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Abstract—The era of petascale computing brought machines
with hundreds of thousands of processors. The next generation
of exascale supercomputers will make available clusters with
millions of processors. In those machines, mean time between
failures will range from a few minutes to few tens of minutes,
making the crash of a processor the common case, instead of
a rarity. Parallel applications running on those large machines
will need to simultaneously survive crashes and maintain high
productivity. To achieve that, fault tolerance techniques will have
to go beyond checkpoint/restart, which requires all processors
to roll back in case of a failure. Incorporating some form
of message logging will provide a framework where only a
subset of processors are rolled back after a crash. In this
paper, we discuss why a simple causal message logging protocol
seems a promising alternative to provide fault tolerance in large
supercomputers. As opposed to pessimistic message logging, it
has low latency overhead, especially in collective communication
operations. Besides, it saves messages when more than one thread
is running per processor. Finally, we demonstrate that a simple
causal message logging protocol has a faster recovery and a
low performance penalty when compared to checkpoint/restart.
Running NAS Parallel Benchmarks (CG, MG, BT and DT) on
1024 processors, simple causal message logging has a latency
overhead below 5%.

Keywords-causal message logging; pessimistic message logging;
migratable objects; parallel applications.

I. INTRODUCTION

The growing size and complexity of supercomputers is
clearly illustrated by the last few releases of Top500 list [1].
What was considered a big machine few years before, is today
one medium-sized supercomputer. Unfortunately, the rise in
size has not been accompanied by an increase in the reliability
of the components. The net result is that as they grow in
size, supercomputers become less reliable. The era of petascale
computing brought machines with hundreds of thousands of
processors. The next generation of exascale supercomputers
will make available clusters with millions of processors [2],
[3]. In those machines mean time between failures will range
from a few minutes to few tens of minutes [2]–[4], making
the crash of a processor the common case, instead of a rarity.

In an environment where failures are unavoidable, large-
scale parallel applications will need to simultaneously survive
crashes and maintain high productivity. To achieve this goal,
particularly if the failure rate is high, fault tolerance techniques

will be required to go beyond the traditional checkpoint/restart
approach. Message logging protocols present a promising
alternative to checkpoint/restart because they do not require a
global rollback. Instead, only the crashed processor is brought
back to the previous checkpoint, while the other processors
may keep making progress or wait for the recovering processor
in a low-power state. Alternatively, recovery can be accelerated
by having a parallel restart mechanism [5].

Although message logging mechanisms have been evaluated
in other contexts, we believe that literature is lacking a
comparison of two particular versions of sender-based message
logging for high scale HPC systems. The first version of
message logging is the traditional pessimistic approach, where
communication is stalled until meta-data about messages is
safely stored. The advantage of this method is its simplicity
of implementation, including the garbage collection for old
messages and the recovery process. On the other hand, its
main drawback is an increased latency for communication.
Collective operations, common in parallel appications, only
exacerbate this problem. The second approach is called causal
message logging. In this method, communication is not de-
layed but meta-data is piggybacked on top of application
messages. Therefore, we think it is a more promising method
for message logging in highly scalable HPC applications.
The paper aims to evaluate a simple causal message logging
protocol, trying to highlight its strenghts and weaknesses for
the different types of applications.

The contributions of this paper are i) an analysis of various
scenarios that make pessimistic message logging compromise
the performance to keep a consistent execution, ii) a per-
formance comparison of pessimistic and causal approaches
for message logging with different applications, and iii) a
performance evaluation of the simple causal message logging
protocol for applications that scale up to 1024 processors.

This paper is organized in the following sections. We start
by presenting the relevant related work in Section II. We
describe the pessimistic approach for message logging in
Section III. This is typically the preferred implementation
of message logging, since it provides a simple abstraction
and has low cost during recovery. This protocol, however,
can perform poorly under some circumstances. Section IV
describes various scenarios where the pessimistic approach



has a high overhead. Section V presents the causal message
logging method. We discuss why we believe a simple version
of this protocol is a promising alternative to the pessimistic
approach. To support that claim, Section VI shows the ex-
perimental results about performance of the two message
logging techniques. We evaluate several applications, trying to
understand what cases make the superiority of causal message
logging more dramatic. Finally, we leave conclusions and
future work for Section VII.

II. RELATED WORK

This section provides a background on the different contri-
butions about message logging on parallel applications.

A seminal paper in message logging is by Strom and Yemini
[6]. They describe a system that permits communication,
computation and checkpoint to proceed asynchronously, thus
introducing the concept of message logging and causality
tracking. Their approach is called optimistic recovery and it
is based on receiver-side message logging plus a component
to detect the causal relationships between the recovery units.
They introduced the concept of orphan as a process that is
not consistent with the rest of the system after a failure. Also,
they pioneered the piecewise deterministic (PWD) assumption,
which states that logging all non-deterministic decisions is
enough to provide a correct recovery.

Sender-based message logging was introduced by Johson
and Zwaenepoel [7]. In their paper they describe a system that
logs messages using a pessimistic approach. Every message is
piggybacked with a unique send sequence number (SSN). The
goal of SSN is to discard duplicate messages during recovery.
Before sending a message, the sender will ask the receiver for
a receive sequence number (RSN) that will form a total order
of message reception at the destination. In other words, each
process will deliver the received messages in accordance to
the RSN assigned to each of them.

Manetho [8] was the first system to use causal message
logging. They assume an application execution is composed by
a sequence of piecewise deterministic state intervals. The main
structure to keep track of in Manetho is called the antecedence
graph. This is a directed acyclic graph that contains the causal
relationships between the deliveries of all the messages in the
application. Application messages carry sufficient information
to reconstruct the antecedence graph on recovery. In case of a
process failure, the other processes can use their portions of the
antecedence graph to help the crashed process to reconstruct
the execution.

Alvisi and Marzullo [9] present a classification of the differ-
ent message logging schemes into three families: pessimistic,
optimistic, and causal. The first approach requires stalling the
message transmission until the sender receives the RSN. In this
way, the message is logged along with what is called the deter-
minant, i.e., the tuple 〈senderID, receiverID, SSN,RSN〉.
The optimistic approach does not delay message transmission,
but incurs in the risk of producing orphan processes in case
of a failure. Causal message logging is a compromise where
message transmission is not delayed, but orphans are avoided.

However, it relies on piggybacking additional information
on application messages. Depending on the causal message
logging protocol, this overhead can be significant.

The first implementation of a causal protocol for high
performance computing (as far as the authors know) is due
to Bouteiller et al [10] in MPICH-V library. They built
three different causal protocols: Manetho, LogOn and Vcausal.
The first two use a dependence graph whereas the last only
propagates determinant information. The main point of their
paper is to argue that a centralized entity (called Event Logger)
provides good performance for any of the protocols. However,
the scalability of the centralized Event Logger is questionable.

An interesting study regarding the tradeoff of piggybacked
information in causal message logging is by Bhatia et al [11].
In their paper, they compare different strategies according
to the amount of piggybacked information. The whole goal
is to survive the crash of f concurrent failures by having
every determinant replicated f + 1 times. Then, additionally
to piggyback a determinant, some extra information can be
included. For instance, every determinant can carry the number
of replicas that have been made along its route to the desti-
nation (similar to a time-to-live value). The main conclusion
of the paper is that including too much information about
the determinants to prevent them to be over-replicated can
be intolerable.

Prior work on evaluating the performance of causal message
logging has been limited in various ways such as focusing on
systems with few nodes or omitting an evaluation of causal
message logging. Elnozahy and Zwaenepoel [8] evaluated
the Manetho causal message logging protocol, comparing it
to checkpointing and pessimistic logging on a 16-processor
cluster with 10Mb/s Ethernet. They showed that in their setup
coordinated checkpointing outperforms message logging and
argue that they should be combined to support interactions
with the outside world. Rao et al [12] evaluated the cost of
recovery in optimistic, pessimistic and causal message logging
protocols on an 8-processor system with 100Mb/s Ethernet,
showing that for single failures pessimistic and causal logging
perform best and for multiple failures the best performance
is achieved by receiver-based protocols that also have a
higher failure-free overhead. Lemarinier et al [13] compare
the performance of causal and pessimistic logging to Chandy-
Lamport coordinated checkpointing [14] on a 25-processor
cluster with upto 700Mb/s networks. They found that the two
logging protocols have similar performance and predict that
message logging will be more efficient than checkpointing if
the mean time between failures is shorter than 9 hours. Finally,
Boutellier et al [15] compare the overhead of pessimistic and
optimistic logging in the context of the OpenMPI implemen-
tation of MPI on upto 256 processes on 1Gb/s and 10Gb/s
networks. They find that when communication is logged at
the level of entire MPI messages there is little performance
difference between the two protocols, with less than 10%
overhead on the NAS Parallel Benchmarks [16].

The following sections describe our implementation of pes-
simistic and causal message logging for the Charm++ runtime
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Fig. 1. Pessimistic Message Logging.

system [17]. Charm++ is a model for parallel computing that
is based on over-decomposing the computation and data into
objects. A smart runtime system is in charge of distributing and
migrating these objects in accordance with the performance
characteristics of the underlying machine. In Charm++ objects
are naturally migratable and this feature makes checkpoint
and fault tolerance in general easier to incorporate into the
system. Furthermore, an MPI program can be run on top of
the Charm++ infrastructure thanks to Adaptive MPI (AMPI)
framework [18]. Then, we can provide fault tolerance to an
MPI application by using the Charm++ runtime system.

III. PESSIMISTIC MESSAGE LOGGING

This section describes the common alternative when imple-
menting a message logging scheme for fault tolerance in HPC
[19]. Pessimistic message logging provides strong guarantees
in terms of correctness after a failure and it is in general
easier to understand than other methods. We have implemented
a version of this protocol that we called simple pessimistic
message logging, since it only guarantees successful recovery
after the crash of one processor. The concurrent failure of
multiple processors is not always tolerated by the scheme.

A. Forward Path Protocol

The essential property of pessimistic message logging is
that no message is delivered until both the message and its
determinant are safely stored. There are several alternatives
for saving messages and determinants: stable storage, a reliable
component or the memory of other process.

Our protocol saves each application message and its de-
terminant in the sender. This implies that a process, before
sending a message, has to ask the receiver for a ticket (the
reception sequence number) to compose the determinant for
that message. The determinant and the message are stored in
the memory of the sender and at that point the message can
be actually sent to the receiver. Messages at the receiver are
processed according to their assigned ticket number and on
recovery ticket numbers can be used to recreate the reception
order of all messages.

Figure 1 shows an example of how the protocol works. Let
us assume processes {A, B,C, D} form part of a system and
they are organized as a broadcast tree rooted at process A, as
shown on the left part of the figure. Before A actually sends
message m1 to B it has to ask B for the receiption ticket
that m1 will receive at B. We can see how this happens on
the right part of the figure. The request for the ticket of m1

is represented by r1 and its reply is denoted by t1. Once this

exchange is done, message m1 can be sent. The same protocol
applies for messages m2 and m3. However, notice that this
protocol runs asynchronously with the rest of the execution.
In other words, B sends r2 and then r3 without waiting for
the ticket of the first request to arrive. Ticket t3 can arrive
before t2 and thus message m3 is sent before m2.

This protocol works with either coordinated or uncoordi-
nated checkpointing. For either case, every processor A has a
buddy processor assigned to it. The buddy processor of A will
be in charge of storing the checkpoint of A in its own memory.
In case A needs the checkpoint after a failure, its buddy will
have to provide the checkpoint. Although saving checkpoints
in memory increases the memory pressure, it significantly
speeds up checkpoint storage and recovery from checkpoints.

B. Garbage Collection and Recovery

Every process logs all messages sent to any other process,
which can become a significant storage overhead. However,
because the application takes periodic checkpoints there is
always a bound on how far it can roll back. Any messages
that precede this bound do not need to be stored and can be
discarded. For instance, process A sends message m to B.
B processes m and then it checkpoints. At that point, the
copy of message m held by A is unnecessary. If B crashes,
the data of m will not be useful in recovering the state of
B since it was received before B’s last checkpoint. Thus, to
garbage collect the message logs in every process, we follow
a simple procedure. After every checkpoint, a process will
send a message to all its senders. This message contains the
highest ticket number that is part of the checkpoint. Upon
reception, the senders will remove from the message log
all messages with a smaller or equal ticket number. The
garbage collection runs concurrently with the execution of the
application. Clearly, this protocol is only guaranteed to tolerate
a single concurrent failure. For instance, if A sends message
m to B and both crash before B’s next checkpoint, then both
the message and the meta-data are lost.

Whenever a failure is detected, a failure message is sent
to every process. Each process then resends all messages
sent to the failed process before it failed. Thus, when it
is recovering, the failed process will receive the replayed
messages and process them in their original order using their
ticket numbers. This ensures it will reconstruct the exact same
state it had before the crash. Also, a restarting processor may
send spurious messages during recovery, i.e., messages that
were sent before and have been processed by the receivers.
Those messages are easily detected since their ticket numbers
will be lower than than the last processed ticket number, and
will be discarded.

IV. LIMITATIONS OF PESSIMISTIC MESSAGE LOGGING

While pessimistic message logging is relatively simple,
there are various scenarios where it performs poorly. Specifi-
cally, pessimistic message logging suffers from 3 main draw-
backs. First, it introduces latency overhead that may affect
the performance of collective operations. Second, in practice
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Fig. 2. Delay in Pessimistic Message Logging.

the multi-step handshake necessary to send a message will be
even slower due to interference from the application. Finally,
when multiple processes are running on the same processor
information about their messages needs to be communicated
to other processors.

A. Increased Latency

One of the big limitations of pessimistic message logging is
the extra latency it adds to every message transmission. This
overhead corresponds to a message round-trip. This problem
is most significant for collective operations. Since collectives
are usually implemented through a structure (spanning tree,
hypercube, mesh), the additional latency impacts each level.
For instance, in figure 1 the link between A and B adds some
extra latency, as well as the links between B and C and B and
D. At the end, the total extra latency added by the protocol
has to be multiplied by the levels of the tree or by the diameter
of a more general structure.

The extra delay introduced by any message sent in pes-
simistic message logging may or not may be a problem for
an application. For molecular dynamics applications, which
rely on strong scaling of time-steps and small messages, the
overhead will be intolerable. However, more latency-tolerant
applications may still perform well with this protocol. Re-
gardless, we cannot expect to have a competitive protocol for
those sections in the application where collective operations
are heavily used.

B. Interference

Another potential problem with the pessimistic approach
is that for some applications it may break the natural syn-
chronization among the processes. To illustrate this case we
will refer to figure 2. Remember from figure 1 when B sends
request r2, it already has message m2 ready to be sent, but it
has to wait for t2 to arrive. In the meantime, it may receive
another message that triggers a function at B (represented
in figure 2 by a narrow rectangle). While the function is
executing, t2 may arrive at B but it will be unable to send
message m2 until the function completes. This situation further
delays processing of message m2 at C.

We experienced exactly this problem when running the pes-
simistic message logging protocol in Charm++ with a 7-point
stencil application. Since in Charm++ a function triggered
by a message is usually non preemptive, the function must
finish execution until the scheduler can process messages.
Most single-threaded MPI implementations are implemented
in this way. Figure 3 shows a visualization produced by a
performance analysis tool for the 7-point stencil program. We

Fig. 3. Alternated Execution.
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can see 4 horizontal bars representing the execution of four
different processors. White spaces stand for idle time, where
processors wait until the reception of the next message. The
type of pattern of the figure corresponds to an alternated
execution where a set of processors execute a function, then
other subset of processors execute the function and they rarely
overlap in computation. We detected that the scenario of figure
2 was causing this performance problem.

One solution to the previous problem is to decrease the
grainsize of the computation. Systems like Charm++ permit
overdecomposing the computation into objects, potentially
having several objects per processor. An implementation of the
pessimistic protocol has shown some benefits [5]. However,
having several objects executing in the same process can
aggravate other problems. For instance, a finer decomposition
will send more messages for the same problem size, increasing
the memory overhead of message logging [20].

C. Local Communication

By virtualizing a processor we may have multiple objects
living on the same processor and continuously exchanging
messages. In this case, we have to take extra precautions
in pessimistic message logging since the minimum unit of
failure is a processor. Let us call a message local when it
is exchanged between objects or processes executing on the
same processor. We will refer a message as remote when it is
sent to another processor. To provide consistent recovery we
must log the determinant of every local message in another
processor, presumably the buddy of the processor where the
objects reside. Thus, we must incur additional inter-process
communication for every local message. Figure 4 illustrates
this case. If A and B are processes or objects living on the
same processor and A wants to send a message to B, it must
first send the determinant of m1 to the buddy processor and
wait for the acknowledgment.

V. CAUSAL MESSAGE LOGGING

To overcome the three main limitations explained in the
previous sections, we consider the causal approach for imple-
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menting message logging. This method provides lower latency
for communication but incurs in bandwidth overhead. Causal
message logging requires piggybacking determinants on top
of application messages. This section describes this protocol
and the major properties that make it a promising option for
scalable fault tolerance. We have implemented a simple variant
that only guarantees recovery from a concurrent single failure.

A. Forward Path Protocol

The intuition behind causal message logging is that the
determinant of an event is only needed by processes that
depend on that event. For instance, suppose a process A
performs several non-deterministic actions, sends messages to
processes B and C and then fails. When A restarts, processes
B and C are the ones most interested in A executing its
non-deterministic events exactly as before because their state
depends on the outcomes of these events. In contrast, if A
performed any additional non-deterministic actions that were
not communicated to any other process, they can be discarded
since no functioning process depends on them. As such,
causal logging protocols piggyback determinants of events on
outgoing messages so that they are stored by their receivers.

Figure 5 summarizes our simple variant of the protocol. It
presents the same scenario as figure 1, where A is sending
a broadcast to all other processes through a spanning tree. In
this protocol, A does not need to delay in sending message m1

to B. However, B has to acknowledge all message receptions
so that if the message had any determinants, A would know
when they were safely stored by B. Upon reception of message
m1, B generates a determinant for m1, that we will denote
by #m1. This determinant has to be safely stored somewhere
else other than B’s memory. It will be piggybacked in the next
message sent by B. Notice that message m2 piggybacks the
determinant #m1 and it will piggyback that determinant on
every outgoing message until it receives the acknowledgement
from some other process that confirms that the determinant has
been stored. Specifically, #m1 is piggybacked onto m3 before
B receives the acknowledgement from D. We must emphasize
that B only needs one confirmation to assume a determinant
is safely stored. This is due to the fact that we are dealing with
the simple version of the protocol. Multiple acknowledgments
about the same determinant enable the protocol to survive
multiple concurrent failures.

B. Garbage Collection and Recovery

Similarly to pessimistic message logging, each processor
has a buddy that will store the checkpoint and from where

we will retrieve the last saved state of a failed processor. In
the causal message protocol it is more complex to remove
old messages from the message log than the pessimistic case.
This is because the message reception ticket for message m
is stored on the one or more recipients of messages causally
after m. As such, after processor A checkpoints, it sends all
the determinants to the senders, for all them to match the list
and delete the old messages from their message logs. In the
next section we will discuss a possible optimization that will
remove the burden of garbage collection in causal message
logging.

To recover from the crash of process A, the protocol requires
the data and message tickets of messages sent to A. Thus
on recovery, all processors that sent messages to A will
replay those messages and processors that store determinants
regarding A will send the determinants back to A. Once A
receives messages and determinants, it will match them up
to deliver messages in the same order as before the crash.
Analogous to the pessimistic model, repeated messages are
discarded. To detect a repeated message we need a different
strategy than in the pessimistic model. Every process keeps
track of the messages it has received from any other source.
If a message matches a previously received combination of
sender ID and message ID, it must be a repeated message.

VI. RESULTS

This section describes the major findings in our imple-
mentation of the simple causal message logging protocol.
We evaluate several different applications to understand the
behavior of the protocol under different circumstances.

A. Experimental Setup

We used the Charm++ runtime system to implement the
pessimistic and causal message logging and compare their
performance. In all the cases we used the standard check-
point/restart technique as a baseline. In Charm++, check-
point/restart is implemented in memory. In this way, every pro-
cessor checkpoints in the memory of two processors: itself and
a buddy. This mechanism has a higher memory consumption
for the checkpoint, but it uses little communication to transfer
checkpoints and once the first checkpoint is taken, memory
does not grow as part of the fault tolerance protocol. In all
the applications, we use synchronization points to checkpoint.
This method allows message logging to avoid a complex
garbage collection protocol, since at after every checkpoint,
all data structures can be cleaned up.

The machine used in these experiments is called Abe
and it is installed at the National Center for Supercomputer
Applications (NCSA). Abe is an Intel 64 cluster with a peak
speed of 89.47 TFLOPS. It contains 1200 dual-socket nodes
with quad-core processors, for a total of 9600 processors. Each
node has a total 8 GB of memory or 1GB per processor.
Although Abe has Infiniband network connection, we based
all our experiments on the Ethernet layer. We injected failures
by killing the Charm++ process running on a given core and



Fig. 6. Performance comparison in collective benchmark.

that way all the work on that core. The runtime system will
detect the failure and react accordingly.

B. Experiments

We will first present a comparison between pessimistic and
causal message logging, trying to address the main issues in
the performance evaluation. Secondly, we will examine more
closely the behavior of causal message logging and the way
it works under different circumstances.

We start by comparing the two message logging protocols
with checkpoint/restart on a benchmark that performs col-
lective communication and no computation. This collective
benchmark repeatedly performs a broadcast of a single integer
from one processor, immediately followed by a reduction
of the integer. In our implementation these two collective
operations are implemented in different fashion and we where
trying to exercise both of them. This program executes the
same step (broadcast followed by reduction) 100 times and
reports the average after removing the first iterations to avoid
outliers.

Figure 6 shows the results of the three methods and their
performance for this program, running on different processor
counts, from 64 to 1024. We can see causal message logging
does a better job than pessimistic, but still has some consider-
able overhead. This is due to the piggyback of determinants.
Since the message for the collectives only carries a payload
of one integer, the determinant piggybacked is larger than the
payload itself. We are dealing here with the extreme case for
causal message logging, where no computation takes place,
and the performance penalty is severe. The causal slowdown
goes from a factor of 2.21 at 64 processors to 3.03 at 1024
processors.

Next, we use a more realistic scenario to compare the
protocols. This time we focus on the performance of the
NAS Parallel Benchmarks. In particular we chose CG, MG,
BT and DT to make this comparison since they represent
four different parallel dwarfs or parallel programming kernels.
Using 256 processors, we present the execution time in figure
7, normalized to each benchmark with checkpoint/restart.
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Causal message logging performs better than pessimistic in
all four cases. For the CG benchmark causal’s overhead is 1%
whereas pessimistic’s is 17%. MG offers a more comparable
scenario for overheads of 12% and 17% for causal and
pessimistic, respectively. BT simply breaks down pessimistic
for an overhead of 61%, not comparable to the 3% of causal.
Finally, DT has a small difference between the approaches,
for causal having 3% overhead and pessimistic 5%.

To better understand the results of figure 7, we show in
tables I and II various properties of the different benchmarks.
Table I offers a view into the bandwidth consumption of these
programs. It presents a list of measurements per processor.
The first two lines display the total number of messages sent
by one processor and the total number of messages sent per
second, respectively. In this regard, it is clear that CG and BT
are heavy in communication, whereas MG seems to be more
computation bound. DT has very little communication. Table
I continues by showing the average size of each message.
Benchmarks CG, MG and BT are comparable, while DT
sends large messages. The next lines of table I present the
total number of determinants generated by processor and the
total number of determinants piggybacked. The last row has
the total number of determinants piggybacked per message.
We see that, among the benchmarks that show considerable
communication, MG has the highest value in this respect and
that hurts the performance of causal message logging, since it
is the variable that directly increases its penalty.

TABLE I
BANDWIDTH CONSUMPTION

Benchmark CG MG BT DT
Messages 25890 8122 19340 7

Messages/s 260.67 35.45 213.14 0.33
Message Size (KB) 28.49 34.43 23.78 4608.59

Determinants 26036 8518 19382 12
Piggybacked 57045 23292 41787 29

Determinants/msg 2.20 2.86 2.16 4.16

On the other hand, table II shows the memory overhead of
causal message logging. For each benchmark we can see the
total size of checkpoint. DT has a minute checkpoint, while
both CG and BT have relatively small checkpoint size. MG has
a much larger checkpoint size. The second row presents the
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Fig. 8. NPB Benchmarks Performance Results (1024 processors).

total size of the message log. In this case, CG and BT have
a larger message log since both are communication bound.
The final two rows of table II refer to the amount of memory
needed to store determinants. The local determinants refer
to those determinants created by the processor. They must
be stored at that processor, since they may be piggybacked
again in case of a failure. The remote determinants refer to
those determinants coming from other processors and that also
need to be stored in case of a failure. We must highlight that
determinant size is measured in KB, meanwhile message log
size is measured in MB. Two orders of magnitude separate
the two sets. Thus, determinants will rarely create memory
pressure in causal message logging.

TABLE II
MEMORY CONSUMPTION

Benchmark CG MG BT DT
Checkpoint (MB) 13.63 121.25 14.43 1.08

Message Log (MB) 98.45 49.48 91.83 35.41
Local Determinants (KB) 250.12 109.13 278.59 0.49

Remote Determinants (KB) 548.75 297.90 600.53 1.64

To finish the comparison of the two message logging pro-
tocols, we offer in figure 8 the numbers for a 1024 processors
run with the same set of NAS Parallel Benchmarks. Although
pessimistic message logging has an overhead as high as 53%
on BT, causal message logging never exceeds a 5% overhead.

We measured the scaling properties of the simple causal
message logging protocol by using a 7-point stencil program
that computes the values of a 3-dimensional grid. The program
is written in Charm++ and has two main parameters, n the
size of one side of the cubic space (in other words, the
total space has dimensions nxnxn) and b the size of the
block. The program divides the total space into blocks of
dimensions bxbxb and creates as many objects as blocks in
the program. The runtime system divides evenly the objects
into the processors. Each object communicates with its 6
nearest objects in the simulation space. The way the program
progresses is by computing one iteration and then performing
a global reduction to check for convergence. For simplicity, we
are only reporting the time taken in the first 200 iterations.

Figure 9 presents the results of the strong scaling test with
processor numbers ranging from 64 to 1024. In all those
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Fig. 9. Strong scaling 7-point stencil.
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Fig. 10. Weak scaling 7-point stencil.

cases we are solving a space of 1024x1024x1024 points with
different block sizes. There is no noticeable difference in the
first three data points. However, at 512 processors the overhead
of causal message logging is 10%. At this point, communi-
cation starts to take over the program, since computation is
diluted into the extra processors we have available. Thus, the
benchmark slowly converges to the scenario in figure 6 where
communication dominates the execution time. This is more
clear at 1024 processors where the overhead of causal reaches
21%. Then, although causal does not stall the communication,
collectives still remain a challenge, since the determinant
piggybacking will exceed the cost of executing the collective
itself.

On the other hand, figure 10 presents the results for a
weak scaling test. The number of processor goes from 64
to 1024. This time, however, each processor will always do
the same amount of work. Each processor will solve a space
of 256x256x256. At 64 processors both figures 9 and 10
coincide. Beyond that point the behavior is very similar in
the two figures. The major difference is that overhead at 512
processors is 2%, while at 1024 processors is 5%. We see
the impact of weak scaling on causal message logging. As
long as computation does not diminish as communication cost
increases, we can manage to have a low overhead.

Finally, figure 11 presents the progress of the 7-point stencil
application in case of a failure. We define progress as the
total number of iterations completed. We compare the two
approaches: checkpoint/restart and causal message logging.



Fig. 11. Effect of a failure on 7-point stencil.

In both cases, we introduced a failure at iteration 140, out
of the 200 total iterations simulated. There is one single
checkpoint at iteration 100. The top curve shows the way
checkpoint/restart deals with the failure. Since all processors
roll back to the previous checkpoint, all processes roll back
to the last checkpoint and re-execute all computation and
communication. The bottom curve shows the behavior of
causal message logging, where only one processor rolls back,
repeating its own computation and communication, while the
other processors operate at low power. Ultimately, causal
message logging is faster than checkpoint restart because it
omits global reductions during restart and is more power-
efficient because only one processor re-executes lost work.

VII. CONCLUSIONS AND FUTURE WORK

We analyzed the performance of simple causal message log-
ging and compared the performance with pessimistic message
logging technique. Our evaluation identifies multiple perfor-
mance problems of pessimistic message logging and shows
that causal logging has better performance and scalability for
all the programs we ran in our experiments. There are however,
challenges for causal message logging. Specifically, it imposes
a higher latency on communication, which can be a problem
for strong scaling and collective operations, and it requires a
modest amount of additional memory to store determinants.

For the future we plan to extend our causal message logging
to the multicore world, where a node will be the minimum
unit of failure. We also plan to have a strategy for correlated
multiple concurrent failures. Since failures of different system
components correlate according to the machine’s topology, we
will exploit this fact to design efficient protocols that tolerate
the multiple failures with a very high probability.
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