
An Adaptive Framework for Large-scale State Space Search

Yanhua Sun, Gengbin Zheng, Pritish Jetley, Laxmikant V. Kalé
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{sun51, gzheng, pjetley2, kale}@illinois.edu

Abstract—
State space search problems abound in the artificial intelli-

gence, planning and optimization literature. Solving such prob-
lems is generally NP-hard. Therefore, a brute-force approach
to state space search must be employed. It is instructive to solve
them on large parallel machines with significant computational
power. However, writing efficient and scalable parallel pro-
grams has traditionally been a challenging undertaking. In this
paper, we analyze several performance characteristics common
to all parallel state space search applications. In particular,
we focus on the issues of grain size, the prioritized execution
of tasks and the balancing of load among processors in the
system. We demonstrate the techniques that are used to scale
such applications to large scale. We have incorporated these
techniques into a general search engine framework that is
designed to solve a broad class of state space search problems.
We demonstrate the efficiency and scalability of our design
using three example applications, and present scaling results
up to 16,384 processors.

Keywords-Parallel state space search, adaptive grain size
control, dynamic load balancing, prioritized execution

I. INTRODUCTION

State space search problems such as N -Queens [1], trav-
eling salesman problem and various scheduling problems
are commonly used in the field of operations research
and artificial intelligence. Given that no polynomial-time
algorithms are known to exist, these problems are solved
through a systematic exploration of all possible configura-
tions of their inherent elements. Each such configuration is
termed a state, and the set of all possible configurations is
called a state space. Generally, an operator is available to
transform one state into another through the modification of
the former’s configuration. The objective of the state space
search problem is to find a path from a start state to a desired
goal state (or a path from the start to each among a set of
goal states). Note that the problem is different from a regular
graph search, since for most instances of interest the problem
size prohibits the explicit enumeration of all the states and
edges in before the search procedure begins. Most often, the
search is seen to be tree-based – at each step of the search,
we transform a stored parent state into several children states
that do not violate the constraints specified by the problem.
In this sense, we also refer to states as nodes of a search
tree.

Several real-world applications use the state space search
technique, for example floor-plan design in VLSI, genetic
search, game-playing programs such as chess solvers, etc. As
mentioned previously, most such problems are NP complete,
so typically the time to solution increases exponentially with
the problem size. Due to the high computational require-
ments and inherent parallel nature of the search techniques,
there has been a great deal of interest in developing parallel
search methods [2]. The combination of improvements in
hardware and algorithmic enhancements such as load bal-
ancing [3] will allow us to scale up and solve previously in-
tractable problem instances. However, programming today’s
large HPC clusters and supercomputers based on multi-core
chips is a tremendous challenge. Developers need to consider
various algorithmic and performance issues such as different
choices of search procedure, heuristic algorithms, grain size
control and load balancing.

In this paper, we present a framework for Parallel State
Space Search Engine called ParSSSE that lightens the burden
of programmers interested in developing state space search
applications by obviating the need to write parallel code. It
provides an abstract and extensible interface to the program-
mer, so that it has wide applicability. ParSSSE ensures good
performance and scaling for applications by performing
dynamic optimizations along several dimensions. These are
identified in the paper through a study of three well known
applications, each representing a different class of state space
search problems. In particular, we investigate performance
issues such as grain size, speculative computation, and
load balancing. We also present performance and scaling
results from applications written in the framework, thereby
demonstrating its scalability.

The framework we describe in this paper supports all
three modes of state space search, namely all-solution, first-
solution and optimal-solution search. The objective of all-
solutions search is to find all feasible configurations of the
search space, of which N -Queens is a classic example. In
a first-solution search, the goal is to identify any feasible
configuration among an exponential number of possibilities,
as is done in the 3-SAT problem. Optimal-solution search
requires that the procedure report a solution which is better
than all others with respect to some metric. An example
of this paradigm would be the traveling salesman problem.



For optimal-solution search, the IDA∗ [4] and branch-and-
bound [5] techniques are currently supported by ParSSSE.
The framework can be extended with relatively little effort to
support other forms of search, such as bidirectional, game-
tree and AND-OR tree search.

II. CHARM++

We begin with a brief description of CHARM++, which is
the parallel infrastructure on which ParSSSE is based. We
also describe the execution model of the framework, so as
to better motivate the discussions on performance issues that
follow.

CHARM++ [6] is a machine independent parallel pro-
gramming language that runs on most shared and distributed
memory machines. It employs an object-oriented approach
to parallel programming. The programmer decomposes the
problem into collections of objects that embody its natural
elements. These objects are migratable and message-driven.
Their number is independent of, but typically much larger
than, the number of physical processors used to run the
application. This over-subscription of processors is termed
object-based virtualization. The migratable objects are as-
signed to processors by the underlying adaptive runtime
system. An object communicates with another by asyn-
chronously invoking an entry method on it. Together, asyn-
chronous messaging and object-based virtualization enable
the dynamic overlap of communication and computation:
a processor may overlap messaging latency with not just
the sending object’s succeeding computation, but also with
useful computation of other objects on that processor. Pre-
vious work [7], [8], [9] has been done on top of CHARM++
to study the load balancing issues in state space search
problems. Below, we describe some of the key features of
the CHARM++ model that pertain to the search engine.

Each processor maintains a queue of messages to be deliv-
ered to CHARM++ objects placed within it. This is called the
incoming queue. There is a corresponding outgoing queue
that holds messages generated by the processor’s objects.
The main control loop can be described simply: a scheduler
picks a message from the incoming queue and a method on
an object, both of which are specified by the picked message.
The method executes to completion and is non-preemptive.

In our implementation of the search engine, each object
is a task t with an associated tree node nt. Each t maintains
a LIFO node queue with which it performs a local depth-
first search under node nt. At each step of the depth-first
search, t pops a node ntop from the node queue and checks
it for feasibility. If ntop is found to be feasible, a solution
is reported. If not, ntop may be expanded to yield children
nodes. Depending on the depth of ntop , and the amount of
work done by t thus far (cf. § III-A) the children of ntop
may be assigned to newly created CHARM++ objects. In this
case, the search engine enqueues a seed message for each

child in the outgoing queue of the processor. Each of these
messages results in the creation of a new task object.

A new task may be placed on a different processor from
the one that created it. This placement decision is made by
the distributed seed load balancer (cf. § III-C). Furthermore,
the seed message may have a priority bit-vector associated
with it (cf. § III-B). This is accounted for by placing the
seed message at the correct position within the recipient
processor’s incoming queue.

Finally, the quiescence detection framework of
CHARM++ can be exploited to detect termination of
the state space search process. It triggers exit when it
determines that (a) all processors are idle, (b) all processors
have exhausted their incoming queues, (c) no messages
remain in the outgoing queue of any processor and (d)
there are no messages in flight.

III. EFFICIENT PARALLELIZATION OF STATE SPACE
SEARCH PROBLEMS

As described previously, we adopt a task-based paral-
lelization scheme, wherein each task is responsible for the
exploration of a subset of the state space. These tasks
are short-lived, but may spawn new tasks. Initially, newly
created tasks are placed into a local task pool on the creating
processor. Tasks are then distributed to other processors for
load balancing. There are several issues associated with
the efficient execution of spawned tasks in this manner.
We describe some of these challenges next, and present
techniques incorporated into ParSSSE to overcome them.

A. Adaptive grain size control

A key consideration in the design of a parallel search ap-
plication is the parallelization strategy. One must decompose
the search space into tasks that creates enough parallelism,
while keeping the overheads of task creation and scheduling
to a minimum.

State space search applications have two characteristic
phases, namely startup and saturation. The startup phase
begins with the expansion of the root or initial state into its
children. During this phase the goal of an efficient parallel
search procedure is to quickly generate enough work to
saturate the processors available. Therefore, at this stage, a
fine-grained decomposition of tasks is required. Once there
is enough work for all processors to do (recall that tasks are
short-lived, but generate child tasks, which are spread across
the parallel machine using a load balancing technique), we
enter the saturation phase. The goal here is to minimize
the amount of overhead incurred in performing the parallel
search. Therefore, each task must be of medium grain size,
so that the overheads of creating and scheduling it are small
in comparison to the amount of sequential computation it
performs. Once the task has performed the requisite amount
of work, it may be allowed to spawn new children tasks,
which are executed in parallel. Since most of the application



time is spent in the sequential search on the leaves, it
is crucial to control their workload for purposes of load
balance. We refer to this problem as a grain size control
problem. Next, we propose a heuristic that adaptively adjusts
the grain size.

Static Threshold 

Adaptive 
Grain 
Size 
Control 

Figure 1. Adaptive grain size control

ParSSSE adopts a three-level grain size control strategy.
At the most top level, the finest grain size is used for
decomposition, i.e. each generated tree node is processed as
an independent task. In this way, newly generated parallel
tasks of increasing depth are spread across the processors as
quickly as possible. If the depth of a scheduled task exceeds
a particular threshold τ1, the tree beneath its corresponding
node is explored sequentially, in a depth-first manner using
a LIFO queue. We choose a threshold of τ1 = logb p,
where b is the branching factor and p is the number of
processors. However, this static grain size control is far
from effective, especially in the case of unbalanced tree
search, where sequential tasks have widely varying execution
times, thereby creating load imbalance. To overcome this
problem, and to guarantee that no sequential execution is
extraordinarily long, nodes present in the LIFO queue of
the sequential search are parallelized by generating separate
parallel tasks. Figure 1 shows the use of this strategy for an
unbalanced search tree.

The key to a good adaptive grain size control scheme is
the decision of when the LIFO queue of a task is split and
new tasks are launched.

Figure 2 shows a schematic depiction of the relationship
between the average grain size of parallel tasks and the
obtained speedup. Marked on this graph are two values
for grain size, g0 and g1, that occur on either side of the
optimal value. If an application generates tasks with average
grain size less than g0, it suffers from large overheads of
parallelization. On the other hand, employing tasks with

Figure 2. Grain size vs. speedup

average grain size greater than g1 reduces the utilization
of processors, leading to a slowdown. In order to achieve
a reasonable speedup, the grain size should be controlled
between the g0 and g1. Assuming that the overhead of
creation and scheduling of a parallel task is a constant to,
and the average grain size of a parallel task is tg , we estimate
the total time taken to complete an all-solutions search in
parallel on p processors to be:

Tp =
Tseq

p
+ Toverhead + Tidle

=
Tseq

p
+

to
tg

· Tseq + tg · (nmax − Tseq

p · tg
)

Here, nmax is the number of parallel tasks executed by the
processor which received the greatest number of tasks during
the execution, and Tseq is the time taken to complete the
search sequentially. One straightforward solution to control
the grain size is to measure the time expanding each subtree.
When the measured time is greater than some pre-defined
threshold, the subtree is split into multiple parallel tasks to
maintain enough parallelism. However, in practice, the cost
of timer calls used to measure the expanding of a subtree is
relatively high comparing to the time expanding the tree
node. To reduce the timer cost, we propose a sampling
solution. When exploring a particular subtree sequentially,
due to the limitation of the branching factor, the amount
of time expanding a tree node into multiple children is
roughly the same for this particular subtree. Therefore, by
sampling the time taken to expand a few nodes, we calculate
the estimated average time to expand a single tree node.
The total time of expanding a subtree can be estimated by
extrapolating to the actual total number of nodes expanded.
If this calculated time (as grain size) is more than ten times
of to, the sequential task’s LIFO is split and k new tasks are
created. The value of k may be decided by the user.



B. Speculation and Prioritized Execution

Performing a search in parallel involves some degree of
speculative work, since nodes that might not have been con-
sidered in the sequential search may be explored in a parallel
search of the state space. Rao et al. have discussed the
presence effects of this speculation, leading to superlinear
as well as sublinear speedups as the number of processors is
scaled up. The amount of speculative computation performed
in the distributed depth first search can be controlled by
associating a priority with the execution of each parallel
task [9], [10]. The value of this priority corresponds to the
lexicographical labeling of nodes in the tree. Tasks are then
executed in the ascending order of priorities. This scheme
has the following benefits:
Reduced memory footprint. For an all-solutions search,
prioritized execution helps to reduce memory usage in the
following manner. A task corresponding to the leftmost child
of a node is given priority over its siblings. Furthermore,
all the descendants of such a left child are given priority
over its siblings. Therefore, the search can be made to
resemble a depth-first exploration of the state space. This
limits the size of the search frontier to O(bd). Without
prioritization of tasks, the search would be closer to a
breadth-first exploration with O(bd) memory requirements.
Reduced speculation. For a heuristic-guided first-solution
search, the usage of priority is even more important. Each
task is assigned a priority that corresponds to the likelihood
of finding a solution under its node, as determined by the
heuristic function. Thus, prioritization of tasks can guide
the search in the direction of nodes that are more likely to
yield solutions, thereby reducing the amount of speculative
computation performed.

To keep our search engine framework general, two types
of priorities are supported, namely bitvector priorities and
integer priorities. Integer priorities are useful when there is
an evaluation function according to which the nodes of the
search tree are ordered. The value of the evaluation function
can be converted into an integer priority, and attached to the
parallel task created.

Bit-vector priorities are somewhat more complicated.
These are bit-strings of arbitrary length that represent fixed-
point numbers in the range 0 to 1. For example, the bit-
string “001001” represents the number .001001binary. As with
integer priorities, higher numbers represent lower priorities.
Bitvector priorities are especially useful when there is no
explicit evaluation function that can be used to assign integer
priorities. The root of the search tree is assigned a single bit
priority string, 0. The bitvector priority of a child is obtained
by concatenating the binary representation of the child’s rank
to the bitvector of the parent. For example, for a binary tree,
the binary ranks for the two children of any node would be
0 and 1. For a quad-tree, the ranks would be 00, 01, 10,
and 11. The use of bitvector priorities in a binary tree is

illustrated in Figure 3.

Figure 3. Bitvector priorities in state space search

C. Distributed Task scheduling

In order to dynamically achieve a good balance of load
among the processors in a parallel setting, created tasks need
to be distributed evenly across all processors. This work-
pool based load balancing problem has been well studied
in the literature [11], [12]. Given the large variety of
load balancing algorithms, each may work well for certain
scenarios, users are left facing a challenging problem of
either choosing the best load balancing strategies or writing
better ones. In ParSSSE, we focus on a modular design that
allows a clean separation of the load balancing procedure
from the user code, which makes it easy to develop and
plug in any load balancing algorithms in Charm++. The
evaluation of different load balancing strategies is not in
the scope of this paper.

We investigate the design of a general load balancing
framework that allows fully distributed load balancing strate-
gies to be plugged in at run-time. This module defines a core
task dispersal function called CldEnqueue, that initiates a
new task by sending a message contatining it to a lightly-
loaded processor.

When a new task is created by the program on a processor,
the dispersal function places its corresponding message
into a pool of movable work. This pool gradually shrinks
as it is processed, but in most programs we observe a
sufficient amount of movable work at any given time. As
load conditions change, the load balancers move the work
in the pool around. A message may be shifted more than
once, with the number of moves being limited by an upper
bound. This allows work to be shifted to the optimal lightly
loaded processor, while ensuring that the overhead of doing
so remains bounded. Processors exchange work from each
others’ pools periodically, and also when their own queues
call below a certain threshold. More proactive strategies
may be employed, so that newly generated work is sent to
the neighborhood of a processor, as decided by a virtual
processor topology.

Priorities are also accounted for. In addition to ensuring
that all processors have some work to do, the dispersal



function assigns work such that every processor has some
reasonably high-priority work to do. This feature is of great
utility in first-solution, optimal-solution and branch-and-
bound searches, since high priority work corresponds to
regions of the search tree that are considered more likely to
yield solutions, thereby reducing the amount of speculation.

Several load balancing strategies are available, and new
ones may be written by users. In addition, different virtual
topologies, such as dense trees and k-dimensional torii, may
be used for processors, making this a flexible and extensible
framework.

IV. APPLICATION PROGRAMMING INTERFACE

In this section, we familiarize the reader with some of the
specifics of the application interface presented by the search
engine.

The code below shows the skeleton of the important parts
of the search engine framework. It also presents the handful
of functions that need to be implemented by the user in order
to obtain a working parallel search program.

class BTreeState : public StateBase{
public:
int depth;
/*user defined data structure*/

};

void createInitialChildren(Solver *solver)
{

BTreeState *root=(BTreeState*)solver->
registerRootState(
sizeof(BTreeState),
0,
1);

root->depth = 0;
solver->process(root);

}

inline void createChildren(StateBase *_base,
Solver *solver,
bool parallel)

{
BTreeState &base = *((BTreeState*)_base);
for(int childIndex=0;

childIndex<branchfactor;
childIndex++)

{
if(base.depth == depth-1)
solver->reportSolution();

else{
BTreeState *child=(BTreeState*)solver->

registerState(
sizeof(BTreeState),
childIndex,
branchfactor);

child->depth = base.depth + 1;
if(parallel) solver->process(child);

}
}

}

int parallelLevel()
{ return initial_grainsize; }

int searchDepthLimit()
{ return 1; }

SE_Register(BTreeState,
createInitialChildren,
createChildren,
parallelLevel,
searchDepthLimit);

The BTreeState class must be inherited from the StateBase
class. It encapsulates all the data and operation of the
search state. The createInitialChildren(..) function creates
the root node(s) of the search tree. The createChildren(..)
function takes the parent node as input and creates new
children nodes. The parallelLevel() function returns the
static parallel search depth threshold, which is discussed in
section III-A. The searchDepthLimit() function returns the
initial maximum search depth if it is an Iterative Deepending
A* (IDA*) search problem. The lowerBound(..) functions is
required in branch-and-bound search problem. It returns the
lower bound value for a given state. registerState(..) allocates
memory for a new state which is the mth child of the total n
children. Users do not have to explicitly allocate or manage
memory, which is all in control of search engine. Function
process(..) is called after the data of the state is filled and
ready to be executed.

Figure 4 illustrates the functions in layers of user program,
ParSSSEand CHARM++. From this figure, we can see that
the user code devoids of any details of parallel execution.
All the issues discussed in section III are handled by the
search engine.

Class StateBase  void createIni2alChildren();  
void createChildren(); 

int parallelSearchLevel(); 
Int searchDepthLimit(); 

double cost(); 
double lowBound(); 
double upperBound(); 

void* registerState();     void process();  void reportSolu2on(); 

 internal implementa2on of techniques in search engine 
(priority message, load balancing module, adap2ve grain size 
control, quiescence detec2on,  etc)   

void* CkNew();  
Lower‐level run2me system 

U
ser code 

ParSSSE 
Charm

++ 

Figure 4. ParSSSE Design and Implementation



V. EXPERIMENTAL RESULTS

This section presents several applications that we have
used to benchmark the performance and scalability of our
search engine. All the experiments are run on Intrepid, a
Blue Gene/P installation at Argonne National Laboratory.
Intrepid has 40 racks, each of them containing 1024 compute
nodes. A node consists of four PowerPC450 cores running
at 850 MHz. Each node has 2 GB of memory.

A. Benchmarks

1) Balanced search tree (BST): This problem searches an
abstract complete binary tree in which some leaf nodes are
solutions. This program is used to illustrate the super-linear
and sub-linear speedup in parallel in paper [13].

In this problem, we assume that the first solution leaf
node we want to find is the mth leaf in the deepest level.
For convenience, we suppose that m is the power of 2.

2) NQueens: NQueens is a backtracking search problem
to place N queens on a N by N chess board so that they
do not attack each other. We target at finding all solutions
for N Queen problem.

3) Unbalanced tree search (UTS): This is a parallel ex-
ploration of an unbalanced search tree[14]. Its performance
greatly depends on how well the adaptive grain size control
and load balancing works. In our experiments, we take two
instances, which are T1XXL and T3XXL. The parameters
[14] for them are in table I.

Instance t a d b r
T1XXL 1 3 15 4 19
T3XXL 0 2000 0.499995 2 318

Table I
UNBALANCED TREE SEARCH INSTANCES - T1XXL, T3XXL

B. Experiments

Adaptive Grain Size Performance: In order to test how
the adaptive grain size control helps the parallel program
performance, we ran the 18 Queens and T1XXL, T3XXL UTS
instances with different initial grain size and compared the
static grain size control with the adaptive method.

Figure 5 shows the execution time for 18 Queens on 1024
processors with adaptive grain size control compared with
only static grain size threshold. It shows for an initial coarse
grain size threshold, adaptive grain size control performs
much better than the one with only static threshold. Although
the best performance with adaptive grain size control is a
little worse (10%), the performance variance with adaptive
grain size control is much smaller. We also observe that
with finer grain size, both perform bad because of the
high overhead. This suggests that it is a good strategy
to first choose a coarse-grain threshold and then use the
adaptive grain size control to fine-tune the performance.
Same observation is found for T1XXL test in figure 6.

Maximum Parallel Search Depth

1 2 3 4 5 6 7 8 9 10

E
x
e

c
u

ti
o

n
 t

im
e

(s
e

c
)

0

5

10

15

20

25
No Adaptive Grain Size Control

Adaptive Grain Size Control

Figure 5. 18-Queen execution time on 1,024 processors

Maximum Parallel Search Depth

0 2 4 6 8 10 12 14

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

0

5

10

15

20

25

30

35
No Adaptive Grain Size Control

Adaptive Grain Size Control

Figure 6. T1XXL execution time on 1,024 processors

Prioritized Execution Tests: We used the BST to test
how the prioritized execution helps reduce the number of
speculative nodes processed in search engine framework. In
our experiments, the tree depth is set as 30. Thus the total
number of leaves in the tree is 230. Our search target is
to find the first node in the deepest level. This experiment
simulates the process of searching a tree with heuristic
in programs, where solutions are more likely in the left
branch subtrees. From figure 7, we can see that priority
execution helps reduce a huge number of nodes created
and processed comparing with no prioritized execution. The
reason why the difference becomes smaller with processor
number increasing is that the number of tree nodes on
each processor decreases so that finding a solution on one
processor prevents further nodes creation and processing on
all other processors.

Scalability: We have tested the scalability of our NQueens
and UTS implementation based on search engine from 512



Number of Processors

256 512 1024 2048 4096

N
u
m

b
e
r 

o
f 
N

o
d
e
s

8192

131072

2097152

33554432

536870912
Created w/o Priority

Processed w/o Priority

Created with Priority

Processed with Priority

Figure 7. Number of nodes created and processed in BST w/o priority
execution

Number of Processors

512 1024 2048 4096 8192

S
p

e
e

d
u

p

512

1024

2048

4096

8192

Figure 8. 18-Queen speed-up from 512 processors to 8,192 processors

processors up to 8,192 and 16,384 processors respectively.
The results for 18 Queens with initial search depth 5 is
shown in figure 8. We have achieved 85.25% efficiency
on 8,192 processors comparing to 512 processors. For
T1XXL instance in figure 9, we have achieved even better
performance because of the higher ratio of computation to
communication in UTS. Based on the performance of 512
processors, the efficiency on 8,192 processors is 98.75%
while it is 88.28% on 16,384 processors.

VI. RELATED WORK

Much work has been done on parallel combinatorial
search in the past. Good surveys of the field have been pro-
vided by Grama and Kumar [15] and Nelson and Toptsis [16]
and, in the context of parallel logic programming, by Gupta
et al. [17]. Particular paradigms in parallel combinatorial

Number of Processors

512 1024 2048 4096 8192 16384

S
p
e
e
d
u
p

512

1024

2048

4096

8192

16384

Figure 9. T1XXL speed-up from 512 processors to 16,384 processors

search have also been explored extensively – see [18], [19]
for discussions of techniques and heuristics in branch-and-
bound, [4] for parallel iterative deepening A∗, [20] for
game-tree search and [21] for parallel search of AND-
OR trees. The importance of cutoff-based strategies in task
parallel languages is highlighted in [22]. A discussion of the
impacts of granularity on the performance of OR-parallel
programs has been given by Furuichi et al. [23]. That
paper also provides a multi-level load balancing scheme for
multiprocessor systems. The use of priorities in a variety
of parallel search contexts has been outlined by Kalé et
al. [8]. The use of work-stealing as a load balancing strategy
was first described by Lin and Kumar [24] and subsequently
popularized by the Cilk system [2]. The work on Cilk also
provides in-depth asymptotic bounds on the performance of
the work-stealing approach.

VII. CONCLUSION

Solving state space search problems is generally NP-
hard, and requires parallel processing to speed up the search
process. However, writing efficient and scalable parallel
programs has traditionally been a challenging undertaking.
The main contribution of our paper is the design of the
ParSSSE framework that separates the issues of parallelism
and scalability from those of specifying the search tree itself.
In this paper, we analyzed several performance characteris-
tics common to all parallel state space search applications. In
particular, we focused on the issues of grain size, prioritized
execution of tasks and balancing of load among processors
in the system. We show how these techniques may be
used to scale such applications to large scale. We have
incorporated these techniques into a general search engine
framework ParSSSE, that is designed to solve a broad
class of state space search problems. We demonstrated the



efficiency and scalability of our design using three example
applications, presenting good performance results on up to
16,384 processors.

ACKNOWLEDGMENTS

This work was supported in part by NSF grant OCI-
0725070 for Blue Waters deployment and NSF grant ITR-
HECURA-0833188, by the Institute for Advanced Comput-
ing Applications and Technologies (IACAT) at the Univer-
sity of Illinois at Urbana-Champaign and by the NIH grant
PHS 5 P41 RR05969-04. We used running time on the Blue
Gene/P at Argonne National Laboratory, which is supported
by DOE under contract DE-AC02-06CH11357.

REFERENCES

[1] L. Kalè, “An almost perfect heuristic or the N-queens prob-
lem,” Information Processing Letters, vol. 34, no. 4, pp. 173–
178, April 1990.

[2] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: An efficient multithreaded
runtime system,” Journal of Parallel and Distributed Comput-
ing, vol. 37, no. 1, pp. 55–69, 1996.

[3] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy,
and J. Nieplocha, “Scalable work stealing,” in SC ’09: Pro-
ceedings of the Conference on High Performance Computing
Networking, Storage and Analysis. New York, NY, USA:
ACM, 2009, pp. 1–11.

[4] V. N. Rao, V. Kumar, and K. Ramesh, “A parallel implementa-
tion of Iterative-Deepening-A*,” in AAAI, 1987, pp. 178–182.

[5] R. M. Karp and Y. Zhang, “Randomized parallel algorithms
for backtrack search and branch-and-bound computation,” J.
ACM, vol. 40, no. 3, pp. 765–789, 1993.

[6] L. Kalé and S. Krishnan, “CHARM++: A Portable Concurrent
Object Oriented System Based on C++,” in Proceedings of
OOPSLA’93, A. Paepcke, Ed. ACM Press, September 1993,
pp. 91–108.

[7] V. Saletore and L. Kale, “Consistent linear speedups for a
first solution in parallel state-space search,” in Proceedings
of the AAAI, August 1990, pp. 227–233.

[8] L. Kale, B. Ramkumar, V. Saletore, and A. B. Sinha, “Pri-
oritization in parallel symbolic computing,” in Lecture Notes
in Computer Science, T. Ito and R. Halstead, Eds., vol. 748.
Springer-Verlag, 1993, pp. 12–41.

[9] A. Sinha and L. Kalé, “A load balancing strategy for pri-
oritized execution of tasks,” in Seventh International Parallel
Processing Symposium, Newport Beach, CA., April 1993, pp.
230–237.

[10] L. Kalé and V. Saletore, “Parallel state-space search for a
first solution with consistent linear speedups,” Internaltional
Journal of Parallel Programming, vol. 19, no. 4, pp. 251–293,
1990.

[11] L. V. Kalé, “Comparing the performance of two dynamic
load distribution methods,” in Proceedings of the 1988 In-
ternational Conference on Parallel Processing, St. Charles,
IL, August 1988, pp. 8–11.

[12] W. W. Shu and L. V. Kalé, “A dynamic load balancing
strategy for the Chare Kernel system,” in Proceedings of
Supercomputing ’89, November 1989, pp. 389–398.

[13] V. N. Rao and V. Kumar, “Superlinear speedup in parallel
state-space search,” in Proceedings of the Eighth Conference
on Foundations of Software Technology and Theoretical Com-
puter Science. London, UK: Springer-Verlag, 1988, pp. 161–
174.

[14] S. Olivier, J. Huan, J. Liu, J. Prins, J. Dinan, P. Sadayappan,
and C.-W. Tseng, “Uts: An unbalanced tree search bench-
mark,” in Lecture Notes in Computer Sciences, vol. 4382.
Springer-Verlag, 2007, pp. 235–250.

[15] A. Grama and V. Kumar, “State of the art in parallel search
techniques for discrete optimization problems,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 11, no. 1,
pp. 28–35, 1999.

[16] P. C. Nelson and A. A. Toptsis, “Unidirectional and bidirec-
tional search algorithms,” IEEE Software, vol. 9, pp. 77–83,
March 1992.

[17] G. Gupta, E. Pontelli, K. A. Ali, M. Carlsson, and M. V.
Hermenegildo, “Parallel execution of prolog programs: a
survey,” ACM Transactions on Programming Languages and
Systems, vol. 23, no. 4, pp. 472–602, 2001.

[18] G.-J. Li and B. W. Wah, “Coping with anomalies in parallel
branch-and-bound algorithms,” IEEE Transactions on Com-
puting, vol. 35, no. 6, pp. 568–573, 1986.

[19] T.-H. Lai and S. Sahni, “Anomalies in par-
allel branch-and-bound algorithms,” Commun. ACM,
vol. 27, pp. 594–602, June 1984. [Online]. Available:
http://doi.acm.org/10.1145/358080.358103

[20] R. Feldmann, P. Mysliwiete, and B. Monien, “Studying
overheads in massively parallel min/max-tree evaluation,” in
SPAA ’94: Proceedings of the sixth annual ACM symposium
on Parallel algorithms and architectures. New York, NY,
USA: ACM, 1994, pp. 94–103.

[21] L. Kalé, “The REDUCE OR process model for parallel
execution of logic programs,” Journal of Logic Programming,
vol. 11, no. 1, pp. 55–84, July 1991.

[22] H.-W. Loidl and K. Hammond, “On the granularity of divide-
and-conquer parallelism,” in Proceedings of the Glasgow
Workshop on Functional Programming, Ullapool, Scotland,
Jul. 1995.

[23] M. Furuichi, K. Taki, and N. Ichiyoshi, “A multi-level load
balancing scheme for or-parallel exhaustive search programs
on the multi-psi,” in Second ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 1990, pp.
50–59.

[24] Y.-J. Lin and V. Kumar, “And-parallel execution of logic pro-
grams on a shared-memory multiprocessor,” J. Log. Program.,
vol. 10, no. 1/2/3&4, pp. 155–178, 1991.


