorporate SMP-awareness in
our approach to achieve faster startup. In addition, we in-
troduce the concept of batching of remote shell sessions to
make the parallel startup process fast on a consistent basis
and discuss the trade-offs involved in parallel startup using
a theoretical model. Moreover, our approach does not re-
quire presence of any special daemons (except rsh or ssh

daemons) on parallel machines to startup the application.
However, it can still be used to monitor process health and
provide scalable interaction with parallel application after
startup is complete.

We demonstrate the performance and scalability of multi-
level startup method by applying it to Charm++ run-time
system. Charm++ is a widely used programming model
for large scale scientific and engineering applications includ-
ing NAnoscale Molecular Dynamics (NAMD) [7], which is a
highly scalable molecular dynamics code used ubiquitously
on the TeraGrid and other HPC systems. Starting up a
Charm++ program on 16,384 cores of Ranger [3] (at TACC)
with Ethernet as the underlying communication layer now
takes only 25 seconds. This results in the SU consumption
getting reduced by an order of magnitude compared with
the centralized startup. Moreover, our scheme outperforms
Open MPI startup by a factor of over 8 and MPICH2 startup
(using Hydra) by a factor of 4 for 16K cores on Ranger.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the process of startup of parallel applica-
tion. Section 3 discusses the multi-level approach to parallel
startup. Section 4 presents performance evaluation of our
multi-level startup scheme. Related work is discussed in
Section 5. Finally, conclusions are left for the final section.

2. BASIC METHOD
The techniques presented here are generic and can be ap-

plied to most parallel programming environments such as
MPI, Charm++, etc. However, in this paper, we will dis-
cuss the schemes with focus on their implementation for
Charm++. We will refer to the launcher as charmrun and
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Figure 1: Basic process of parallel startup

the processes which constitute the parallel application as
clients.

Figure 1 discusses the basic startup scheme. For simplic-
ity, we assume processes on remote processors communicate
via UDP sockets. Charmrun needs to know the set of proces-
sors where the parallel application will be run. One way of
providing this information is using a machine file, which we
call the nodelist file. Charmrun starts a remote shell session
with each processor where the application will be run. Stan-
dard remote execution shell facilities (such as rsh or ssh)
can be used for this purpose. We chose to use ssh since it
provides strong authentication and is more secure compared
to rsh. After starting a remote shell session, charmrun sets
up some environment variables, creates a process on the re-
mote processor using the fork() system call and loads the
application executable using the exec() system call. This
task is performed for each processor in the nodelist file.

During the execution of a parallel application, the remote
clients need to be able to communicate with each other. This
inter-process communication requires establishment of com-
munication channels among clients. The second component
of startup performs information collection and dissemina-
tion to enable the clients to communicate with each other
after startup has completed. Each client sends some infor-
mation to charmrun which is used to set up communication
channels between the clients. We refer to this information
as an I-tuple. In the case of TCP or UDP as the under-
lying communication layer, an I-tuple consists of a socket
address comprising IP address and dataport. The dataport
is the port where a client will listen for any incoming mes-
sage from other clients during execution of the application.
Charmrun receives I-tuples from all clients and collects them
to form a table of I-tuples which we call the node-table. The
node-table is sent to every process. After receiving the node-
table, clients can communicate with each other without any
need of charmrun and startup is complete. As another ex-
ample, this component of startup would involve the process
of establishing queue pairs on an Infiniband based commu-
nication network [17].

Charmrun is needed even after startup has completed
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Figure 2: Multi-level startup scheme

since it acts as an interface between parallel application and
the external world during execution. All input output and
some additional features (discussed in section 3.5) such as
parallel debugging can utilize charmrun.

3. MULTI-LEVEL STARTUP
In this section, we discuss the multi-level startup tech-

nique. There is an optimization which can lead to significant
improvement in the performance of centralized startup. We
discuss that before describing the multi-level approach.

3.1 SMP-Aware Startup
The scheme discussed in section 2 requires charmrun to

perform a remote shell login to each processor. Most super-
computers and even desktop systems today have multi-core
chips where each node has many processor cores. 8-core, 16-
core and 32-core nodes are not uncommon. Consider a node
with 16 cores; charmrun would create a ssh session with
each of the 16 cores. An optimization to this is to create
only one ssh session per node and spawn all clients from the
same ssh session. We call this SMP-aware startup. With
the trend towards clusters with increasing number of cores
per node, such as Intel’s Single-chip Cloud Computer [16],
this optimization is extremely useful. In addition, this is
useful when multiple processes need to be launched on a
single processor, such as in parallel application testing and
debugging. The second phase of startup remains the same
as the basic scheme. Each client sends an I-tuple to charm-
run, which collects them and sends the node-table to every
client.

3.2 Multi-level Startup
Even with the optimization discussed in previous section,

the startup is inherently serial. Charmrun starts ssh ses-
sions sequentially and waits for all the clients to connect
back. Charmrun becomes a bottleneck in a few ways:

1. Charmrun has to start an ssh session with each node.

2. Charmrun has to receive a message containing an I-
tuple from each of the clients.

In todays supercomputers, with hundred of thousands of
nodes, centralized startup becomes a bottleneck and the
startup performance degrades significantly with increase in
number of cores (See section 4.1). We can conclude that we
need to explore a distributed startup scheme to prevent the
central charmrun process from becoming a bottleneck.

We propose a multi-level startup to overcome the prob-
lems discussed so far. Fig 2 illustrates 2-level startup scheme.
Here we have a master charmrun process, which we call the
root charmrun, and second level charmrun processes, which
we will refer to as child charmruns. Child charmruns reside
on different processors. Each child charmrun is assigned a
subset of unique nodes for which it acts as a manager. The
root charmrun acts as a top-level manager that coordinates
the startup process between child charmruns. It decides
the branching factor (number of child charmrun) which we
call k. For simplicity, we keep the branching factor as the
square root of number of unique nodes where the application
will be run. (Section 3.4 provides an analysis of the effect
of branching factor and number of levels on performance.)
Each child charmrun gets approximately k nodes assigned to
it and acts in a similar manner to the charmrun of central-
ized startup method. It starts processes on its node set and
waits for clients to connect back. After receiving I-tuple, it
forwards that to root charmrun. Root charmrun receives all
the I-tuples and disseminates node-table to child charmruns,
which in turn, forward that to their respective set of clients.
We note that multi-level startup uses SMP-aware startup at
leaf charmrun level.

Child charmruns must continue to exist after the startup is
complete. A client process is aware of only its manager and
is oblivious to the presence of other child charmruns and the
root charmrun. All input-output and any communication
for additional supported features must go through it. The
decentralized existence of charmruns makes parallel input
output and user interaction with parallel application more
scalable.

The multi-level startup technique distributes the task of
performing remote shell sessions and receiving I-tuples to
a set of processors and is intuitively more scalable. How-
ever, while evaluating startup performance we discovered
that there was a huge variation in the startup time between
different runs. As an example, for 4096 cores on TACC’s
Ranger cluster with 16 cores per node, startup time using
multi-level startup varied from 10 to 60 seconds. To dis-
cover the cause of this unexpected behavior, an analysis of
the breakdown of time taken by startup was done. Fig-
ure 3(a) shows the breakdown of the time spent by different
child charmruns in startup. With 4096 processors and 16
cores per node, there are 256 unique nodes and hence the
branching factor is kept 16. So, there are 16 child charm-
run. Init time is the initialization time taken by each child
charmrun. It comprises the time taken by a child charmrun
to connect to root charmrun and receive its set of nodes.
SSH time is the time spent in creating remote login sessions
and launching clients on remote processors. Wait time is the
time spent in waiting for their set of clients to connect back.
It can be observed that Init time and SSH time is small and
does not vary a lot across charmruns. The main component
where a large fraction of time is spent is Wait time. More-
over, Wait time varies from 2 seconds to 49 seconds across
charmruns resulting in inconsistent performance. If there is
even a single outlier, it delays the whole startup process.

3.3 Multi-level Startup with Batching
It was observed that the variation in startup time is small

for less number of cores and becomes worse as we increase
number of cores. Although multi-level startup makes the
startup process distributed, it does not reduce the total num-



 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ti
m

e 
(s

)

Child charmrun

Init Time
SSH Time
Wait Time

(a) Without batching

 0

 10

 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ti
m

e 
(s

)

Child charmrun

Init Time
SSH Time
Wait Time

(b) With batching using batch size of 8

Figure 3: Breakup of time spent in parallel startup using multi-level scheme for 4K processors

ber of I-tuple messages that can be present in the network
at any time. This is equal to the number of clients. If there
are tens of thousands of clients, this can lead to congestion
in network. To overcome this problem, we introduce the
concept of batching of remote shell sessions. In this strat-
egy, the nodes assigned to a leaf charmrun are divided into
sets of fixed size. Each child charmrun performs ssh to the
nodes in the current set, waits for the clients to connect back
and then performs ssh on the next set. We call the num-
ber of nodes in one ssh set as batch size. Batching reduces
the total number of messages at any time and hence leads
to better scalability. Figure 3(b) shows the breakdown of
the time spent by different child charmruns in multi-level
startup with batch size of 8 for 4096 processors on Ranger.
Comparing with Figure 3(a), we observe that the wait time
is consistent across all charmruns and is small. This leads
to a faster and more scalable startup process.

However, batching introduces some serialization; only af-
ter the clients in the first set are launched and I-tuples are
received from those, next set of clients can be launched. We
discuss the effect of batch size on performance in section 4.2

3.4 Analysis
In this section, we present a theoretical analysis of the

different startup schemes discussed in this paper. Consider
a supercomputer with P processor cores and N nodes. Let
c = P/N be the number of cores per node. Parallel startup
time for our basic scheme (Tbasic) can be modeled as:

Tbasic = Tinit + P × Tssh + Tclient

+Tsend + Tnw + P × Trecv

(1)

where Tinit is the charmrun initialization time (which in-
cludes getting the list of nodes to start e.g. reading nodelist
file, starting a server port where clients can send I-tuples
etc), Tssh is the time taken by charmrun to start a rsh or ssh
session with a remote node, Tclient is the time taken by the
remote shell to create a new process at the remote proces-
sor and load the program executable, Tsend is the processor
sending overhead at a client, Tnw is the network latency for
a message, Trecv is the message receiving overhead incurred
by charmrun.

We regard the total overhead due to Tinit, Tclient, Tsend

and Tnw as constant, regardless of the number of processors,
and we represent them by Tc to keep the analysis readable.
Hence, we have

Tbasic = Tc + P × (Tssh + Trecv) (2)

where

Tc = Tinit + Tclient + Tsend + Tnw (3)

SMP-aware startup starts only one ssh process per node
and hence it reduces the total ssh time. However, it still
incurs the receive overhead for all clients. so, the time taken
by SMP-aware startup (TSMP ) can be modeled as:

TSMP = Tc +N × (Tssh + c× Trecv) (4)

Hence, both Tbasic and TSMP grow as θ(P ) since charm-
run has to start a ssh process for each node and incur a
receiving overhead for each client. This becomes to a scala-
bility bottleneck.

Now consider our multi-level startup. Let k be the branch-
ing factor and d be the depth of the startup tree. We assume
the branching factor is kept same across the levels of the tree.
In a k-ary, d-level startup tree, a charmrun at level 6= d is
responsible for acting as a manager for its k child charm-
runs and a charmrun at level = d acts as a manager for
k nodes (k × c clients). This scheme emulates the basic
startup scheme at each level of the startup tree. Hence, the
startup time for a d-level SMP-aware startup (Td−level) can
be modeled as:

Td−level = d× (Tc + k × (Tssh + Trecv))

+k × (c− 1)× Trecv

(5)

The crucial parameters here are k and d, which related
by:

d = logk(N) (6)

Multi-level startup increases the overhead due to Tc by
a factor of d. However, it reduces the effect of ssh time
and receive overhead by a factor of P/(ck logk(P/c)). We
note that Td−level grows asymptotically as θ(k logk(P/c))



instead of θ(P ) for basic startup. An optimal value of the
number of levels can be obtained by minimizing Td−level

using equation 5, with k given by equation 6. Determining
the exact expression for this optimal value is beyond the
scope of this paper.

A simpler method of obtaining d is to bound k so that
charmrun can handle the given number of clients without
significant performance degradation. Past research [24] sug-
gests that a process can handle 128 simultaneous connec-
tions with acceptable performance. Hence, d = 2 should
be adequate to handle up to 16384 processes. For a 2-level
startup (d = 2), k =

√
P/c.

There is one factor which we have ignored so far. As we
scale to high core counts, the number of messages in the
network sent by clients to connect back to the respective
charmruns increase. This can make the network congested
and degrade performance significantly. Batching overcomes
this problem and makes startup time consistent. However,
batching comes with the cost of increasing the best case
(no congestion) startup time. Startup time for SMP-aware
multi-level scheme with batching can be modeled as:

Tbatched d−level = (d− 1)× (Tc + k × (Tssh + Trecv))

+(k/b)× Tc + k × (Tssh + c× Trecv)
(7)

where b is the batch size. Since batching is only done at
the last level of the tree, it does not degrade the performance
of starting charmrun tree itself. However, it affects the time
taken by last level charmruns to startup the clients. The
overhead Tc is now incurred for every batch phase of a last-
level charmrun.

3.5 Runtime Capabilities
The startup system presented in this paper can also be

used to interact with a parallel application after startup is
finished. After startup of the application is complete, each
charmrun acts as a manager for its set of clients. We discuss
two aspects of this:

3.5.1 Process Health and Recovery from Failures
After startup of the application is complete, each charm-

run is accountable for monitoring the status of its clients.
Each charmrun enters into a polling mode where it monitors
process health. If a process fails, charmrun is responsible to
terminate the whole application if there is no support for
fault tolerance. Charmrun system has also been used to fa-
cilitate the design of fault tolerance protocols for Charm++
applications [10]. If a process fails, appropriate charmrun
restarts the failed process using restart protocol. In this
protocol, execution of the parallel application is suspended
by the charmruns till the failed process is restarted. A new
process is launched and node-table is modified to use the
I-Tuple received from the restarted process. This new node-
table is communicated to all the clients and execution can
resume. Multi-level charmrun system makes process health
monitoring and failure recovery a decentralized process and
hence more scalable.

3.5.2 Support for Scalable Interaction with Parallel
Application

The multi-level charmrun system can be used to provide
scalable interaction with the parallel application. Such in-
teraction can be extremely useful for providing parallel de-
bugging, online performance analysis and simulation visu-
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alization [14]. Developers and end-users of parallel applica-
tion can greatly benefit from these capabilities provided by
a runtime system. We have used Charmdebug [19] with our
multi-level charmrun system to debug parallel application.
Charmdebug is a graphical tool that allows programmers to
debug large scale parallel programs. It uses Converse Client
Server (CCS) [23] which is a communication protocol that
allows parallel applications to act as remote server that re-
ceives and serves requests from remote clients. Multi-level
charmrun system makes this process more scalable by dis-
tributing the task of managing the client processes among
multiple charmruns and hence avoiding the single charmrun
from becoming a bottleneck. CCS can also be used to pro-
vide simulation visualization using tools such as liveViz [1].
During execution charmrun also acts as a means of any com-
munication between the client process and the outside world.
An example of this is console input output.

4. PERFORMANCE RESULTS
We ran performance tests on TACC’s Ranger Cluster which

is one of the largest computational resource in the world
(Ranked 15 in the November, 2010 top500 list [4] of su-
percomputers). The Ranger system has 3,936 16-way SMP
compute nodes providing 15,744 AMD Opteron processors
for a total of 62,976 compute cores [3]. It has a theoretical
peak performance of 579 TFLOPS. All nodes are intercon-
nected using InfiniBand technology in a full-CLOS topology
and provide a 1GB/sec point-to-point bandwidth. For core
counts above 4K, the executable was cached in each node’s
memory immediately before launching the parallel applica-
tion to avoid any inconsistencies caused by disk to memory
transfers. The following subsections discuss various perfor-
mance results we got on this supercomputer.

4.1 Performance of Different Schemes
In this section, we discuss the performance of our startup

schemes. We ran all our experiments using all the 16 cores
per node and used Ethernet as the underlying communica-
tion network. Figure 4 compares three schemes - the basic
scheme, SMP-aware startup and multi-level startup without
batching. The effect of batching is discussed in section 4.2.
We can observe that the basic scheme does not scale beyond
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4K processors. For 8K cores, we waited 8 minutes for startup
to finish using basic scheme; our allocation on Ranger did
not allow us to wait indefinitely. For 4K processor cores
(256 nodes), the basic startup scheme takes 237 seconds to
finish startup, SMP-aware startup takes 51 seconds whereas
multi-level startup without batching takes 37 seconds on av-
erage giving a speedup of 6.4X over the basic scheme and
1.4X over SMP-aware startup. Moreover, the slopes of the
three lines in the figure show that multi-level startup scales
better with increasing number of processors as compared to
other schemes. With a branching factor equal to

√
N where

N is the number of nodes, we expect the time taken by ssh

phase of startup to grow as θ(
√
N) instead of θ(P ) in the

base scheme where P is the number of processors. If we use
more levels of charmrun, we get a tree startup scheme that
can scale as θ(log(N)). However, in our experiments, 2-level
scheme was sufficient since Ssh time is not the main bottle-
neck as discussed in section 3.3. The main bottleneck is the
Wait time which is reduced further by using batching. We
discuss improvement in performance and scalability due to
batching in section 4.2.

4.2 Effect of Batching
We experimented with different batch sizes to find out the

optimal batch size. Figure 5 shows the effect of batch size
on startup time for 4K processors (256 nodes) on Ranger.
For 256 nodes, branching factor is kept 16. So, batch size of
16 is identical to starting all nodes (no batching). For each
batch size on the x-axis, circles represent the startup time of
a particular run. Each point on the lower line shows the %
difference between the maximum and minimum startup time
for a fixed batch size. The graph also shows average startup
time for different batch sizes. We can make two important
observations from this figure. First, we see that the variation
in startup time increases with batch size. The variation is
as high as 600% for no batching. Second, average startup
time initially decreases with batch size, become lowest for
batch size of 8 and increases again. The reason for that is
the trade-off between the slowdown caused due to inherent
serialization introduced by batching and the speedup caused
due to avoiding congestion by reducing the total number of
message in the network at any time.
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The results for scaling of startup using multi-level startup
with batching with different batch sizes are shown in Fig-
ure 6. We see that the batch size of 8 performs the best
as we increase the number of processors. Smaller batch size
does not scale well with the number of processors due to the
serialization introduced. A batch size of 16 does not per-
form well for 4K and 8K processors because it is close to no
batching for these number of processors. It performs well
for 16K processors (1024 nodes). We expect a batch size of
16 to be good for even higher number of cores.

4.3 Comparison with Open MPI and MPICH2
(Hydra) startup

Open MPI and MPICH2 are two of the most prominent
free implementations of MPI standard. Open MPI [12] is an
open source MPI-2 implementation that is developed and
maintained by a consortium of academic, research, and in-
dustry partners. It is used by many TOP500 supercom-
puters including Ranger. Ranger uses SGE (Sun Grid En-
gine) [13] parallel environment to launch and manage Open



MPI processes. MPICH2 [2] is a high performance and
widely portable implementation of MPI standard. We in-
stalled MPICH2-1.3 on Ranger to compare our approach
with hydra [5] which is the default process management
framework for starting MPI processes for MPICH2-1.3 on-
wards. Hydra uses existing daemons such as ssh, rsh, pbs,
slurm and sge to start MPI processes. We compared the
startup time taken by our multi-level startup with batching
with Open MPI and MPICH2 startup time on Ranger. MPI
startup time was measured by calculating the difference be-
tween the time measured using Linux date command from
the job script just before starting the parallel program and
a timer call after MPI initialization. For our scheme, the
startup time includes the time of the two phases of startup
- parallel process launch and establishment of communica-
tion channels between parallel processes. Figure 7 shows the
comparison between the startup time with varying number
of processors. We can note that our startup scheme out-
performs Open MPI startup by a factor of 8 and MPICH2
by a factor of 4 for 16K processors. Also, we see that our
scheme scales very well with the number of cores. Startup
for 16K cores on Ranger using multi-level startup takes only
25 seconds.

5. RELATED WORK
The problem of scalable startup for parallel application

has been studied by many researchers. Butler et al. [9] pre-
sented a scalable process management system called MPD
(for Multi-purpose Daemon) for parallel programs such as
those written using MPI. The main idea is the presence
of persistent daemons, typically one instance per host in
a TCP-connected network. The daemons are connected in
a ring. Manager processes are started by the daemons to
control the application processes (clients) of a single par-
allel program and provide most of the MPD features. To
run an MPI program, mpirun first connects to the daemon
ring in order to start the parallel program and then switches
to manager ring in order to control the program. Our ap-
proach does not assume presence of any daemons and pro-
vides fast startup and application management capabilities
without needing any daemons. Yu et al. [26] have done re-
search on startup of MPI programs on InfiniBand clusters.
They use MPD for process spawn and focus on reducing the
data volume exchanged during information exchange.

SLURM [18] is a fault-tolerant and highly scalable cluster
management and job scheduling system for large and small
Linux clusters. It allocates resources (compute nodes) to
users for some duration of time and also provides a frame-
work for starting, executing, and monitoring work (normally
a parallel job) on the set of allocated nodes. ALPS [22] is
another similar application placement and launch system.
Similar to MPD, both SLURM and ALPS use persistent
daemons running on each compute node for startup and
monitoring.

Hydra [5] is the default process management framework
for starting MPI processes for MPICH2-1.3 onwards. It uses
existing daemons such as ssh, rsh, pbs, slurm and sge to start
MPI processes. ScELA [24] is a job launch mechanism which
targets multi-core clusters. It decouples the two phases in
a parallel application launch - spawning of processes and
information exchange between processes to complete initial-
ization. It comprises a spawning agent which starts executa-
bles on target processors and the communication primitives

are used within the executables to communicate necessary
initialization information. ScELA process launch is similar
to our SMP-aware startup since ScELA has a Node Level
Agent (NLA) for every node. An NLA is used to launch all
processes on a node. NLAs are active only for the duration
of launch, hence the framework is daemonless. However,
since there is an NLA per node, there is an extra process
per node consuming processor cycles. Our approach has
child charmruns but they are only a few (

√
N for 2-level

startup on N nodes). Moreover, they are necessary because
that provides I/O capabilities and scalable interaction with
parallel application.

Research has been done on concurrent launching strate-
gies including tree-based launching. Claudel et al. [11] study
the performance of standard remote execution protocols and
explore various concurrent launching strategies. Also, they
propose work-stealing method to balance the tasks of de-
ployment to child nodes. They present TakTuk, a remote
execution deployment system which can be used for fast and
scalable distributed machine administration and parallel ap-
plication development. Their work focuses on the execution
of same process on a set of nodes. Another such parallel
shell tool is GXP [25] which facilitates running an identical
or a similar command line to many machines in parallel and
getting results back interactively. In both TakTuk and GXP,
the processes do not need to communicate with each other
and hence the second phase of parallel startup - setting up
communication channels is not needed.

Brightwell et al. [8] present the components of the runtime
system for parallel application launch on Cplant project.
They do not assume that the executable to be launched is
available on a global file system. Our approach makes that
assumption; since in our experience, that is the common
case in high performance systems. Also, they do not discuss
the issues in the connection establishment phase of parallel
startup.

6. CONCLUSION
This paper presents a scalable multi-level approach for

startup of parallel applications on large systems. Parallel
startup consists of two phases - parallel launching of appro-
priate processes on the given set of processors and setting up
communication channels to enable the processes to commu-
nicate with each other after startup has completed. We ex-
plored techniques to speed up both of these components. We
also introduced the concept of batching of remote shell ses-
sions and incorporated SMP-awareness to further improve
scalability. We analyzed the performance of different startup
techniques presented in this paper using a theoretical model
and also evaluated their performance on TACC’s Ranger
cluster using Charm++. Our scheme was able to startup
a Charm++ program on 16,384 cores of Ranger [3] with
Ethernet as the underlying communication layer in only 25
seconds. We also compared the performance with Open MPI
and MPICH2 (with hydra as the process manager) startup
and our scheme outperformed Open MPI startup by a fac-
tor of over 8 and MPICH2 startup by a factor of 4 for 16K
cores.

The multi-level startup system presented in this paper is
a complete solution to the startup of a parallel application
and its management during execution. It monitors process
health and can be used to support recovery from failures and
provide scalable interaction with the application.



Acknowledgments
This work was supported in part by NSF grant OCI-0725070
for Blue Waters deployment, by the Institute for Advanced
Computing Applications and Technologies (IACAT) at the
University of Illinois at Urbana-Champaign, and by Depart-
ment of Energy grant DE-SC0001845. We used machine
resources on the Ranger cluster (TACC), under TeraGrid
allocation grant TG-ASC050039N supported by NSF.

7. REFERENCES
[1] LiveViz Library. http://charm.cs.uiuc.edu/

manuals/html/libraries/6.html.

[2] MPICH2:High-Performance and Widely Portable
MPI. http://www.mcs.anl.gov/mpi/mpich.

[3] Ranger User Guide. http://services.tacc.utexas.
edu/index.php/ranger-user-guide.

[4] Top500 supercomputing sites. http://top500.org.

[5] Using the Hydra Process Manager.
http://wiki.mcs.anl.gov/mpich2/index.php/

Using_the_Hydra_Process_Manager.

[6] Mpi: A message passing interface standard. In M. P.
I. Forum (1994).

[7] Bhatele, A., Kumar, S., Mei, C., Phillips, J. C.,
Zheng, G., and Kale, L. V. Overcoming scaling
challenges in biomolecular simulations across multiple
platforms. In Proceedings of IEEE International
Parallel and Distributed Processing Symposium 2008
(April 2008), pp. 1–12.

[8] Brightwell, R., and Fisk, L. A. Scalable Parallel
Application Launch on Cplant TM. In In Proceedings
of the SC2001 Conference on High Performance
Networking and Computing (2001).

[9] Butler, R., Gropp, W., and Lusk, E. A Scalable
Process-Management Environment for Parallel
Programs. In Recent Advances in Parallel Virtual
Machine and Message Passing Interface, J. Dongarra,
P. Kacsuk, and N. Podhorszki, Eds., vol. 1908 of
Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2000, pp. 168–175.
10.1007/3-540-45255-9 25.

[10] Chakravorty, S. A Fault Tolerance Protocol for Fast
Recovery. PhD thesis, Dept. of Computer Science,
University of Illinois, 2008.

[11] Claudel, B., Huard, G., and Richard, O.
TakTuk, adaptive deployment of remote executions. In
Proceedings of the 18th ACM international symposium
on High performance distributed computing (New
York, NY, USA, 2009), HPDC ’09, ACM, pp. 91–100.

[12] Gabriel, E., Fagg, G. E., Bosilca, G., Angskun,
T., Dongarra, J. J., Squyres, J. M., Sahay, V.,
Kambadur, P., Barrett, B., Lumsdaine, A.,
Castain, R. H., Daniel, D. J., Graham, R. L.,
and Woodall, T. S. Open MPI: Goals, concept, and
design of a next generation MPI implementation. In
Proc. of 11th European PVM/MPI Users’ Group
Meeting (Budapest, Hungary, 2004).

[13] Gentzsch, W. Sun Grid Engine: towards creating a
compute power grid. In Cluster Computing and the
Grid, 2001. Proceedings. First IEEE/ACM
International Symposium on (2001), pp. 35 –36.

[14] Gioachin, F., Lee, C. W., and Kalé, L. V.
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