
Automated Mapping of Regular Communication
Graphs on Mesh Interconnects

Abhinav Bhatele, Gagan Gupta, Laxmikant V. Kale and
I-Hsin Chung

December 20th, 2010

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Motivation

• Running a parallel application on a linear array of
processors:

2

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Motivation

• Running a parallel application on a linear array of
processors:

2

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Motivation

• Running a parallel application on a linear array of
processors:

2

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Motivation

• Running a parallel application on a linear array of
processors:

2

• Typical communication is between random pairs of
processors simultaneously

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Interconnect Topologies

3

Roadrunner Technical Seminar Series, March 13th 2008, Ken Koch, LANL

16. Mai 2008 9

BLUE GENE ARCHITECTURE

! is designed to support efficient execution of
massively parallel MPI programs

! Compute nodes organized as a 3D-torus

! MAIN FEATURE:
every node is connected to its
six neighbour nodes through
bidirectional links

! To maintain application performance,
correct mapping of MPI tasks onto
torus network is a critical factor

• Three dimensional meshes

• 3D Torus: Blue Gene/L, Blue Gene/P, Cray XT4/5

• Trees

• Fat-trees (Infiniband) and CLOS networks (Federation)

• Dense Graphs

• Kautz Graph (SiCortex), Hypercubes

• Future Topologies?

• Blue Waters, Blue Gene/Q

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Application Topologies

Patch

Compute

Proxy

4

http://wrf-model.org/plots/realtime_main.php http://www.ks.uiuc.edu/Gallery/Science/

http://oceans11.lanl.gov/twiki/bin/view/Cosim

http://wrf-model.org/plots/realtime_main.php
http://wrf-model.org/plots/realtime_main.php
http://wrf-model.org/plots/realtime_main.php
http://wrf-model.org/plots/realtime_main.php
http://math.lanl.gov/Research/Projects/meshing.shtml
http://math.lanl.gov/Research/Projects/meshing.shtml

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Application Topologies

Patch

Compute

Proxy

4

We want to map
communicating

objects closer to
one another

http://wrf-model.org/plots/realtime_main.php http://www.ks.uiuc.edu/Gallery/Science/

http://oceans11.lanl.gov/twiki/bin/view/Cosim

http://wrf-model.org/plots/realtime_main.php
http://wrf-model.org/plots/realtime_main.php
http://wrf-model.org/plots/realtime_main.php
http://wrf-model.org/plots/realtime_main.php
http://math.lanl.gov/Research/Projects/meshing.shtml
http://math.lanl.gov/Research/Projects/meshing.shtml

December 20th, 2010 HiPC 2010 © Laxmikant Kale

The Mapping Problem

• Applications have a communication topology and
processors have an interconnect topology

• Definition: Given a set of communicating parallel
“entities”, map them on to physical processors to
optimize communication

• Goals:

• Minimize communication traffic and hence contention

• Balance computational load (when n > p)

5

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Solution - Mapping Framework

• Input - communication graph of the application and
processor topology of the allocated job partition

• Output - mapping of processes/objects to physical
processors

• Parallel applications can be classified into:

• regular/structured: n-dimensional near-neighbor (e.g. POP, WRF)

• irregular: arbitrary communication

• We focus on regular communication in this paper

6

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Automatic Mapping Framework

7

Process Topology
Analyzer

Input: Application
communication graph

Regular Graphs Irregular Graphs

2D Object Graph 3D Object Graph

Choose best
heuristic depending

on hop-bytes

Output: Mapping file
used for the next run

Different
heuristics for

irregular graphs

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Automatic Mapping Framework

7

Relieve the application
developer of the
mapping burden

Process Topology
Analyzer

Input: Application
communication graph

Regular Graphs Irregular Graphs

2D Object Graph 3D Object Graph

Choose best
heuristic depending

on hop-bytes

Output: Mapping file
used for the next run

Different
heuristics for

irregular graphs

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Automatic Mapping Framework

7

Relieve the application
developer of the
mapping burden

No change to the
application code

Process Topology
Analyzer

Input: Application
communication graph

Regular Graphs Irregular Graphs

2D Object Graph 3D Object Graph

Choose best
heuristic depending

on hop-bytes

Output: Mapping file
used for the next run

Different
heuristics for

irregular graphs

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Machine Topology Discovery

• Topology Manager API: for 3D interconnects (Blue
Gene, XT)

• Information required for mapping:

• Physical dimensions of the allocated job partition

• Mapping of ranks to physical coordinates and vice versa

• On Blue Gene machines such information is available
and the API is a wrapper

• On Cray XT machines, jump several hoops to get this
information and make it available through the same API

8

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Application communication graph

• Several ways to obtain the graph

• MPI applications:

• Profiling tools (IBM’s HPCT tools)

• Collect information using the PMPI interface

• Manually provided by the application end user

• Charm++ applications:

• Instrumentation at runtime

• Profiling tools (HPCT): when n = p

9

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Process Topology Discovery

• We want to identify regular 2D/3D communication patterns

10

Algorithm 8.1 Pseudo-code for identifying regular communication graphs

Input: CMn,n (communication matrix)
Output: isRegular (boolean, true if communication is regular)

dims[] (dimensions of the regular communication graph)
for i = 1 to n do

find the maximum number of neighbors for any rank in CMi,n

end for

if max neighbors ≤ 5 then

// this might be a case of regular 2D communication
select an arbitrary rank startpe find its distance from its neighbors
dist = difference between ranks of startpe and its top or bottom neighbor
for i := 1 to n do

if distance of all ranks from their neighbors == 1 or dist then

isRegular = true
dim[0] = dist
dim[1] = n/dist

end if

end for

end if

computation, but the algorithm can be enhanced so that it can identify other reg-

ular patterns such as communication with all 8 neighbors around a rank in 2D.

The algorithms for identifying 3D and 4D near-neighbor patterns are similar. Once

the information about communicating neighbors has been extracted and identified,

mapping algorithms can use it to map communicating neighbors on nearby physical

processors.

The pattern matching algorithms were tested with three different applications

which are known to have regular communication: MILC, POP and WRF. The

communication patterns and the size of each dimension were correctly identified as

shown in Table 8.1.

Application No. of cores Dimensionality Size of dimensions

MILC 256 4-dimensional 4× 4× 4× 4

POP 256 2-dimensional 8× 32

POP 512 2-dimensional 32× 16

WRF 256 2-dimensional 16× 16

WRF 512 2-dimensional 32× 32

Table 8.1: Pattern identification of communication in MILC, POP and WRF

75

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Process Topology Discovery

• We want to identify regular 2D/3D communication patterns

10

Algorithm 8.1 Pseudo-code for identifying regular communication graphs

Input: CMn,n (communication matrix)
Output: isRegular (boolean, true if communication is regular)

dims[] (dimensions of the regular communication graph)
for i = 1 to n do

find the maximum number of neighbors for any rank in CMi,n

end for

if max neighbors ≤ 5 then

// this might be a case of regular 2D communication
select an arbitrary rank startpe find its distance from its neighbors
dist = difference between ranks of startpe and its top or bottom neighbor
for i := 1 to n do

if distance of all ranks from their neighbors == 1 or dist then

isRegular = true
dim[0] = dist
dim[1] = n/dist

end if

end for

end if

computation, but the algorithm can be enhanced so that it can identify other reg-

ular patterns such as communication with all 8 neighbors around a rank in 2D.

The algorithms for identifying 3D and 4D near-neighbor patterns are similar. Once

the information about communicating neighbors has been extracted and identified,

mapping algorithms can use it to map communicating neighbors on nearby physical

processors.

The pattern matching algorithms were tested with three different applications

which are known to have regular communication: MILC, POP and WRF. The

communication patterns and the size of each dimension were correctly identified as

shown in Table 8.1.

Application No. of cores Dimensionality Size of dimensions

MILC 256 4-dimensional 4× 4× 4× 4

POP 256 2-dimensional 8× 32

POP 512 2-dimensional 32× 16

WRF 256 2-dimensional 16× 16

WRF 512 2-dimensional 32× 32

Table 8.1: Pattern identification of communication in MILC, POP and WRF

75

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Process Topology Discovery

• We want to identify regular 2D/3D communication patterns

10

Algorithm 8.1 Pseudo-code for identifying regular communication graphs

Input: CMn,n (communication matrix)
Output: isRegular (boolean, true if communication is regular)

dims[] (dimensions of the regular communication graph)
for i = 1 to n do

find the maximum number of neighbors for any rank in CMi,n

end for

if max neighbors ≤ 5 then

// this might be a case of regular 2D communication
select an arbitrary rank startpe find its distance from its neighbors
dist = difference between ranks of startpe and its top or bottom neighbor
for i := 1 to n do

if distance of all ranks from their neighbors == 1 or dist then

isRegular = true
dim[0] = dist
dim[1] = n/dist

end if

end for

end if

computation, but the algorithm can be enhanced so that it can identify other reg-

ular patterns such as communication with all 8 neighbors around a rank in 2D.

The algorithms for identifying 3D and 4D near-neighbor patterns are similar. Once

the information about communicating neighbors has been extracted and identified,

mapping algorithms can use it to map communicating neighbors on nearby physical

processors.

The pattern matching algorithms were tested with three different applications

which are known to have regular communication: MILC, POP and WRF. The

communication patterns and the size of each dimension were correctly identified as

shown in Table 8.1.

Application No. of cores Dimensionality Size of dimensions

MILC 256 4-dimensional 4× 4× 4× 4

POP 256 2-dimensional 8× 32

POP 512 2-dimensional 32× 16

WRF 256 2-dimensional 16× 16

WRF 512 2-dimensional 32× 32

Table 8.1: Pattern identification of communication in MILC, POP and WRF

75

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Example

• WRF running on 32 cores of Blue Gene/P

Pr
oc

es
so

rs

0

31

11

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Example

• WRF running on 32 cores of Blue Gene/P

Pattern matching to identify
regular communication
patterns such as 2D/3D
near-neighbor graphs

Pr
oc

es
so

rs

0

31

11

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Example

• WRF running on 32 cores of Blue Gene/P

Pattern matching to identify
regular communication
patterns such as 2D/3D
near-neighbor graphs

Pr
oc

es
so

rs

0

31

11

December 20th, 2010 HiPC 2010 © Laxmikant Kale

• Maximum Overlap (MXOVLP)

Mapping Regular Graphs (2D)

Object Graph: 9 x 8
Processor Graph: 12 x 6

12

December 20th, 2010 HiPC 2010 © Laxmikant Kale

• Maximum Overlap (MXOVLP)

Mapping Regular Graphs (2D)

Object Graph: 9 x 8
Processor Graph: 12 x 6

12

December 20th, 2010 HiPC 2010 © Laxmikant Kale

• Maximum Overlap (MXOVLP)

Mapping Regular Graphs (2D)

Object Graph: 9 x 8
Processor Graph: 12 x 6

12

December 20th, 2010 HiPC 2010 © Laxmikant Kale

• Maximum Overlap (MXOVLP)

Mapping Regular Graphs (2D)

Object Graph: 9 x 8
Processor Graph: 12 x 6

12

December 20th, 2010 HiPC 2010 © Laxmikant Kale

• Maximum Overlap (MXOVLP)

Mapping Regular Graphs (2D)

Object Graph: 9 x 8
Processor Graph: 12 x 6

12

December 20th, 2010 HiPC 2010 © Laxmikant Kale

• Maximum Overlap (MXOVLP)

Mapping Regular Graphs (2D)

Object Graph: 9 x 8
Processor Graph: 12 x 6

12

• Maximum Overlap with Alignment (MXOV+AL)

• Alignment at each recursive call

December 20th, 2010 HiPC 2010 © Laxmikant Kale

• Maximum Overlap (MXOVLP)

Mapping Regular Graphs (2D)

Object Graph: 9 x 8
Processor Graph: 12 x 6

12

• Maximum Overlap with Alignment (MXOV+AL)

• Alignment at each recursive call

• Expand from Corner (EXCO)

December 20th, 2010 HiPC 2010 © Laxmikant Kale

• Maximum Overlap (MXOVLP)

Mapping Regular Graphs (2D)

Object Graph: 9 x 8
Processor Graph: 12 x 6

12

• Maximum Overlap with Alignment (MXOV+AL)

• Alignment at each recursive call

• Expand from Corner (EXCO)

December 20th, 2010 HiPC 2010 © Laxmikant Kale

• Maximum Overlap (MXOVLP)

Mapping Regular Graphs (2D)

Object Graph: 9 x 8
Processor Graph: 12 x 6

12

• Maximum Overlap with Alignment (MXOV+AL)

• Alignment at each recursive call

• Expand from Corner (EXCO)

December 20th, 2010 HiPC 2010 © Laxmikant Kale

• Maximum Overlap (MXOVLP)

Mapping Regular Graphs (2D)

Object Graph: 9 x 8
Processor Graph: 12 x 6

12

• Maximum Overlap with Alignment (MXOV+AL)

• Alignment at each recursive call

• Expand from Corner (EXCO)

December 20th, 2010 HiPC 2010 © Laxmikant Kale

More heuristics ...

• Corners to Center (COCE)

• Start simultaneously from all
corners

13

December 20th, 2010 HiPC 2010 © Laxmikant Kale

More heuristics ...

• Corners to Center (COCE)

• Start simultaneously from all
corners

13

December 20th, 2010 HiPC 2010 © Laxmikant Kale

More heuristics ...

• Corners to Center (COCE)

• Start simultaneously from all
corners

13

December 20th, 2010 HiPC 2010 © Laxmikant Kale

More heuristics ...

• Corners to Center (COCE)

• Start simultaneously from all
corners

13

December 20th, 2010 HiPC 2010 © Laxmikant Kale

More heuristics ...

• Corners to Center (COCE)

• Start simultaneously from all
corners

13

• Affine Mapping (AFFN)

December 20th, 2010 HiPC 2010 © Laxmikant Kale

More heuristics ...

• Corners to Center (COCE)

• Start simultaneously from all
corners

13

• Affine Mapping (AFFN)

December 20th, 2010 HiPC 2010 © Laxmikant Kale

More heuristics ...

• Corners to Center (COCE)

• Start simultaneously from all
corners

13

• Affine Mapping (AFFN)

the basic technique in a simpler context.

2. The second scenario is where we have a two-dimensional array of objects where

each object communicates with two immediate neighbors in its row and col-

umn. We wish to map this group of objects on to a 2D mesh of processors.

12.1 Mapping of a 1D Ring

Problem: Load balancing a 1D array of v objects which communicate in a ring

pattern to a 1D linear array of p processors.

Solution: We want to map these objects on to processors while considering the

load of each object and the communication patterns among the objects. In order to

optimize communication, we want to place objects next to each other on the same

processor as much as possible and cross processor boundaries only for ensuring load

balance. We assume that the IDs of objects denote the nearness in terms of who

communicates with whom. Hence the problem reduces to finding contiguous groups

of objects in the 1D array such that the load on all processors is nearly the same.

We arrange the objects virtually by their IDs and perform a prefix sum in parallel

between them based on the object loads. At the conclusion of a prefix sum, every

object knows the sum of loads of all objects that appear before it (Figure 12.1).

Then the last object broadcasts the sum of loads of all objects so that every object

knows the global load of the system. Each object i, can calculate its destination

processor (di), based on the total load of all objects (Lv), prefix sum of loads up to

it (Li), its load (li) and the total number of processors (p), by this equation,

di = �p ∗ Li − li/2

Lv
� (12.1)

(x, y) → (�Px ∗
x

Ox
�, �Py ∗

y

Oy
�) (12.2)

118

December 20th, 2010 HiPC 2010 © Laxmikant Kale

More heuristics ...

• Corners to Center (COCE)

• Start simultaneously from all
corners

13

• Affine Mapping (AFFN)

the basic technique in a simpler context.

2. The second scenario is where we have a two-dimensional array of objects where

each object communicates with two immediate neighbors in its row and col-

umn. We wish to map this group of objects on to a 2D mesh of processors.

12.1 Mapping of a 1D Ring

Problem: Load balancing a 1D array of v objects which communicate in a ring

pattern to a 1D linear array of p processors.

Solution: We want to map these objects on to processors while considering the

load of each object and the communication patterns among the objects. In order to

optimize communication, we want to place objects next to each other on the same

processor as much as possible and cross processor boundaries only for ensuring load

balance. We assume that the IDs of objects denote the nearness in terms of who

communicates with whom. Hence the problem reduces to finding contiguous groups

of objects in the 1D array such that the load on all processors is nearly the same.

We arrange the objects virtually by their IDs and perform a prefix sum in parallel

between them based on the object loads. At the conclusion of a prefix sum, every

object knows the sum of loads of all objects that appear before it (Figure 12.1).

Then the last object broadcasts the sum of loads of all objects so that every object

knows the global load of the system. Each object i, can calculate its destination

processor (di), based on the total load of all objects (Lv), prefix sum of loads up to

it (Li), its load (li) and the total number of processors (p), by this equation,

di = �p ∗ Li − li/2

Lv
� (12.1)

(x, y) → (�Px ∗
x

Ox
�, �Py ∗

y

Oy
�) (12.2)

118

December 20th, 2010 HiPC 2010 © Laxmikant Kale

More heuristics ...

• Corners to Center (COCE)

• Start simultaneously from all
corners

13

• Affine Mapping (AFFN)

the basic technique in a simpler context.

2. The second scenario is where we have a two-dimensional array of objects where

each object communicates with two immediate neighbors in its row and col-

umn. We wish to map this group of objects on to a 2D mesh of processors.

12.1 Mapping of a 1D Ring

Problem: Load balancing a 1D array of v objects which communicate in a ring

pattern to a 1D linear array of p processors.

Solution: We want to map these objects on to processors while considering the

load of each object and the communication patterns among the objects. In order to

optimize communication, we want to place objects next to each other on the same

processor as much as possible and cross processor boundaries only for ensuring load

balance. We assume that the IDs of objects denote the nearness in terms of who

communicates with whom. Hence the problem reduces to finding contiguous groups

of objects in the 1D array such that the load on all processors is nearly the same.

We arrange the objects virtually by their IDs and perform a prefix sum in parallel

between them based on the object loads. At the conclusion of a prefix sum, every

object knows the sum of loads of all objects that appear before it (Figure 12.1).

Then the last object broadcasts the sum of loads of all objects so that every object

knows the global load of the system. Each object i, can calculate its destination

processor (di), based on the total load of all objects (Lv), prefix sum of loads up to

it (Li), its load (li) and the total number of processors (p), by this equation,

di = �p ∗ Li − li/2

Lv
� (12.1)

(x, y) → (�Px ∗
x

Ox
�, �Py ∗

y

Oy
�) (12.2)

118

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Running Time

• Pairwise Exchanges (PAIRS)
- Bokhari, Lee et al.

14

1.34

1.36

1.39

1.41

1.43

3.40161 72.9302 139.801 206.445 273.304 340.145

H
op

s
pe

r
by

te

Time (s)

Hops for 4k nodes

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Running Time

• Pairwise Exchanges (PAIRS)
- Bokhari, Lee et al.

14

0.01

0.1

1

10

100

1k 4k 16k 64k

T
im

e
(m

s)

Number of nodes

AFFN
COCE
MXOVLP
MXOV+AL
EXCO

1.34

1.36

1.39

1.41

1.43

3.40161 72.9302 139.801 206.445 273.304 340.145

H
op

s
pe

r
by

te

Time (s)

Hops for 4k nodes

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Example Mapping

Object Graph: 9 x 8
Processor Graph: 12 x 6

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

15

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Example Mapping

Object Graph: 9 x 8
Processor Graph: 12 x 6

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

15

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Example Mapping

Object Graph: 9 x 8
Processor Graph: 12 x 6

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

15

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Example Mapping

Object Graph: 9 x 8
Processor Graph: 12 x 6

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

15

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Example Mapping

Object Graph: 9 x 8
Processor Graph: 12 x 6

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

15

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Example Mapping

Object Graph: 9 x 8
Processor Graph: 12 x 6

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

15

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Example Mapping

Object Graph: 9 x 8
Processor Graph: 12 x 6

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

15

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Example Mapping

Object Graph: 9 x 8
Processor Graph: 12 x 6

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

15

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Mapping of 9x8 graph to 12x6 mesh

16

MXOVLP: 1.66 MXOV+AL: 1.65 EXCO: 2.31 COCE: 1.91

December 20th, 2010 HiPC 2010 © Laxmikant Kale 17

MXOVLP: 1.66 MXOV+AL: 1.65 EXCO: 2.31 COCE: 1.91

Mapping of 9x8 graph to 12x6 mesh

December 20th, 2010 HiPC 2010 © Laxmikant Kale 18

Mapping of 9x8 graph to 12x6 mesh

STEP: 1.39 AFFN1: 1.77 AFFN2: 1.53 AFFN3: 1.91

December 20th, 2010 HiPC 2010 © Laxmikant Kale 19

Mapping of 9x8 graph to 12x6 mesh

STEP: 1.39 AFFN1: 1.77 AFFN2: 1.53 AFFN3: 1.91

December 20th, 2010 HiPC 2010 © Laxmikant Kale

• Hop-bytes:

• Indicates amount of traffic and hence contention on the
network

• Previously used metric: maximum dilation

Evaluation Metric

20

di = distance
bi = bytes
n = no. of messages

5 Hop-bytes as an Evaluation Metric

The volume of inter-processor communication can be characterized by the hop-bytes

metric which is the weighted sum of message sizes where the weights are the number

of hops (links) traveled by the respective messages. Hop-bytes can be calculated by

the equation,

HB =

n�

i=1

di × bi (5.1)

where di is the number of links traversed by message i and bi is the message size in

bytes for message i and the summation is over all messages sent.

Hop-bytes is an indication of the average communication load on each link on the

network. This assumes that the application generates nearly uniform traffic over all

links in the partition. The metric does not give an indication of hot-spots generated

on specific links on the network but is an easily derivable metric and correlates well

with actual application performance.

In VLSI circuit design and early parallel computing work, emphasis was placed

on another metric called maximum dilation which is defined as,

d(e) = max{di|ei ∈ E} (5.2)

where di is the dilation of the edge ei. This metric aims at minimizing the longest

length of the wire in a circuit. We claim that reducing the largest number of links

traveled by any message is not as critical as reducing the average hops across all

messages.

32

5 Hop-bytes as an Evaluation Metric

The volume of inter-processor communication can be characterized by the hop-bytes

metric which is the weighted sum of message sizes where the weights are the number

of hops (links) traveled by the respective messages. Hop-bytes can be calculated by

the equation,

HB =

n�

i=1

di × bi (5.1)

where di is the number of links traversed by message i and bi is the message size in

bytes for message i and the summation is over all messages sent.

Hop-bytes is an indication of the average communication load on each link on the

network. This assumes that the application generates nearly uniform traffic over all

links in the partition. The metric does not give an indication of hot-spots generated

on specific links on the network but is an easily derivable metric and correlates well

with actual application performance.

In VLSI circuit design and early parallel computing work, emphasis was placed

on another metric called maximum dilation which is defined as,

d(e) = max{di|ei ∈ E} (5.2)

where di is the dilation of the edge ei. This metric aims at minimizing the longest

length of the wire in a circuit. We claim that reducing the largest number of links

traveled by any message is not as critical as reducing the average hops across all

messages.

32

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Evaluation

21

1

10

100

27x44 to 36x33 100x40 to 125x32 128x128 to 512x32 320x200 to 125x512

H
op

s
pe

r
by

te

MXOVLP
MXOV+AL
EXCO
COCE
AFFN
PAIRS

~1k nodes ~4k nodes ~16k nodes ~64k nodes

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Mapping 2D Graphs to 3D

• Map a two-dimensional
object graph to a three-
dimensional processor graph

• Divide object graph into
subgraphs once each for the
number of planes

• Stacking

• Folding

• Best 2D to 2D heuristic
chosen based on hop-bytes

22

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Results: 2D Stencil on Blue Gene/P

23

0

5

10

15

20

512 1024 2048 4096 819216384

H
op

s
pe

r
by

te

Number of cores

Default Mapping
Topology Mapping

Hop-bytes

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Results: 2D Stencil on Blue Gene/P

23

400

417.5

435

452.5

470

512 1024 2048 4096 8192 16384

T
im

e
pe

r
st

ep
 (

m
s)

Number of cores

Default Mapping
Topology Mapping

0

5

10

15

20

512 1024 2048 4096 819216384

H
op

s
pe

r
by

te

Number of cores

Default Mapping
Topology Mapping

Hop-bytes Performance

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Increasing communication

• With faster processors
and constant link
bandwidths

• computation is becoming
cheap

• communication is a
bottleneck

• Trend for bytes per flop

• XT3: 8.77

• XT4: 1.357

• XT5: 0.23

24

0.1

1

10

100

512 B 2 KB 8 KB 32 KB 128 KB

T
im

e
pe

r
st

ep
 (

s)

Message size

Default Mapping
Topology Mapping

2D Stencil on BG/P (4,096 cores)

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Results: WRF on Blue Gene/P

0

1

2

3

4

256 512 1024 2048 4096

A
ve

ra
ge

 h
op

s
pe

r
by

te

Number of nodes

Default
Topology

25

Lower Bound

Hops from IBM HPCT

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Results: WRF on Blue Gene/P

• Performance
improvement
negligible on 256 and
512 cores

0

1

2

3

4

256 512 1024 2048 4096

A
ve

ra
ge

 h
op

s
pe

r
by

te

Number of nodes

Default
Topology

25

Lower Bound

Hops from IBM HPCT

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Results: WRF on Blue Gene/P

• Performance
improvement
negligible on 256 and
512 cores

• On 1024 nodes:

• Hops reduce by: 63%

• Time for communication
reduces by 11%

• Performance improves
by 17%

0

1

2

3

4

256 512 1024 2048 4096

A
ve

ra
ge

 h
op

s
pe

r
by

te

Number of nodes

Default
Topology

25

Lower Bound

Hops from IBM HPCT

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Results: WRF on Blue Gene/P

• Performance
improvement
negligible on 256 and
512 cores

• On 1024 nodes:

• Hops reduce by: 63%

• Time for communication
reduces by 11%

• Performance improves
by 17%

0

1

2

3

4

256 512 1024 2048 4096

A
ve

ra
ge

 h
op

s
pe

r
by

te

Number of nodes

Default
Topology

25

17%

Lower Bound

Hops from IBM HPCT

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Results: WRF on Blue Gene/P

• Performance
improvement
negligible on 256 and
512 cores

• On 1024 nodes:

• Hops reduce by: 63%

• Time for communication
reduces by 11%

• Performance improves
by 17%

0

1

2

3

4

256 512 1024 2048 4096

A
ve

ra
ge

 h
op

s
pe

r
by

te

Number of nodes

Default
Topology

25

17% 5%

Lower Bound

Hops from IBM HPCT

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Summary

• Contention in modern day supercomputers can impact
performance: makes mapping important

• Developing an automatic mapping framework

• Relieve the application developer of the mapping burden

• Topology discovery: Topology Manager API

• Object Communication Graph: Profiling, Instrumentation

• Pattern matching: regular and irregular graphs

• Suite of heuristics for mapping

26

December 20th, 2010 HiPC 2010 © Laxmikant Kale

Future Work

• More sophisticated algorithms for process topology
discovery and mapping

• Multicast and many-to-many patterns

• Handling multiple communication graphs

• Simultaneous or occurring in different phases

• Extension to irregular communication graphs (in
progress)

27

Thanks

Questions?

