
Optimal Bucket Algorithms for Large MPI Collectives on
Torus Interconnects

Nikhil Jain
IBM Research - India

New Delhi, India
nikhil.jain@in.ibm.com

Yogish Sabharwal
IBM Research - India

New Delhi, India
ysabharwal@in.ibm.com

ABSTRACT
Collectives are an important and frequently used compo-
nent of MPI. Bucket algorithms, also known as “large vec-
tor” algorithms, were introduced in the early 90’s and have
since evolved as a well known paradigm for large MPI col-
lectives. Many modern day supercomputers such as the
IBM Blue Gene and Cray XT are based on torus intercon-
nects that offer a highly scalable interconnection architec-
ture for distributed memory systems. While near optimal
algorithms have been developed for torus interconnects in
other paradigms, such as spanning trees, bucket algorithms
have not been optimally extended to these networks. In this
paper, we study the basic “divide, distribute and gather”
MPI collectives for bucket algorithms – Allgather, Reduce-
scatter and Allreduce – for large messages on torus intercon-
nects.
We present bucket-based algorithms for these collectives

on bidirectional links. We show that these algorithms are
optimal in terms of bandwidth and computation for symmet-
ric torus networks (i.e. when all the dimensions are equal),
matching the theoretical lower bounds For an asymmetric
torus, our algorithms are asymptotically optimal and con-
verge to the lower bound for large dimension sizes. We also
argue that our bucket algorithms are more scalable on multi-
cores in comparison to spanning tree algorithms. Previous
studies of bucket algorithms on torus interconnects have fo-
cused on unidirectional links and have been unable to obtain
tight lower bounds and optimal algorithms. We close this
gap by providing stronger lower bounds and showing that
our bidirectional algorithms can easily be adapted to the
unidirectional case, matching our lower bounds in terms of
bandwidth and computational complexity.
We implement our algorithms on the IBM Blue Gene/P

Supercomputer, which has quad-core nodes connected in a
3-dimensional torus, using the low level communication in-
terface. We demonstrate that our algorithms perform within
7-30% of the lower bounds for different MPI collectives. We
demonstrate good scaling using multicores. We also demon-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’10, June 2–4, 2010, Tsukuba, Ibaraki, Japan.
Copyright 2010 ACM 978-1-4503-0018-6/10/06 ...$10.00.

strate a factor of 3 to 17 speedup for various collectives in
comparison to the latest optimized MPI implementation.

Categories and Subject Descriptors
D.m [Software]: Miscellaneous

General Terms
Algorithm, Performance

Keywords
MPI, Collective, Communication, Torus Network

1. INTRODUCTION
MPI Collectives are an important and frequently used

component of MPI. As opposed to point-to-point commu-
nication, collective communication routines are a collection
of MPI message passing routines that perform one-to-many,
many-to-one and many-to-many communications amongst
the processors. Basic collectives include synchronization col-
lectives such as Barrier, data movement collectives, such as
Broadcast, Scatter, Gather, Allgather, All-to-all and compu-
tation collectives, such as Reduce, Reduce-scatter and Allre-

duce.
The performance of MPI collectives is often critical in de-

termining the performance of parallel scientific applications.
A five-year profiling study of applications running in pro-
duction mode on the Cray T3E 900 at the University of
Stuttgart revealed that more than 40% of the time spent in
MPI functions was spent in the two functions Allreduce and
Reduce [13].
Simple yet powerful techniques have been proposed for

collective communications (See [2, 3, 6, 8, 9, 10, 11, 12, 14,
15] and references therein). Bucket algorithms, also known
as “large vector” algorithms, were introduced in the early
90’s by van de Geijn et al. [2]. They have since evolved
as a well known paradigm for large MPI collectives. These
algorithms are based on the “divide, distribute and gather”
paradigm for the Reduce-scatter and Allgather collectives.
These combined with Gather and Scatter form the basic
building blocks for the implementation of other collectives.
In this paper, we focus on the many-to-many collectives:

Reduce-scatter, Allgather and Allreduce for commutative op-
erations. The Reduce-scatter and Allgather collectives are
the fundamental “divide, distribute and gather” collectives
of the bucket algorithms paradigm. The Allreduce collective
is derived by combining both these collectives under this
framework.

27

Initial Data
Collective

Final Data

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

a,b,c d,e,f g,h,i Reduce-scatter a+d+g b+e+h c+f+i

a b c Allgather a,b,c a,b,c a,b,c

a+d+g, a+d+g, a+d+g
a,b,c d,e,f g,h,i Allreduce b+e+h, b+e+h, b+e+h

c+f+i c+f+i c+f+i

Figure 1: Many-to-many MPI collectives

The operation of these collectives are illustrated in Fig-
ure 1 for a 3-node system. In the Reduce-Scatter collective,
each node starts with an initial vector. The corresponding
elements of all nodes are reduced and these reduced elements
are then distributed across the nodes. In the Allgather
collective, every node receives all elements from all other
nodes. The Allreduce collective is similar to the Reduce-
scatter collective except that all reduced elements are col-
lected at all nodes instead of being distributed. Observe
that the Allreduce collective operation is equivalent to per-
forming a Reduce-scatter collective followed by an Allgather
collective operation.
Bucket algorithms have been adapted and optimized for

various communication networks, including torus intercon-
nects. Torus interconnects are attractive interconnection ar-
chitectures for distributed memory supercomputers. They
are more scalable in comparison to competing architectures
such as the hypercube and therefore many modern day su-
percomputers such as the IBM Blue Gene and Cray XT are
based on these interconnects. Chan et al. [4] developed new
models for the theoretical study of MPI collectives on these
interconnects, wherein a node can communicate with mul-
tiple nodes simultaneously using the different links of the
interconnect. They showed that the new models can lead
to dramatic decreases in the perceived lower bounds of col-
lective communications since a node can communicate with
multiple nodes simultaneously. They also extend the bucket
algorithms for torus interconnects. However, their theoret-
ical bounds are not tight – there exists a considerable gap
between their proposed lower bounds and algorithms.
In this paper, we tighten existing lower bounds for the

simultaneous communication model proposed by Chan et al
[4] and propose new algorithms under their model. However,
their model only allows for communication in one direction
on any link at a given point in time. For this reason, we
refer to their model as the unidirectional model. We extend
their model to support bidirectional communication on the
links. We present lower bounds and algorithms for the bidi-
rectional model as well. Figure 2 lists the lower bounds
for torus interconnects under the two models. It also lists
the complexity of our results and the previously best known
bucket algorithms for these models. Since we are dealing
with long vector algorithms, we concentrate on the band-
width and processing bounds. For the unidirectional model,
our bounds strengthen the previously known bounds by a
factor of 2. For both the unidirectional and the bidirec-
tional models, we show that our algorithms are asymptoti-
cally optimal for asymmetric torus networks, converging to
the lower bound for large dimension sizes. For symmetric
torus, our algorithms match the lower bound proposed ex-

actly (not asymptotically) showing that for this case, our
lower bounds are tight and our algorithms are optimal. We
argue that our bucket algorithms are more scalable on multi-
cores in comparison to spanning tree algorithms. We imple-
ment our algorithms on Blue Gene/P and demonstrate that
they perform within 7-30% of the lower bounds for different
MPI collectives. Our algorithms show significant speedups
of factor of 3 to 17 over the currently optimized MPI im-
plementation on Blue Gene/P. We also demonstrate good
scaling using multicores.
The rest of this paper is organized as follows. In Sec-

tion 2, we discuss related work with respect to the models
of communication, bucket algorithms and spanning tree al-
gorithms on torus interconnects. In Section 3, we present
lower bounds for the unidirectional and bidirectional model.
In Section 4, we present algorithms for both these mod-
els and also present optimizations that overlap computation
and communication and use multicores. In Section 5, we
present our experimental results on the Blue Gene/P Su-
percomputer. We summarize and conclude in Section 6.

2. RELATED WORK
In this Section we discuss related work on MPI Collectives.

We start by discussing the communication models used for
evaluating the performance of the collectives. We then de-
scribe the previously known bucket algorithms for“large vec-
tor” MPI collectives. We then describe the spanning-tree
based approach for MPI collectives and discuss how they
differ from the bucket algorithms.

2.1 Communication models
We first describe the simultaneous communication model

proposed by Chan et al. [4] for completeness. Since all mod-
els we consider involve simultaneous communication, we re-
fer to their model as the unidirectional communication model

to avoid any confusion. We follow this up by changes pro-
posed in this model to accomodate bidirectionality.
Unidirectional communication model: This model
makes the following assumptions. It is targeted for dis-
tributed memory parallel architectures with 𝑝 computational
nodes, indexed from 0 to 𝑝− 1. Each node has one compu-
tational processor. All processors are identical. Any node
can send directly to any other node where a communica-
tion network provides automatic routing. The underlying
interconnection network is an 𝑁 -dimensional torus. Each
node is directly connected to each of its 2𝑁 nearest neigh-
bors where two are on opposing sides of a dimensional axis.
The network is homogeneous, i.e., all links have the same
bandwidth. At any given time, a single node can send or

28

Lower Bounds:

Collective

unidirectional model bidirectional model

Known results Our results Our results

bandwidth compute bandwidth compute bandwidth compute

Allgather 𝑝−1
𝑝

⋅

𝑛𝛽
2𝑁

– 𝑝−1
𝑝

⋅

𝑛𝛽
𝑁

– 𝑝−1
𝑝

⋅

𝑛𝛽
2𝑁

–

Reduce-scatter 𝑝−1
𝑝

⋅

𝑛𝛽
2𝑁

𝑝−1
𝑝

⋅ 𝑛𝛾 𝑝−1
𝑝

⋅

𝑛𝛽
𝑁

𝑝−1
𝑝

⋅ 𝑛𝛾 𝑝−1
𝑝

⋅

𝑛𝛽
2𝑁

𝑝−1
𝑝

⋅ 𝑛𝛾

Allreduce 2 ⋅
𝑝−1
𝑝

⋅

𝑛𝛽
2𝑁

𝑝−1
𝑝

⋅ 𝑛𝛾 2 ⋅
𝑝−1
𝑝

⋅

𝑛𝛽
𝑁

𝑝−1
𝑝

⋅ 𝑛𝛾 2 ⋅
𝑝−1
𝑝

⋅

𝑛𝛽
2𝑁

𝑝−1
𝑝

⋅ 𝑛𝛾

Algorithms:

Collective

Known results Our results

bandwidth compute
bandwidth

compute
symmetric asymmetric torus

unidirectional model:

Allgather
𝑑ℓ−1
𝑑ℓ

⋅ 𝑛𝛽 –
𝑝−1
𝑝

⋅

𝑛𝛽
𝑁

𝑑ℓ−1
𝑑ℓ

⋅

𝑛𝛽
𝑁

⋅

𝑑𝑁𝑠 −1

𝑑𝑁𝑠
⋅

𝑑𝑠
𝑑𝑠−1

–

Reduce-scatter
𝑑ℓ−1
𝑑ℓ

⋅ 𝑛𝛽 𝑝−1
𝑝

⋅ 𝑛𝛾 𝑝−1
𝑝

⋅

𝑛𝛽
𝑁

𝑑ℓ−1
𝑑ℓ

⋅

𝑛𝛽
𝑁

⋅

𝑑𝑁𝑠 −1

𝑑𝑁𝑠
⋅

𝑑𝑠
𝑑𝑠−1

𝑝−1
𝑝

⋅ 𝑛𝛾

Allreduce 2 ⋅
𝑑ℓ−1
𝑑ℓ

⋅ 𝑛𝛽
𝑝−1
𝑝

⋅ 𝑛𝛾 2 ⋅
𝑝−1
𝑝

⋅

𝑛𝛽
𝑁

2 ⋅
𝑑ℓ−1
𝑑ℓ

⋅

𝑛𝛽
𝑁

⋅

𝑑𝑁𝑠 −1

𝑑𝑁𝑠
⋅

𝑑𝑠
𝑑𝑠−1

𝑝−1
𝑝

⋅ 𝑛𝛾

Bidirectional model:

Allgather – –
𝑝−1
𝑝

⋅

𝑛𝛽
2𝑁

𝑑ℓ−1
𝑑ℓ

⋅

𝑛𝛽
2𝑁

⋅

𝑑𝑁𝑠 −1

𝑑𝑁𝑠
⋅

𝑑𝑠
𝑑𝑠−1

–

Reduce-scatter – –
𝑝−1
𝑝

⋅

𝑛𝛽
2𝑁

𝑑ℓ−1
𝑑ℓ

⋅

𝑛𝛽
2𝑁

⋅

𝑑𝑁𝑠 −1

𝑑𝑁𝑠
⋅

𝑑𝑠
𝑑𝑠−1

𝑝−1
𝑝

⋅ 𝑛𝛾

Allreduce – – 2 ⋅ 𝑝−1
𝑝

⋅

𝑛𝛽
2𝑁

2 ⋅
𝑑ℓ−1
𝑑ℓ

⋅

𝑛𝛽
2𝑁

⋅

𝑑𝑁𝑠 −1

𝑑𝑁𝑠
⋅

𝑑𝑠
𝑑𝑠−1

𝑝−1
𝑝

⋅ 𝑛𝛾

Figure 2: Comparison of algorithms and lower bounds with known results (with respect to bandwidth cost
and compute cost)
𝑝=number of processors, 𝑛=vector size, 𝑁=number of torus dimensions, 𝛽=bandwidth cost (transmission cost per element),

𝛾=computation cost per arithmetic operation and 𝑑ℓ (𝑑𝑠 resp.)=length of the longest (shortest) dimension of the torus.

receive messages from 2𝑁 other nodes. A single node can
do so simultaneously only if each of the messages are sent or
received on each of its 2𝑁 different links. Note that a node
is allowed to simultaneously participate in sends on some
links and receives on other links.
In order to analyze the performance, the following nota-

tion is defined. Let 𝛼 denote the startup cost incurred on
sending a message and let 𝛽 denote the bandwidth cost, i.e.,
the per data element transmission time on a link. Further,
let 𝛾 denote the computation cost of performing an arith-
metic operation, for instance the reduction of two elements.
Typically the performance cost is broken down into three
costs – the startup cost (terms involving 𝛼), the bandwidth
cost (terms involving 𝛽) and the computation cost (terms
involving 𝛾), with the communication cost being the sum
of the startup cost and bandwidth cost. In the absence of
network conflicts, the communication cost of sending an 𝑛-
byte message between two nodes is modeled by 𝛼+𝛽𝑛. The
path between two communicating nodes, determined by the
topology and the routing algorithm, is completely occupied.
Therefore, if some link in the communication path is occu-
pied by two or more communicating pairs, a network conflict
occurs. This extra cost is modeled with 𝛼 + 𝑘𝑛𝛽 where 𝑘
is the maximum over all links of the number of conflicts on
the links.
Bidirectional communication model: In this model,
we modify the assumption for communication between two
nodes as follows. We assume that there are two links be-

tween neighbouring nodes, one in each direction. At any
given time, a node can send one message and simultane-
ously receive one message on the links connected to a neigh-
bor. Therefore it can simultaneously be participating in 4𝑁
communications, consisting of 2𝑁 sends and 2𝑁 receives.
All other assumptions remain the same.

2.2 Bucket Algorithms
We now describe the bucket algorithm [2, 3, 10] for the

Reduce-scatter collective. In this algorithm, the nodes can
be viewed as arranged in a one dimensional ring overlaid
on the underlying network such that there is no contention
of physical links in the embedding. Communication in this
algorithm is performed along 𝑝 logical chains. Each of these
chains has a unique root node. Thus every node is a root for
one of these chains. Each chain is of length 𝑝 and extends
from the root node towards the left all the way around to the
node lying to the right of the root. Therefore each logical
chain is the ring with one edge deleted from it – the one
between the root and the node to its right. Each logical
chain is responsible for 𝑛/𝑝 amount of data. These 𝑝 logical
chains are used to reduce the data in parallel. There are
𝑝 − 1 steps in this algorithm. Every node sends 𝑛/𝑝 data
at each step. The node to the right of the root initiates the
communication for that logical chain. At each step, the data
is forwarded to the node on the right, which then performs
the necessary reduction. At the end of 𝑝−1 steps the reduced
data for the 𝑛/𝑝 data items is collected on the root of the

29

Node 0 Node 1 Node 2 Node 0 Node 1 Node 2 Node 0 Node 1 Node 2

𝑃10 →
𝑃10 + 𝑃20 𝑃10 + 𝑃20

→ +𝑃00

𝑃21 →
𝑃21 + 𝑃01 𝑃21 + 𝑃01

→ +𝑃11

𝑃02 →
𝑃02 + 𝑃12 𝑃02 + 𝑃12

→ +𝑃22

Step 0 Step 1 Step 2

Figure 3: Reduce-Scatter on a one dimensional torus in the unidirectional model. Here 𝑃𝑖𝑗 denotes the data
that initially resides on node 𝑖 and is to be reduced on node 𝑗.

logical chain. The communication for all logical chains is
performed in parallel. This keeps all links busy. Therefore
at any step, a node is receiving data for one logical chain
from the node on the left and simultaneously sending data
for another logical chain to the node on the right. At the
end of 𝑝 − 1 steps, each node has 𝑛/𝑝 of the reduced data.
The algorithm is illustrated for a vector of length 3 on a 3
node system in Figure 3.
The cost of this approach is given by

𝑇𝑅𝑆−𝐵𝑘𝑡−1𝐷 = (𝑝− 1)𝛼 +
𝑝− 1

𝑝
𝑛𝛽 +

𝑝− 1

𝑝
𝑛𝛾 (1)

The cost for the Allgather and Allreduce collectives can be
derived similarly.

2.3 Spanning-tree Algorithms
In spanning tree algorithms, the main idea is to overlay

a spanning tree (connecting all nodes) over the interconnec-
tion network. Data is then pipelined along the spanning
tree in order to execute the MPI collective. In this frame-
work, Gather, Scatter, Reduce and Broadcast form the basic
collectives with other collectives derived by combining op-
erations of these collectives. For operations such as Scatter

and Broadcast, data is passed from the root towards the
leaves along the spanning tree, whereas for Gather and Re-

duce, data is passed from the leaves towards the root along
the spanning tree. It is easy to see that it is advantageous to
overlay a spanning tree that is contention free, i.e., no two
spanning tree edges are overlaid on the same link. Faraj
et.al [1] show how to carefully overlay 6 spanning trees over
a 3-dimensional torus without contention. This allows for
the data to be divided into 6 parts and be pipelined along
the spanning trees in parallel. Using this method, it can be
shown that they theoretically achieve near-optimal band-
width cost bounds of 𝑛𝛽/2𝑁 for Allgather and Reduce-
scatter and 𝑛𝛽/𝑁 for the Allreduce collective.
We note some important differences between the span-

ning tree and bucket-based algorithms. (1) Spanning tree
algorithms primarily pipeline the data along a tree/chain
whereas bucket based algorithms divide the data along a
ring. One way to visualize the bucket based algorithms is
that they represent 𝑝 spanning trees executing in parallel
with each of the 𝑝 nodes serving as the root for one of the
trees. (2) Given the rooted nature of the spanning trees,
the basic building blocks under this framework are the Re-

duce and Broadcast collectives along with the Gather and
Scatter collectives. Given the divide-and-distribute nature
of the bucket-based algorithms, the basic building blocks
under this framework are the Reduce-Scatter and Allgather

collectives along with the Gather and Scatter collectives.

3. LOWER BOUNDS
In this section we give proof sketches to derive the lower

bounds under the unidirectional and bidirectional commu-
nication models as mentioned in Figure 2. The computation
bounds are trivial. We only argue for the bandwidth cost
bounds here.
Unidirectional model: Our proofs are based on studying
the communication graphs for communication corresponding
to a single element vectors. For a given communication, a
communication graph is defined to be the graph 𝐺 = (𝑉,𝐸),
where 𝑉 , the set of vertices is the set of nodes {1, . . . , 𝑝} and
there is a directed edge (𝑢, 𝑣) ∈ 𝐸 directed from node 𝑢 to
𝑣 iff 𝑢 sends some data to 𝑣.
We now present our lower bound for the Reduce-scatter

collective.

Theorem 3.1. In the unidirectional communication

model, the Reduce-scatter collective has a bandwidth cost of

at least
(𝑝−1)

𝑝
⋅ 𝑛𝛽

𝑁
.

Proof. A Reduce-scatter can be viewed as multiple Re-
duce operations with different roots.
Let us consider the reduce operation performed on a single

element. It is easy to see that for the reduction to take
place successfully, the communication graph must contain a
spanning tree rooted at the node where the result is reduced,
with all edges in this spanning tree directed towards the root.
Hence there must be at least 𝑝− 1 data elements that must
be communicated.
Therefore, for the Reduce-scatter operation on a vector of

size 𝑛, essentially 𝑛 reduce operations are performed. There-
fore, by the arguments above, (𝑝 − 1)𝑛 elements must be
communicated. However, under this model, at any instance
of time there can be one element being communicated on any
link and there are 𝑝𝑁 links in all. Hence the communication

cost must be at least (𝑝−1)
𝑝

⋅ 𝑛𝛽
𝑁
.

For the Allgather operation, the arguments are similar.

Theorem 3.2. In the unidirectional communication

model, the Allgather collective has a bandwidth cost of at

least
(𝑝−1)

𝑝
⋅ 𝑛𝛽

𝑁
.

Proof. In this collective, every element is scattered from
a source node to all other nodes. The underlying communi-
cation graph for the scattering of every element must contain
a spanning tree with all edges directed away from the root.
Hence, as above, (𝑝− 1)𝑛 elements must be communicated,

resulting in a bandwidth cost bound of (𝑝−1)
𝑝

⋅ 𝑛𝛽
𝑁
.

The arguments for the Allreduce collective are more in-
volved.

30

0 1 2 3 ⋅ ⋅ ⋅ 35

𝐴[0 : 35]

−→

0 - 3 4 - 7 8 - 11

12 - 15 16 - 19 20 - 23

24 - 27 28 - 31 32 - 35

𝑋[0 : 2, 0 : 2]

↗

↘

0 - 1 4 - 5 8 - 9

12 - 13 16 - 17 20 - 21

24 - 25 28 - 29 32 - 33

𝑋1[0 : 2, 0 : 2]

2 - 3 6 - 7 10 - 11

14 - 15 18 - 19 22 - 23

26 - 27 30 - 31 34 - 35

𝑋2[0 : 2, 0 : 2]

Figure 4: Node distribution-respecting division of elements

Theorem 3.3. In the unidirectional communication

model, the Allreduce collective has a bandwidth cost of at

least 2 ⋅ (𝑝−1)
𝑝

⋅ 𝑛𝛽
𝑁

.

Proof. We again consider a single element vector. We
show that at least 2(𝑝− 1) elements must be communicated
for an Allreduce of the single element vector to take place.
The bound then follows as before by noting that there are
only 𝑁𝑝 links over which this communication must happen.
It is always possible to obtain a complete ordering of the

messages in a distributed system such that if the messages
are processed in this order sequentially, we obtain the same
result [7]. Let 𝑚1,𝑚2, . . . ,𝑚𝑘 be these messages in such an
order. We are required to show that 𝑘 ≥ 2(𝑝 − 1). Let 𝑚𝑟

be the first message in this ordering, on the completion of
which, some node has the Allreduce result of the element
vector. By following arguments similar to those provided in
previous theorems, the communication up to𝑚𝑟 must define
a spanning tree over the nodes and hence 𝑟 ≥ 𝑝 − 1. Note
that at this point, no other node has the Allreduced result.
Hence, every other node must receive at least one message
thereafter in order to obtain the complete Allreduce result.
Therefore 𝑘 − 𝑟 ≥ 𝑝 − 1. From the above two inequalities,
we get that 𝑘 ≥ 2(𝑝− 1). This proves the theorem.

Bidirectional model: All arguments presented above
simply extend for the bidirectional model by observing
that the number of links in the bidirectional communication

model are double that in the unidirectional communication

model. These lead to the lower bounds presented in Figure 2.
Remark: We remark here that the proof arguments pre-
sented in [3] directly extend to give us the desired bounds
for the bidirectional model. However, the unidirectional
model requires more sophisticated arguments in comparison
to the bidirectional model. While the bidirectional model
is of greater practical interest, our study of the unidirec-
tional model closes open questions regarding the optimality
of bucket algorithms for torus interconnects under previ-
ously studied models.

4. MULTICOLOR BUCKET ALGORITHM
FOR TORUS INTERCONNECTS

In this section we propose efficient bucket algorithms for
these three collectives: Reduce-scatter, Allgather and Allre-
duce on torus interconnects. Throughout this section, we

will explain and derive the cost models for the Reduce-
scatter collective. The algorithm for the Allgather collec-
tive is the same as that for the Reduce-scatter executed in
the reverse order but without performing any computations.
The cost for the Allgather collective can therefore be ob-
tained by simply removing the computation term from the
cost (i.e., substituting 𝛾 = 0). As Allreduce collective can
be performed by performing Reduce-scatter followed by an
Allgather, it’s cost can be obtained by adding the cost of
these two collectives.
The Algorithm: For an 𝑁-dimensional torus, we divide
the data into 𝑁 (roughly equal) parts, in such a way that
performing a Reduce-scatter on each of these parts results
in a Reduce-scatter of the entire data. We think of these
parts as being of different colors, numbered 1 to 𝑁 . Let
𝑋[𝑖1, 𝑖2, . . . , 𝑖𝑁] denote the data elements that are to be col-
lected on node (𝑖1, 𝑖2, . . . , 𝑖𝑁) in the 𝑁-dimensional torus on
completion of the Reduce-Scatter operation.
Initially, each node has data corresponding to all elements,

i.e., ∪𝑖1,𝑖2,...,𝑖𝑁𝑋[𝑖1, 𝑖2, . . . , 𝑖𝑁] = 𝑋[0:𝑑1,0:𝑑2,. . .,0:𝑑𝑁].
This data is carefully divided into 𝑁 colors such that per-
forming Reduce-Scatter on each of the colors and combining
the results is equivalent to performing the Reduce-Scatter
on the original vector. This can be accomplished by di-
viding each of 𝑋[𝑖1, 𝑖2, . . . , 𝑖𝑁] into 𝑁 parts. Let these 𝑁
parts be denoted by 𝑋𝑗 [𝑖1, 𝑖2, . . . , 𝑖𝑁] for 0 ≤ 𝑗 < 𝑁 . Thus,
the initial vector on every node corresponding to color 𝑗 is
∪𝑖1,𝑖2,...,𝑖𝑁𝑋𝑗 [𝑖1, 𝑖2, . . . , 𝑖𝑁] = 𝑋𝑗 [0:𝑑1,0:𝑑2,. . .,0:𝑑𝑁]. We re-
fer to such division of data as“node distribution-respecting.”
Figure 4 illustrates how node distribution-respecting data
division is performed on a 𝑑1 × 𝑑2 torus where 𝑑1 = 3
and 𝑑2 = 3. In this example, the data for a 36 element
vector,𝐴, is divided into 2 colors. After the Reduce-Scatter
is completed, the distribution of the elements of vector 𝐴 is
described by the 2 dimensional matrix 𝑋[0:2,0:2] (See Fig-
ure 4). The (𝑖, 𝑗)𝑡ℎ entry of 𝑋 corresponds to the data that
is reduced on node 𝑑2 ⋅ 𝑖 + 𝑗. For example, the elements
0, 1, 2 and 3 are to be reduced on node 0, the elements 4, 5, 6
and 7 are to be reduced on node 1 and so on. The elements
of this matrix are now split into two sets given by the ma-
trices 𝑋1[0:2,0:2] and 𝑋2[0:2,0:2] (See Figure 4). According
to 𝑋1, the elements 0, 1 are to be reduced on node 0, the
elements 4, 5 are to be reduced on node 1 and so on. Simi-
larly, according to 𝑋2, the elements 2, 3 are to be reduced on

31

𝑋1[0:2,0:2,1]

∙

�
�
�
�

∙

�
�
�
�

∙

�
�
�
�

∙ ∙ ∙

∙

�
�
�
�

∙ ∙ ∙

∙

�
�
�
�

∙ ∙ ∙

∙

�
�
�
�

∙

�
�
�
�

∙

�
�
�
�

∙ ∙ ∙

∙

�
�
�
�

∙ ∙ ∙

∙

�
�
�
�

∙ ∙ ∙

∙

�
�
�
�

∙

�
�
�
�

∙

�
�
�
�

𝑋1[0,0:2,0] ∙ ∙ ∙

∙

�
�
�
�

𝑋1[1,0:2,0] ∙ ∙ ∙

∙

�
�
�
�

𝑋1[2,0:2,0] ∙ ∙ ∙

∙

�
�
�
�

∙

�
�
�
�

∙

�
�
�
�

𝑋1[0,0,0] ∙ ∙ ∙ 𝑋1[0,2,0]

𝑋1[0,1,0] ∙

�
�
�
�

∙ ∙ ∙

∙

�
�
�
�

∙ ∙ ∙

𝑋1[0:2,0:2,0:1] 𝑋1[0:2,0:2,0]

(a) (b) (c) (d)

Figure 5: For a single color on a 3x3x2 Torus

node 0, the elements 6, 7 are to be reduced on node 1 and so
on. Thus, the vector 𝐴 is divided into two parts (colors) on
every node, 𝐴1 = {0, 2, . . . , 34} and 𝐴2 = {1, 3, . . . , 35} cor-
responding to 𝑋1 and 𝑋2. This division of the data is “node
distribution-respecting.” The Reduce-scatter on these two
individual vectors results in elements being reduced to the
nodes as described by 𝑋1 and 𝑋2. Combining these resul-
tant elements on each node is equivalent to Reduce-Scatter
of the original vector.
The Reduce-Scatter for each color is performed in 𝑁

phases, wherein, in each phase the bucket algorithms are
run along the nodes lying along one of the dimensions. This
is illustrated in Figure 5 for color=1 on a 𝑑1 × 𝑑2 × 𝑑3 torus
where 𝑑1 = 3, 𝑑2 = 3 and 𝑑3 = 2. As shown in Figure 5(a),
initially, every node has data corresponding to all indices,
i.e., 𝑋1[0:2,0:2,0:1]. In the first phase, Reduce-scatters are
performed amongst the nodes along a third dimension (front
and back) using the bucket algorithm. As shown in Fig-
ure 5(b), this results in the front face nodes having the data
corresponding to the elements 𝑋1[0:2,0:2,0] and the back
face nodes having the data corresponding to the elements
𝑋1[0:2,0:2,1]. In the second phase the bucket algorithm is
run along the columns. Figure 5(c) shows the data distri-
bution on the front face nodes after this phase. The nodes
of the first, second and third row Reduce-scatter the data
𝑋1[0:2,0:2,0] to obtain data corresponding to the elements
𝑋1[0,0:2,0], 𝑋1[1,0:2,0] and 𝑋1[2,0:2,0] respectively. The
data is distributed similarly for the nodes on the back face of
the torus. In the third and final phase, the bucket algorithm
is run along the rows. Figure 5(d) shows the data distribu-
tion on the front face first row nodes after this phase. The
first, second and third nodes along the row Reduce-scatter
the data 𝑋1[0,0:2,0] to obtain data corresponding to the el-
ements 𝑋1[0,0,0], 𝑋1[0,1,0] and 𝑋1[0,2,0] respectively. The
data is distributed similarly for the nodes on the back face
of the torus.
Therefore for each color, we require to perform the

Reduce-Scatter operation using the ring based bucket al-
gorithm described in Section 2.2 along each of the dimen-
sions once. Therefore, there are 𝑁 phases of the algorithm,
wherein, in each phase the ring based Bucket Reduce-Scatter
is performed along one of the 𝑁 dimensions. In 𝑁 phases
all 𝑁 dimensions are covered. We can perform the commu-
nication for the 𝑁 colors parallely in such a manner that in
any phase no two colors use the links lying along the same
dimension. Let 𝐼𝑁 =< 1, 2, . . . , 𝑁 > denote the sequence of
the first 𝑁 positive integers. Further, let 𝜋1, 𝜋2, . . . , 𝜋𝑁 be

𝑁 permutations of 𝐼𝑁 . We call these permutations non-
conflicting if 𝜋𝑗(𝑖) ∕= 𝜋𝑘(𝑖) for all 0 ≤ 𝑖, 𝑗, 𝑘 < 𝑁 and
𝑗 ∕= 𝑘 where 𝜋𝛼(𝑖) denotes the 𝑖𝑡ℎ element of the sequence
𝜋𝛼. For example it is easy to see that the permutations
𝜋1, 𝜋2, . . . , 𝜋𝑁 defined by 𝜋𝑗(𝑖) = (𝑖 + 𝑗) mod 𝑁 for all
0 ≤ 𝑖, 𝑗 < 𝑁 are non-conflicting. Given 𝑁 non-conflicting
permutations of 𝐼𝑁 , we can run the 𝑁-dimensional bucket
algorithm such that data of color 𝑗 is Reduce-scattered along
rings lying along dimension 𝜋𝑗(𝑖) in the 𝑖𝑡ℎ phase. This en-
sures that the communication for different colors do not con-
tend for the same links in any given stage and that the links
of all dimensions are fully utilized in a balanced manner.
In order to utilize the bidirectional links, we note that each

node is connected to 2𝑁 bidirectional links, lying along the
𝑁 dimensions. Moreover, only one direction of the links are
required in order to form a ring of the nodes lying along
a single dimension. Therefore a node can participate in
2𝑁 rings simultaneously, with pairs of these rings using the
same links but in opposite directions. Therefore, when the
Reduce-Scatter is performed for some color in some phase
along some dimension, the data is further divided into 2
sub-parts and a Reduce-Scatter is performed for both these
sub-parts along the same dimension but using different di-
rections.
The Reduce-Scatter algorithm is described in Algorithm

1. The for loop in Step 3 corresponds to the 𝑁 phases of
the algorithm. The pseudocode is presented in a sequential
manner for simplicity – in practice, all bucket algorithms
within the for loop at step 4 would be executed simulta-
neously as communication across all the 2𝑁 links can be
handled simultaneously.
For an asymmetric torus, the bandwidth cost is deter-

mined by the dimension that handles most of the data. Let
the minimum and maximum dimensions be 𝑑𝑠 and 𝑑ℓ re-
spectively. For the first phase, the data is divided into 2𝑁
equal parts. The bucket algorithm is invoked for each of
these parts separately. Therefore, a Reduce-Scatter is in-
voked with data size 𝑛/2𝑁 in this phase for every dimension.
Note that the data size reduces by a factor of 𝑑𝑖 after the
Reduce-Scatter is performed along the 𝑖𝑡ℎ dimension. Hence
the data size in the second phase is at most 𝑛/(2𝑁 ⋅ 𝑑𝑠). In
general, after 𝑖 phases the data size with which the Reduce-
Scatter bucket algorithm is invoked is at most 𝑛/(2𝑁 ⋅ 𝑑𝑖𝑠).
Therefore, for any dimension 𝑑𝑖, the total bandwidth cost

across the 𝑁 phases is

32

Algorithm 1𝑁-dimension Torus Bucket Algorithm For Re-
duceScatter
1: Divide the data at each node logically into N parts such

that it is “node distribution-respecting.”
2: Fix any 𝑁 non-conflicting permutations of 𝐼𝑁 , say

𝜋1, 𝜋2, . . . , 𝜋𝑁 .
3: for i = 1 to N /* phases */ do
4: for c = 1 to N /* colors */ do
5: Let 𝑞 = 𝜋𝑐(𝑖)
6: for each of 𝑝

𝑑𝑞
rings formed by sets of 𝑑𝑞

nodes lying along the 𝑞𝑡ℎ dimension do
7: Run Bucket Algorithm for half the data of

color 𝑐 along the ring in clockwise direction
8: Run Bucket Algorithm for the other half of

the data in anti-clockwise direction
9: end for
10: end for
11: end for

𝑇𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ ≤
𝑑ℓ − 1

𝑑ℓ
⋅
𝑛𝛽

2𝑁
⋅

(
1 +

𝑁−1∑
𝑘=1

1

𝑑𝑘𝑠

)

=
𝑑ℓ − 1

𝑑ℓ
⋅
𝑛𝛽

2𝑁
⋅
𝑑𝑁𝑠 − 1

𝑑𝑁𝑠
⋅

𝑑𝑠
𝑑𝑠 − 1

We make a few observations regarding this bandwidth cost
bound:

∙ Since 𝑑𝑠 ≥ 2, 𝑇𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ ≤ 2 ⋅ 𝑝−1
𝑝
⋅ 𝑛𝛽

2𝑁
implying our

algorithm is asymptotically tight.

∙ As 𝑑𝑠 →∞, so do 𝑑ℓ and 𝑝. We observe that 𝑇𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

→ 𝑛𝛽
2𝑁

and the lower bound 𝑝−1
𝑝
⋅ 𝑛𝛽

2𝑁
→ 𝑛𝛽

2𝑁
as well.

Therefore, our algorithm cost converges to the lower
bound.

The bound for the Reduce-scatter collective is therefore:

𝑇𝑅𝑆−𝐵𝑖𝐷𝑖𝑟−𝐴𝑠𝑦𝑚𝑚 = 2𝑁
𝑁∑
𝑖=1

(𝑑𝑖 − 1)𝛼 +
𝑝− 1

𝑝
𝑛𝛾 +

𝑑ℓ − 1

𝑑ℓ
⋅
𝑛𝛽

2𝑁
⋅
𝑑𝑁𝑠 − 1

𝑑𝑁𝑠
⋅

𝑑𝑠
𝑑𝑠 − 1

(2)

If we substitute 𝑑𝑠 = 𝑑ℓ = 𝑝1/𝑁 in 𝑇𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ, we obtain
the cost for a symmetric torus of size 𝑑×⋅ ⋅ ⋅×𝑑 torus, where
𝑑 = 𝑝1/𝑁

𝑇𝑅𝑆−𝐵𝑖𝐷𝑖𝑟−𝑆𝑦𝑚𝑚 = 2𝑁2(𝑑− 1)𝛼 +
𝑝− 1

𝑝
𝑛𝛾 +

𝑝− 1

𝑝
⋅
𝑛𝛽

2𝑁
(3)

For the unidirectional case, we similarly obtain the follow-
ing bounds:

𝑇𝑅𝑆−𝑈𝑛𝑖𝐷𝑖𝑟−𝐴𝑠𝑦𝑚𝑚 = 𝑁
𝑁∑
𝑖=1

(𝑑𝑖 − 1)𝛼 +
𝑝− 1

𝑝
𝑛𝛾 +

𝑑ℓ − 1

𝑑ℓ
⋅
𝑛𝛽

𝑁
⋅
𝑑𝑁𝑠 − 1

𝑑𝑁𝑠
⋅

𝑑𝑠
𝑑𝑠 − 1

(4)

𝑇𝑅𝑆−𝑈𝑛𝑖𝑑𝑖𝑟−𝑆𝑦𝑚𝑚 = 𝑁2(𝑑− 1)𝛼 +
𝑝− 1

𝑝
𝑛𝛾 +

𝑝− 1

𝑝
⋅
𝑛𝛽

𝑁
(5)

The bounds for Allgather and Allreduce can be obtained
similarly.
Overlapping computation and communication: For
collectives involving computation such as Reduce-Scatter
and Allreduce, the amount of data being processed is pro-
portional to the amount of data being communicated. This
presents an excellent opportunity for overlapping computa-
tion with communication. In order to achieve this, we divide
the bucket data for a color into smaller parts and transmit
these parts in a pipelined manner. This allows the receiving
node to perform computations on the part that has been re-
ceived while the next part is being received. The number of
parts has to be carefully chosen as additional startup costs
are incurred for every additional part. The maximum of the
bandwidth and computation bounds is a trivial lower bound
(not tight) for this case.
Parallelization with multi-cores: On systems with
multi-core nodes, the startup cost and processing costs can
be divided over the cores. There are several ways of dividing
this work.
One way is to divide the work on the basis of color since

there are no data dependencies amongst the data for differ-
ent colors. Using 𝑁 cores, we can handle each color on a
separate core. In Algorithm 1, this corresponds to the itera-
tions of Step 4 being executed on separate cores as they are
independent. We can further use 2𝑁 cores, where each core
handles one of the directions for a fixed color. In Algorithm
1, this corresponds to Steps 7 & 8 also being executed in
parallel on separate cores. Note that the efficiency of such a
division of work crucially depends on the distribution of the
computations with respect to the colors on the nodes. For
instance, for the spanning tree algorithms [1], even though
the total computation performed on every node is almost
the same, the distribution of the computations is not uni-
form for the different colors. It can be seen that there are
nodes that have to perform 3 computations for one color
and none for some other color (these are nodes that essen-
tially have 3 children in one spanning tree and are leaves in
another). This can limit the perormance gains with color
bsed division of work. Our 𝑁 -dimensional bucket algorithm
in contrast leads to uniform distribution of workload across
the nodes as well as across the cores for the different colors.
There are several other approaches for parallelizing the

computation using multicores that can be applied to the
bucket algorithms as well as the spanning tree algorithms.
However, there are certain issues in these approaches that
make them unsuitable in comparison to the color based di-
vision of work. One approach is to perform computations on
separate cores once the data is received on some core. How-
ever, this involves synchronization overheads for the cores to
communicate regarding availability of data/results for com-
putations. As algorithms typically work in pipeline mode
where data is broken down into smaller packets, these over-
heads can be pretty substantial for small packet sizes. An-
other approach is to break down the data into smaller parts
and have different cores work on the different parts. This is
like having more colors. However, on using more than 2𝑁
colors, multiple cores/colors have to share the same links
for communication. Although the bandwidth requirement
is still the same, contention of link usage amongst the cores
can lead to degradation in performance. For example, if
two packets of one color are passed over the link before the
packet of another color, this can lead to idling of the core

33

handling the other color at the destination node.

5. EXPERIMENTAL RESULTS
In this Section, we demonstrate the improvements ob-

tained using our algorithm when implemented on the Blue
Gene/P, which has a 3-dimensional torus interconnect.

5.1 Blue Gene/P Overview
The Blue Gene/P [5] is IBM’s next-generation massively-

parallel supercomputer, which has evolved from the Blue
Gene/L architecture. Each node in a Blue Gene/P system
consists of four 850 MHz PowerPC 450 processor cores. The
nodes are interconnected through five networks. The most
important one of these is the torus network, which handles
the bulk of the communication data from an application
and offers the highest bandwidth in the system. Each node
supports 850 MBps bidirectional links to each of its near-
est neighbors for a total of 5.1GB/s bidirectional bandwidth
per node. Direct memory access (DMA) based communica-
tion operations are provided in order to minimize message
handling overhead on the processing cores during send and
receive operations. The messaging is based on variable size
packets, which are multiples of 32 bytes in size with a max-
imum packet size of 256 bytes. The messages carry a hard-
ware header and software header of 8 bytes each, resulting
in a total header of 16 bytes. Thus there can be a maximum
of 240 bytes of payload per packet. There is an additional
14 byte overhead per packet due to acknowledgments.

5.2 MPI Collectives performance
Experimental Setup: We implemented our multi-color
bucket algorithms for the collectives on the Blue Gene/P
Supercomputer using the lower level communication APIs.
These algorithms incorporate overlapping of computation
and communication. Two versions of our algorithms have
been implemented – single-core and multi-core. In the
single-core version, only one core is used on each node. In
the multi-core version, we used 3 cores on each node, with
each core handling the data along both directions for one
color. We also compared the performance of our algorithms
with the latest IBM optimized MPI library, which incorpo-
rates the optimized spanning tree algorithms [1]. We note
here that these algorithms are single-core and do not use
the lower level interface APIs1. The MPI results presented
use default options and may be marginally improved us-
ing specialized environment variables and compiler options.
We conducted the experiments for different configurations –
system sizes and data sizes. The performance results were
obtained by taking the mean of the performance of ten runs
for each of these configurations. We also determined the
lower-bounds for each configuration. Since our optimiza-
tions overlap computation with communication, this lower
bound is obtained by considering only the bandwidth bot-
tleneck (see Figure 2) in the bidirectional communication
model.

1It is non trivial in system’s software to take advantage of
multi-core as communication threads need to be started via
inter-process-interrupts to enable those cores to accelerate
communication. Hence, the MPI stack just uses a single
core. While in an application library, its possible for the
application to give control of the threads to the library to
enable multicore optimizations

Results : The performance of the experiments is reported
in Figure 6 using log-log plots. The performance is reported
in units of time taken to complete the collective operation.
In Figures 6 (a)-(c), we report the performance for the

Reduce-scatter, Allgather and Allreduce collectives on 4096
Blue Gene/P nodes for varying data sizes. For Reduce-
scatter (Figure 6 (a)), our multi-core algorithm is consis-
tently within 30% of the bandwidth cost bound for most
data sizes. The single-core algorithm, on the other hand, is
computation bound. In comparison to the MPI library im-
plementation, the multi-core algorithm is consistently bet-
ter by a factor of 12 to 17 and the single-core is better by
a factor of 6. For Allgather (Figure 6 (b)), the performance
of our multi-core algorithms is just within 7% of the lower
bound. The performance of the single-core algorithms is
also very similar to the multi-core algorithms since this col-
lective does not involve any computations and is therefore
bandwidth cost bound even on a single core. Our algorithm
are consistently better by a factor of 3 in comparison to the
MPI library implementation. For Allreduce (Figure 6 (c)),
our multi-core algorithm is consistently within 20-30% of the
bandwidth cost bound. The single-core algorithm is again
computation-bound. In comparison to the MPI library im-
plementation, the multi-core algorithm is consistently better
by a factor of 3 and the single-core is better by a factor of
1.5.
Some of the gains observed, in comparison of our single-

core version with the MPI library, can be attributed to our
use of lower level APIs that avoids MPI stack overheads.
From the Allreduce results, it can be estimated that this
results in factor of 1.5 gain in performance. For the other
collectives, this performance differs by more than a factor of
1.5 – this may possibly be attributed to the specifics of the
MPI library implementation.
The gains observed in comparison of our single-core and

multi-core versions can be attributed to the use of multi-
cores. However, it can be seen these gains are not propor-
tional to the number of cores that are used. This is because
the multi-core version is communication bound whereas the
single-core version is computation bound. In order to study
the multi-core scalabilty of our algorithms, we performed
another experiment in which we introduced an artificial de-
lay so as to make even the multi-core version computation
bound. As shown in Figure 6 (d), in this experiment, the
multi-core version performs a factor of 3 better than the
single-core version for most data size, which is commensu-
rate with the number of cores used. This indicates that the
computation load is uniform across the cores showing that
the computation load on every node is same for every color,
as discussed in Section 4. This also demonstrates the multi-
core scalability of the multi-color bucket algorithms obtained
by color-based division of work. Figure 6 (e) & (f) reports
the scaling performance of our Allgather and Allreduce algo-
rithms for different node count. The vector size is taken to
be 32 ⋅ 𝑝 MB, where 𝑝 is the number of nodes. These results
indicate that our algorithms scale very well. The consistent
proximity to the lower bound implies that not much better
performance can be achieved.

6. CONCLUSIONS
We proposed new bucket algorithms for the Reduce-

scatter, Allgather and Allreduce collectives for large vec-
tors on torus interconnects. Our algorithms are tight for

34

the symmetric torus and asymptotically optimal for asym-
metric torus. We also tightened existing lower bounds un-
der the unidirectional comunication model and showed that
our algorithms are optimal under the unidirectional as well.
There are several directions for future work. It would be
interesting to perform a theoretical study of the algorithms
and lower bounds for other collectives under these models.
Another important open problem is to develop algorithms
that match the theoretical lower bounds or to improve the
lower bounds for asymmetric torus networks.

7. ACKNOWLEDGMENTS
We would like to thank Venkatesan T. Chakaravarthy for

useful discussions related to the lower bounds that lead to
simpler proofs. We would like to thank Rahul Garg and
Sameer Kumar for useful discussions related to MPI and
the paper in general. Finally, we would like to thank James
Sexton, James Stasak, Pascal Vezolle and Guy Robinson for
discussions related to applications that use these collectives.

8. REFERENCES
[1] A. Faraj, S. Kumar, B. Smith, A. Mamidala,

J. Gunnels, and P. Heidelberger. MPI collective
communications on the Blue Gene/P Supercomputer:
algorithms and optimizations. In ICS ’09: Proceedings

of the 23rd international conference on

Supercomputing, pages 489–490, New York, NY, USA,
2009. ACM.

[2] B. L. Payne, M. Barnett, R. Littlefield, D. G. Payne,
and R. V. D. Geijn. Global combine on mesh
architectures with wormhole routing. In Proc. of 7 th

Int. Parallel Proc. Symp, 1993.

[3] E. Chan, M. Heimlich, A. Purkayastha, and R. A.
van de Geijn. Collective communication: theory,
practice, and experience. Concurrency and

Computation: Practice and Experience,
19(13):1749–1783, 2007.

[4] E. Chan, R. van de Geijn, W. Gropp, and R. Thakur.
Collective communication on architectures that
support simultaneous communication over multiple
links. In PPoPP ’06: Proceedings of the eleventh ACM

SIGPLAN symposium on Principles and practice of

parallel programming, pages 2–11, New York, NY,
USA, 2006. ACM.

[5] I. journal of Research and D. staff. Overview of the
IBM Blue Gene/P project. IBM J. Res. Dev.,
52(1/2):199–220, 2008.

[6] J. Watts, R. Van, and D. Geijn. A pipelined broadcast
for multidimensional meshes. Parallel Processing
Letters, 1995.

[7] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[8] M. Barnett, D. G. Payne, R. A. van de Geijn, and
J. Watts. Broadcasting on meshes with wormhole
routing. J. Parallel Distrib. Comput., 35(2):111–122,
1996.

[9] M. Barnett, R. J. Littlefield, D. G. Payne, and R. A.
van de Geijn. Global combine algorithms for 2− 𝑑
meshes with wormhole routing. jpdc, 24(2):191–201,
1995.

[10] M. Barnett, S. Gupta, D. G. Payne, L. Shuler,
R. Geijn, and J. Watts. Interprocessor collective
communication library (intercom). In Proceedings of

the Scalable High Performance Computing Conference,
pages 357–364. IEEE Computer Society Press, 1994.

[11] P. Mitra, D. Payne, L. Shuler, R. van de Geijn, and
J. Watts. Fast collective communication libraries,
please. Technical report, Austin, TX, USA, 1995.

[12] R. A. van de Geijn. On global combine operations. J.

Parallel Distrib. Comput., 22(2):324–328, 1994.

[13] R. Rabenseifner. Automatic MPI counter profiling of
all users: First results on a Cray T3E 900-512.
Message Passing Interface DeveloperŠs and UserŠs
Conference 1999 (MPIDC Š99), 1999.

[14] S. L. Johnsson and C.-T. Ho. Optimum broadcasting
and personalized communication in hypercubes. toc,
38(9):1249–1268, 1989.

[15] Y. Saad and M. H. Schultz. Data communication in
hypercubes. J. Parallel Distrib. Comput.,
6(1):115–135, 1989.

35

 2

 10

 50

 250

 1250

 4 8 16 32 64 128 256

Ti
m

e
(m

s)

Data size per node (MB)

(a) Reduce-scatter Performance on 4096 nodes

165
87 163 312

617 1235
2469

3

5
9

18
40

96
195

7
14

26
49

94
184 365

2
4

8
15

31
61

122

MPI
MultiCore

SingleCore
Lower Bound

 5
 10
 20
 40
 80

 160
 320
 640

 4 8 16 32 64 128 256

Ti
m

e
(m

s)

Data size per node (MB)

(b) Allgather Performance on 4096 nodes

6

13

42
70

129
273

567

2

5
9

19
41

86
173

4

7
12

22
44

88
176

2
4

8
15

31
61

122

MPI
MultiCore

SingleCore
Lower Bound

 5

 10

 20

 40

 80

 160

 320

 640

 4 8 16 32 64 128 256

Ti
m

e
(m

s)

Data size per node (MB)

(c) Allreduce Performance on 4096 nodes

14

25

47

94

210

422
873

4
9

17

34
72

156

317

9
16

32

62

124

248
495

4
8

15
31

61

122

244

MPI
MultiCore

SingleCore
Lower Bound

 5

 10

 20

 40

 80

 160

 320

 640

 4 8 16 32 64 128 256

Ti
m

e
(m

s)

Data size per node (MB)

(d) Reduce-scatter with Delay on 4096 nodes

12
21

39
73

143

280 556

4
7

13

26

53

115

233

MultiCore
SingleCore

 25

 50

 100

 200

 400

 512 1024 2048 4096

Ti
m

e
(m

s)

Number of nodes

(e) Allgather Scaling

50.50 61.20 68.14 70.06

16.19
17.27 17.14

16.24

22.23 22.41 22.89
22.08

15.24 15.25 15.26 15.26

MPI
MultiCore

SingleCore
Lower Bound

 25

 50

 100

 200

 400

 512 1024 2048 4096

Ti
m

e
(m

s)

Number of nodes

(f) Allreduce Scaling

106.18 96.05 101.69 94.39

37.60 36.70 36.00
33.80

62.59 63.31 63.19
62.47

30.47 30.50 30.51 30.52

MPI
MultiCore

SingleCore
Lower Bound

Figure 6: MPI Collectives Performance

36

