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Abstract—Increasing number of cores and clock speeds on a
smaller chip area implies more heat dissipation and an ever
increasing heat density. This increased heat, in turn, leads to
higher cooling cost and occurrence of hot spots. Effective use
of dynamic voltage and frequency scaling (DVFS) can help us
alleviate this problem. But there is an associated execution time
penalty which can get amplified in parallel applications.

In high performance computing, applications are typically
tightly coupled and even a single overloaded core can adversely
affect the execution time of the entire application. This makes
load balancing of utmost value. In this paper, we outline a
temperature aware load balancing scheme, which uses DVFS
to keep core temperatures below a user-defined threshold with
minimum timing penalty. While doing so, it also reduces the
possibility of hot spots. We apply our scheme to three parallel
applications with different energy consumption profiles. Results
from our technique show that we save up to 14% in execution
time and 12% in machine energy consumption as compared to
frequency scaling without using load balancing. We are also able
to bound the average temperature of all the cores and reduce
the temperature deviation amongst the cores by a factor of 3.

I. INTRODUCTION

Large data centers can cost millions of dollars with cooling
needs incurring nearly half the total energy cost [1]. Recent
reports show that, in 2006, data centers in US alone used 59
billion KWh of electricity, emitted 864 million tons of carbon
dioxide and costed up to US $4.1 billion [2]. This represented
2% of USA’s total energy budget. Recent legislative efforts [3]
and increasing cost of power now make it difficult for data
center managers to overlook energy efficiency any longer.

Increasing number of cores and clock speeds on a smaller
chip area implies more heat dissipation and an ever increasing
heat density. This is fast becoming a problem in high perfor-
mance computing (HPC). This problem is further aggravated
by the advent of multithreading. Most cores can now achieve
a very high rate of utilization and hence end up dissipating
a lot of heat. The increased power dissipation and thermal
densities have made systems far more vulnerable to transient
and permanent faults. Spatial temperature variances i.e. hot
spots, affect the reliability, cooling costs and performance of
the system. Hot spots accelerate failure mechanisms which can
cause permanent device failures [4]. Even small differences
in temperatures e.g. 10-15 ◦C, can cause a 2X reduction
in the mean time to failure [5]. In addition to hot spots,
temperature gradients in time and space also determine the

device reliability [6]. The failure rate due to thermal cycling
increases with an increase in the frequency and amplitude of
the temperature cycles [5]. Thermal cycling can also cause
increased plastic deformations of materials which can lead to
permanent failures. Leakage power is a major constituent of
power consumption. In feature sizes of below 65nm, leakage
is expected to account for more than 50% of the overall power
consumption [7]. This leakage consumption is dependent on
device temperature with a positive feedback loop existing
between leakage and temperature. This can cause dramatic
increase in temperature which, unless controlled, can damage
the circuit.

In addition to large spatial temperature variation across
nodes causing hot spots, another factor that can cause perfor-
mance degradation and logic failures is the spatial temperature
variation across the chip within a node. Increasing tempera-
tures give rise to increasing local resistances which cause an
increase in circuit delays and IR drop [8]. The observations
mentioned above motivated us to adjust the frequencies of
all the cores inside a chip so that we avoid such on chip
temperature variations and minimize the possibility of hot spot
formation.

The problem of scheduling tasks in order to avoid hot
spot formation in data centers has been looked at in great
detail [9] [10]. Although these works also try to minimize
the load imbalance, they do not suffer a huge penalty if a
few nodes are overloaded. In HPC, however, applications are
typically tightly coupled and even a single overloaded core can
adversely affect the execution time of the entire application.
This makes load balancing of utmost value. Hot spots are
obviously a major source of energy wasted on cooling. Many
data centers decrease the overall room temperature in order
to cope with the hot spot [11] and therefore waste energy in
cooling machines that are already at the desired temperature.
Most energy related work in HPC has been done with the
aim of reducing the energy consumed by the machine itself
while ignoring the cost of cooling. Surveys also show that for
every watt consumed by the machine, it takes 1 to 2 watts to
cool it depending on the cooling efficiency of the system [12].
Our major goal is to avoid this energy waste caused by the
hot spots by ensuring that the temperature for each core does
not exceed a threshold. For this, we want to minimize the
temperature variance across the cores. We accomplish this



by periodically measuring the temperature at each core and
using dynamic voltage and frequency scaling (DVFS) to scale
down the frequency of a core if and when it crosses a user-
defined threshold. This, however, causes different cores to
work at different speeds and hence leads to load imbalance.
To deal with this, we apply a greedy load balancing algorithm.
This algorithm assigns tasks by taking into account the core
frequencies and the amount of work.

Although there have been some studies addressing the issue
of hot spots, there haven’t been many for HPC. Especially
lacking are studies that show experimental results instead
of simulated ones. The major contribution of our work is
hot spot avoidance and temperature control demonstrated by
experiments. In our work, we use an 8 core machine and a
watt meter for making energy measurements. Although our
scheme is equally applicable to most programming models,
in this paper we have implemented it using Charm++ [13].
Another feature of our scheme is its ability to make load
balancing decisions at runtime rather than requiring any pre
runs to generate traces.

The rest of this paper is organized as follows. In Section II,
we provide an overview of the related work. Section III de-
scribes our algorithm. Next, we analyze the performance of our
algorithm in Section IV. Section V outlines our conclusions
and some directions for future work.

II. RELATED WORK

The importance of saving energy spent in cooling to-
wards the overall power savings has been studied pre-
viously [9] [14] [15]. Scheduling tasks to avoid thermal
hot spots in data centers has also been looked at be-
fore [10][16] [17] [18] [19]. Choi et al. [10] investigated the
trade-offs between temporal and spatial hot spot mitigation
schemes and thermal time constants, workload variations and
microprocessor power distributions. Also, they examine the
effect of OS-level temperature-aware scheduling to avoid hot
spots.

The idea of frequency scaling with temperature variation has
also been explored earlier. Rajan et al. [20] discuss the effec-
tiveness of system-throttling for temperature aware scheduling.
They claim that under certain assumptions, system-throttling
rules are the best one can achieve. One of their assumptions
is that the tasks on different cores can not be moved from one
core to another which may not be valid in HPC. Runtime load
balancing techniques such as those discussed in Section III
are central to the performance of parallel applications such as
NAMD [21]. One such approach has been taken in [22]. Their
scheduler considers the energy characteristics of individual
tasks to move them from overheated cores to others. This
differs from our approach as it does not consider parallel
applications.

Researchers have also explored OS-level techniques such
as thermal-aware task scheduling to minimize hardware DTM
(dynamic thermal management techniques such as frequency
and voltage scaling) [23]. These techniques classify jobs into
hot/cold jobs and schedule them so as to maintain temperature

under thermal threshold. Various scheduling algorithms such
as random and prioritized scheduling have been explored.
Approaches which are hybrid of software techniques such as
OS-level task scheduling and hardware techniques such as
frequency scaling have also been considered [24].

Load balancing mechanisms designed for non HPC data
centers aim at distributing load as equally as possible. How-
ever, if any one of the servers is overloaded, it does not
affect the entire system as badly as it would in the case
of an HPC data center due to presence of synchronization
primitives. Most of the work done for HPC data centers has
focused on saving energy consumed by the system and has
ignored cooling costs [25]. Hanson et al. [26] present a runtime
system named PET (Performance, power, energy and tem-
perature management) which tries to maximize performance
while respecting power, energy and temperature constraints.
PET chooses appropriate frequencies to achieve best possible
performance with minimal constraint violation. Our approach
shares the goal with PET but in a multi-processor environment
which introduces the aspects of load balancing to get better
performance under these constraints.

III. TEMPERATURE AWARE LOAD BALANCING

In this section, we introduce Charm++, its load balancing
infrastructure and our approach to using it for temperature
aware load balancing.

A. Charm++ and load balancing
Charm++ is an object oriented parallel programming lan-

guage based on C++ classes [13]. It provides a methodology
in which the programmer decomposes a program’s data and
computation into small tasks which are then assigned to
processors by the runtime system. Charm++ runtime system
keeps track of the execution time for all these tasks in order to
do load balancing. Load balancing is the task of distributing
computation and communication load evenly across all cores
in a parallel program. There are two types of load balancing
approaches based on when it is done. The first approach
does load balancing only at the time of task creation whereas
the second approach periodically balances load during the
execution of tasks. Here, we use the latter i.e. periodic load
balancing, which migrates tasks only when needed. Charm++
has a large class of periodic load balancing schemes [27]. They
are most useful with iterative scientific applications such as
NAMD [21]. The main challenge for periodic load balancing is
detection of load imbalance. Charm++ uses a heuristic known
as principle of persistence, according to which the computation
load and communication patterns tend to persist with time for
a certain class of iterative scientific applications. Using this
principle, Charm++ uses measurement based load balancers
that incorporate load information measured from previous time
steps to predict load for the future and base load balancing
decisions on that.

B. Our Approach
In this section we elaborate on a novel temperature aware

load balancing technique. Decisions regarding load balancing



TABLE I
DESCRIPTION FOR VARIABLES USED IN ALGORITHM 1

Variable Description

n number of tasks in application
p number of cores

Tmin minimum temperature allowed
Tmax maximum temperature allowed
Fmin minimum frequency allowed for a core
Fmax maximum frequency allowed for a core
Ci set of cores on same chip as core i
lki load of core i for step k (in ms)
eki execution time of task i during step k (in ms)
fk
i frequency of core i during step k (in Hz)

mk
i core number assigned to task i during step k

tki temperature of core i at start of step k (in ◦C)
Sk {ek1 , ek2 , ek3 , . . . , ekn}
Pk {lk1 , lk2 , lk3 , . . . , lkp}

are taken at runtime on the basis of past history facilitated by
the Charm++ runtime.

Algorithm 1 shows our algorithm for temperature aware
load balancing at the start of kth interval with Table. I
explaining the notation used. The application specifies the
temperature threshold and time interval at which the runtime
periodically checks the temperature and determines whether
any core has crossed that threshold. If none has, the application
continues executing the assigned tasks. However, if some core
is hotter than the threshold, we change its frequency to the
minimum possible so that it cools quickly. On the other hand
if the core temperature falls below the minimum threshold, we
increase its frequency to the maximum available (lines 2-10).
After frequency scaling, we invoke the load balancer which
gets the execution times for all tasks in the application since
the last load balancing step. We then normalize the execution
time of each task by multiplying it with the core frequency at
which it was executing during the last load balancing interval
(lines 12-14). The algorithm is greedy in the sense that at
each iteration, it selects the largest task and assigns it to the
least loaded core. While assigning tasks to cores, we divide
the normalized time by the core’s newly assigned frequency
(lines 15-22).

In our scheme, we change the frequency of all cores on
the chip instead of doing it only for the core violating the
temperature threshold. We justify this choice now. Recall that
CPU power consumption can be expressed as:

P = Cfv2 + Ipv (1)

where P is the power consumed, f is the frequency, C is the
capacitance, Ip is the leakage current and v is the core input
voltage. The first term represents the dynamic power whereas
the second one stands for static power. Since the dynamic
power is linear in frequency but quadratic in voltage, we can
see that frequency already plays a smaller role towards power
consumption as compared to voltage. To have fast and more
pronounced control over power consumption, we must do our
frequency scaling such that it also triggers a change in the
input voltage. However, all cores on the chip have a common

Algorithm 1 Temperature Aware Load Balancing
1: At core i at start of step k
2: if tki > Tmax then
3: for x ∈ Ci do
4: fk

x = Fmin

5: end for
6: else if tki < Tmin then
7: for core x ∈ Ci do
8: fk

x = Fmax

9: end for
10: end if
11: At Master core
12: for i ∈ Sk−1 do
13: eki = ek−1

i × fk−1

mk−1
i

14: end for
15: for i ∈ P k do
16: lki = 0
17: end for
18: sort Sk in descending order
19: for i ∈ Sk do
20: lkmin = lkmin + eki

fk
min

where min is least loaded core
21: mk

i = min
22: end for

input voltage equal to the maximum voltage required by any
core on that chip. This is why we do frequency scaling for
all cores on the chip because its the only way to change the
input voltage. Moreover, we noticed in our experiments that
there is not much deviation in core temperatures inside the
same chip so changing the frequency for all cores works well
in practice.

IV. PERFORMANCE RESULTS

In this section, we evaluate the performance of our load
balancing scheme. We first describe the three different applica-
tions we used to analyze the effectiveness of our approach. The
first application is Jacobi2D which uses 2D decomposition. It
is a canonical benchmark that uses a 5-point stencil to average
values in a 2D grid. The second application, Wave2D, uses
finite differencing to calculate pressure information over a
discretized 2D grid. The third application, Mol3d, is related to
molecular dynamics and is a real world application to simulate
large bimolecular systems.

All our experiments were conducted on a Dell T5500
machine with two quad-core Intel Xeon E5520 chips. The Intel
Xeon E5520 supports seven different frequencies ranging from
1.6GHz to 2.53GHz with 2.53GHz made possible by Intel’s
Turbo Boost Technology. Frequency shifting is done by using
the cpufreq module available in Ubuntu 10.4. The cores take
about 2 microseconds for a frequency change. This machine
is interesting because it has an inherent hot spot issue. The
main fan throws room air onto one chip which is then passed
to the other chip. Although the second chip has specialized
radiator cooling but its inlet air is the hot air from the outlet



of the first chip. We sampled the temperatures of both chips at
various times and found a difference of 5 ◦C when the machine
was idle. This difference swells up with processing. We will
discuss this in more detail in Section IV-B.

We used the elapsed wall clock time as execution time and a
Watts Up Pro watt meter for energy measurements. Our energy
measurements represent the energy consumed from the wall
outlet. We emphasize here that our work consists of actual
execution times and energy consumption figures and does not
represent any simulation results. Another salient feature is
the ability of our scheme to do load balancing at runtime
without analyzing any prior information about the application
in the form of traces. In all our experiments, the minimum
temperature threshold (below which the frequency is changed
to maximum) is five less than the maximum temperature
threshold.

A. Gains from Temperature-Aware Load Balancing

For the results in this section, we calculate normalized
execution time for the load balanced run, (tnorm), as follows:

tnorm = tLB/tbase (2)

where tLB represents the execution time for temperature
aware load balanced run and tbase is execution time without
frequency scaling and hence all cores working at maximum
frequency. Normalization of energy consumption is done in the
same way except that we replace the execution time with total
energy consumption reported by the watt meter. Figure 1(a)
and Figure 2(a) show the normalized execution times and
energy consumption for Jacobi2D corresponding to different
temperature thresholds. It compares our approach to the one
where frequency scaling is used without load balancing. All
results that we report are averages over five runs. As is
expected, there is some timing penalty we have to pay for
keeping the core temperatures below a threshold. Temperature-
bound approach does not account for whether the core is on the
critical path or not since it must enforce the bounds strictly.
This is why it is difficult to avoid the timing penalty. The
benefit of temperature aware load balancing is manifested as
the difference in normalized times of Figure 1 (tabulated in
Table III) as well as normalized energies of Figure 2 (tabulated
in Table IV). Notice that the timing penalty falls with increase
in temperature threshold. This is intuitive because the cores
can then afford more time running at maximum frequency.
As shown in Figure 2(a), total energy consumption is much
higher than 1 for the run which does not use temperature
aware load balancing. However, our scheme brings it back
to a number very close to 1. We expected some energy
savings from our scheme but due to the high idle power
for the machine we used, we could not achieve that. We
hope to get energy savings when we do our experiments on
some node of an actual supercomputer which should have
a smaller idle power to dynamic power ratio. Moreover,
frequency scaling is controlled by the core temperatures and
not energy optimization concerns hence we should not expect
considerable energy savings from the machine anyway. The

advantages of our scheme are highlighted in terms of savings
resulting from energy spent on cooling. This is achieved by
reducing the instantaneous dissipation of heat by restricting
the core temperatures and avoiding hot spots as shown in
Section IV-B. Also, as we will see in Section IV-B, if we
do not control core temperatures, we can expect the power
consumption to increase by up to 9% for the same computation
as the temperature goes on increasing. Nevertheless, our load
balancer does well on part of energy consumption by keeping
the normalized values closer to 1.

Figure 1 and Figure 2 also show the benefits of using our
technique for Wave2D and Mol3D. They show similar trends
but their timing penalty is less than jacobi2D for each temper-
ature threshold. We summarized the savings for our scheme
in Table II for all applications. It represents the percentage
savings resulting from temperature aware load balancing as
compared to the case where we do frequency scaling without
load balancing. The percentage savings (psavings) of using
temperature aware load balancing are calculated as follows:

psavings = (tNoLB − tLB)/tNoLB ∗ 100 (3)

where tNoLB represents execution time using frequency scal-
ing without load balancing and tLB is the execution time
using temperature aware load balancing. Savings in energy
consumption are calculated in the same way except that we
replace the execution time with total energy consumed. It can
be seen from Table II that we save as high as 14% in terms of
execution time and 12% of energy for the case when maximum
threshold is 58 ◦C (for Mol3d). Mol3d has a larger range for
both the percentage savings in time and energy. This might be
due to the fact that it is less computation-intensive and hence
less frequency-sensitive.

The differences in timing penalty amongst the three ap-
plications can be explained by looking at the average power
dissipated by each application. Although power consumption
of the application can depend on other factors like cache
misses and communication time, our applications, in the sim-
plified experimental environment, show that CPU utilization
is the main reason for this difference. Figure 3 shows CPU
utilization and average power utilization for each application.
CPU utilization represents the average utilization across all 8
cores whereas power represents the average power over a run
of the application. Almost all energy consumed by the machine
is transformed into heat energy. This implies that applications
with higher average power will dissipate more heat and hence
have a greater chance of increasing the overall temperature
of the machine room. Such applications will have to suffer a
greater timing penalty if they want to constrain the maximum
temperature. This can be verified if we compare Jacobi2D with
Mol3D for the same temperature threshold. If we compare the
normalized timing for temperature aware load balancing of
Figure 1(a) and Figure 1(c), we can see that Jacobi2D has a
higher timing penalty for each temperature threshold.

In a majority of iterative parallel applications, the execution
time is dependent on the most loaded core. So even a single
overloaded core can bring down the efficiency achieved by



TABLE II
PERCENTAGE SAVINGS IN EXECUTION TIME AND ENERGY

Max. Threshold( ◦C) Jacobi2D Wave2D Mold 3D
Time Savings(%) Energy Savings(%) Time Savings(%) Energy Savings(%) Time Savings(%) Energy Savings(%)

58 10.60 7.51 11.14 7.50 14.68 12.18
62 14.16 7.28 11.24 6.83 9.16 7.57
65 8.73 4.72 8.60 4.99 6.37 3.84
68 8.55 5.09 8.72 4.44 2.38 2.57
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Fig. 1. Normalized execution time with and without Temperature Aware Load Balancing
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Fig. 2. Normalized energy with and without Temperature Aware Load Balancing

TABLE III
NORMAILZED EXECUTION TIME FOR DIFFERENT MAXIMUM TEMPERATURE THRESHOLDS

Max. Threshold( ◦C) Jacobi2D Wave2D Mold3D
w/o TempLB TempLB w/o TempLB TempLB w/o TempLB TempLB

58 1.40 1.25 1.37 1.22 1.39 1.18
62 1.33 1.14 1.26 1.12 1.18 1.08
65 1.21 1.10 1.19 1.09 1.13 1.06
68 1.15 1.06 1.15 1.05 1.05 1.02

all other cores. Our load balancing scheme ensures that
we distribute the overall load as equally as possible taking
into consideration the new frequency scaled core speeds.
In order to analyze the effectiveness of our scheme, we
used Projections [28], a performance analysis tool from the
Charm++ infrastructure. Figure 4 demonstrates the timelines
and corresponding utilization for all 8 cores throughout the
execution. Both the runs in the figure had DVFS enabled.
The difference is that the upper run i.e. the top 8 lines,
executed Jacobi2D without temperature aware load balancing
whereas the lower part i.e. the bottom 8 lines, repeated the
same execution with temperature aware load balancing. The

maximum temperature threshold for both the runs was 58 ◦C.
Each of the 8 lines for a run represents the timeline for a
core and the white patches represent idle time. It can be seen
that without temperature aware load balancing (top part of
Figure 4), cores 0-3 (lines 0-3) remain idle for a considerable
time after some initial iterations. This is due to temperature
of the other chip, having cores 4-7 (lines 4-7), exceeding
58 ◦C resulting in its frequency dropping to 1.6GHz. After
the frequency change, both chips work at different speeds but
the amount of work assigned to each one of them is the same.
Hence cores 0-3 complete the work quickly and spend the
rest of the time idle waiting on cores 4-7. After a few more



TABLE IV
NORMAILZED ENERGY FOR DIFFERENT MAXIMUM TEMPERATURE THRESHOLDS

Max. Threshold( ◦C) Jacobi2D Wave2D Mold3D
w/o TempLB TempLB w/o TempLB TempLB w/o TempLB TempLB

58 1.13 1.04 1.12 1.04 1.20 1.05
62 1.10 1.02 1.08 1.00 1.09 1.01
65 1.06 1.01 1.06 1.00 1.05 1.01
68 1.05 0.99 1.04 0.99 1.02 0.99
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Fig. 3. CPU utilization and average power consumption

iterations, the idle times disappear (white patches) because
of cores 4-7 getting cooler and restoring the frequency to
maximum i.e. 2.53GHz. In the lower part of the figure, notice
that our temperature aware load balancing avoids these idle
times. As a consequence of this, we end up with a smaller
execution time depicted by the smaller timeline for the lower
part of Figure 4. In order to get a closer look, we magnified
the area enclosed in the rectangle in Figure 4 and present
it in Figure 5. Here, we can see the actual difference the
frequency change is making. Figure 5 shows 2 iterations with
each block representing a task. We highlighted some of the
tasks by changing their color so that it is easy to get an idea
of the block length i.e. execution time for that task. It can be
seen that the blocks on cores 0-3 are smaller than the blocks
on cores 4-7 even though they should be equal because the
amount of computation in all the tasks is exactly the same.
This difference is the result of the different frequencies they
are operating at. The average execution time for a task on
cores 0-3 is 28.13 ms compared to 35.54 ms on cores 4-7.
Hence, this results in cores 0-3 waiting for cores 4-7 shown
by the white lines towards the end of each iteration.

B. Hot spots Avoidance

In order to show the effectiveness of our scheme regarding
hot spot avoidance, we ran Jacobi2D for 1000 iterations on
8 cores with temperature aware load balancing invoked after
every 10 iterations. All runs conducted for this part took more
than 20 minutes. Figure 7 shows a comparison of the average
temperatures of all 8 cores for three different runs. Without
TempAwareLB represents a run without DVFS implying all

Fig. 4. Projections timeline with and without Temperature Aware Load
Balancing for Jacobi2D

Fig. 5. Zoomed Projections timeline for 2 iterations
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8 cores running at maximum frequency whereas the other
two use our temperature aware load balancing with maximum
temperature thresholds of 59 ◦C and 63 ◦C. These averages are
further averaged over the last 10 iterations. Figure 7 highlights
the effectiveness of our scheme in terms of its ability to control
the average temperature. This behavior is desirable considering
that temperature and power consumption of the machine are
directly related. In order to demonstrate the temperature-
power relation, we did a simple experiment in which we
executed Jacobi2D at maximum frequency without DVFS for
ten minutes and monitored the power consumption of the
machine. Since Jacobi2D has a very good load balance, the
discrepancy in the power consumption could only be explained
in terms of an increase in leakage consumption caused by the



temperature increase. The results of this experiment in Figure 6
show that there exists a linear relation between temperature
and power consumption for Jacobi2D. This relationship can
be modeled by:

p = 0.83t+ 196.5 (4)

where p is the power consumption for all 8 cores and t is the
average core temperature. Note that this equation is dependent
on CPU utilization of the application and would be different
for different applications. The temperature power relation
shows us that for every 10 ◦C increase in the temperature, we
should expect a 8.3W increase in power. Another important
observation is that the temperature increase can account for up
to 9% of extra power consumption by the machine (as evident
from maximum and minimum power readings of Figure 6).
This can be a very high number considering the overall power
consumption of large data centers.
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Maintaining the same temperature over the entire machine
room is another desirable feature. Our approach ensures that
each core obeys the temperature bounds and while doing so,
it makes all the cores work in very close temperature range.
Not only are we able to keep the average temperature down,
we are also able to keep the standard deviation amongst all
the cores down to a small number (3 ◦C). Figure 8 shows
the standard deviation of temperature for all 8 cores for the
same run as Figure 7. It is evident that the standard deviation
increases after 200 iterations in the case where we do not use
temperature aware load balancing. This difference keeps on
increasing till the 800th iteration. On the other hand, the two
runs using our scheme, keep the standard deviation in between
3− 4 ◦C, a reduction by a factor of 3.

Although the above statistics show that we are able to
reduce the deviation in temperatures, it does not guarantee
avoidance of hot spots. There might be cases where, out of
a 100 racks, only one is working at a very high temperature.
In that case, the standard deviation might be low. To deal
with this possibility and verify the prevention of hot spots, we
also measured the maximum difference in temperature that
any core had from the average temperature at each iteration.
Figure 9 shows this maximum difference for the same run as
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Fig. 8. Standard deviation of core temperatures for Jacobi2D
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Figure 7. It verifies our claim of hot spot avoidance as the
maximum difference using our scheme stays close to 4 ◦C
whereas without our scheme, this difference reaches up to
10 ◦C. This shows that we were able to bring the maximum
temperature difference down by a factor of almost 2.5X.

V. CONCLUSIONS AND FUTURE WORK

We devised a new temperature aware load balancing strategy
that uses DVFS to constrain core temperatures. Our results
show that it was effective for applications having different
power profiles. As far as we know, this is the first work
presenting a scheme for temperature aware load balancing
in parallel applications whose aim is to reduce cooling costs
and the occurrence of hot spots. Another novel feature of our
scheme is that it makes run time decisions and does not require
any pre runs of the application to gather information a priori.

Our future goals include extending this work to more than
8 cores and refining the load balancing such that not all the
tasks need to be exchanged across all the cores. We intend to
use diffusion load balancing where the hot cores diffuse extra
work to their neighbors. In addition, we are planning to work
with parallel applications which can be modeled effectively by
a Directed Acyclic Graph (DAG) so that we load balance tasks
according to their priorities i.e. whether they lie on the critical
path or not. Finally, we also plan to exploit the possibility of



making a core sleep if its temperature increases and wake it
up at a later time. This could result in a lot of energy savings
as we can avoid both the static power as well as the dynamic
power.
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