
Topology Aware Mapping

Abhinav Bhatele

Charm++ Tutorial
Computer Network Information Center,
Chinese Academy of Sciences

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Motivation

• Running a parallel application on a linear array of
processors:

2

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Motivation

• Running a parallel application on a linear array of
processors:

2

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Motivation

• Running a parallel application on a linear array of
processors:

2

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Motivation

• Running a parallel application on a linear array of
processors:

2

• Typical communication is between random pairs of
processors simultaneously

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Benchmark Creating Artificial Contention

• Pair each processor with a partner that is n hops away

3

1 hop

2 hops

3 hops

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Results: Contention

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

4 16 64 256 1K 4K 16K 64K 256K 1M

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

Effect of distance on latencies (Torus - 8 x 8 x 16)

8 hops
7 hops
6 hops
5 hops
4 hops
3 hops
2 hops
1 hop

Bhatele A., Kale L. V., Quantifying Network Contention on Large Parallel Machines, Parallel Processing Letters (Special Issue on
Large-Scale Parallel Processing), 2009. Best Poster Award, ACM Student Research Competition, Supercomputing 2008, Austin, TX.

4

Blue Gene/P

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Results: Contention

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

4 16 64 256 1K 4K 16K 64K 256K 1M

L
a
te

n
cy

 (
u
s)

Message Size (Bytes)

Effect of distance on latencies (Torus - 8 x 8 x 16)

8 hops
7 hops
6 hops
5 hops
4 hops
3 hops
2 hops
1 hop

Bhatele A., Kale L. V., Quantifying Network Contention on Large Parallel Machines, Parallel Processing Letters (Special Issue on
Large-Scale Parallel Processing), 2009. Best Poster Award, ACM Student Research Competition, Supercomputing 2008, Austin, TX.

4

XT4

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Interconnect Topologies

5

Roadrunner Technical Seminar Series, March 13th 2008, Ken Koch, LANL

16. Mai 2008 9

BLUE GENE ARCHITECTURE

! is designed to support efficient execution of
massively parallel MPI programs

! Compute nodes organized as a 3D-torus

! MAIN FEATURE:
every node is connected to its
six neighbour nodes through
bidirectional links

! To maintain application performance,
correct mapping of MPI tasks onto
torus network is a critical factor

• Three dimensional meshes

• 3D Torus: Blue Gene/L, Blue Gene/P, Cray XT4/5

• Trees

• Fat-trees (Infiniband) and CLOS networks (Federation)

• Dense Graphs

• Kautz Graph (SiCortex), Hypercubes

• Future Topologies?

• Blue Waters, Blue Gene/Q

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Application Topologies

Patch

Compute

Proxy

6

http://wrf-model.org/plots/realtime_main.php

http://math.lanl.gov/Research/Projects/meshing.shtml

http://www.ks.uiuc.edu/Gallery/Science/

http://wrf-model.org/plots/realtime_main.php
http://wrf-model.org/plots/realtime_main.php
http://math.lanl.gov/Research/Projects/meshing.shtml
http://math.lanl.gov/Research/Projects/meshing.shtml
http://wrf-model.org/plots/realtime_main.php
http://wrf-model.org/plots/realtime_main.php

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Application Topologies

Patch

Compute

Proxy

6

We want to map communicating
objects closer to one another

http://wrf-model.org/plots/realtime_main.php

http://math.lanl.gov/Research/Projects/meshing.shtml

http://www.ks.uiuc.edu/Gallery/Science/

http://wrf-model.org/plots/realtime_main.php
http://wrf-model.org/plots/realtime_main.php
http://math.lanl.gov/Research/Projects/meshing.shtml
http://math.lanl.gov/Research/Projects/meshing.shtml
http://wrf-model.org/plots/realtime_main.php
http://wrf-model.org/plots/realtime_main.php

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

The Mapping Problem

• Applications have a communication topology and
processors have an interconnect topology

• Definition: Given a set of communicating parallel
“entities”, map them on to physical processors to
optimize communication

• Goals:

• Minimize communication traffic and hence contention

• Balance computational load (when n > p)

7

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Scope of this work

• Currently we are focused on 3D mesh/torus machines

• For certain classes of applications

Communication
bound

Computation
bound

Latency tolerant Latency sensitive

8

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Outline

• Case studies:

• OpenAtom

• NAMD

• Automatic Mapping Framework

• Pattern matching

• Heuristics for Regular Graphs

• Heuristics for Irregular Graphs

9

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Case Study I: OpenAtom

10

Performance on Blue Gene/L

0

0.075

0.15

0.225

0.3

512 1024 2048 4096 8192

T
im

e
pe

r
st

ep
 (

s)

Number of cores

Default Mapping

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Diagnosis

11

Timeline view (OpenAtom on 8,192 cores of BG/L) using the performance
visualization tool, Projections

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Mapping of OpenAtom Arrays

12

A. Bhatele, E. Bohm, and L. V. Kale. A Case Study of Communication Optimizations on 3D Mesh Interconnects. In
Euro-Par, LNCS 5704, pages 1015–1028, 2009. Distinguished Paper Award, Feng Chen Memorial Best Paper Award

!"#$%&
'$()*$+%,+$-.)

/&$+"#$%&

/0./

1&23(-4

5)-0.

6)$23#.3&

6)$23#.3&

/0./7$)-/0.!

/0.!7$)-

8

98

88

9

888 89

988

9888

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Mapping of OpenAtom Arrays

12

A. Bhatele, E. Bohm, and L. V. Kale. A Case Study of Communication Optimizations on 3D Mesh Interconnects. In
Euro-Par, LNCS 5704, pages 1015–1028, 2009. Distinguished Paper Award, Feng Chen Memorial Best Paper Award

!"#$%&
'$()*$+%,+$-.)

/&$+"#$%&

/0./

1&23(-4

5)-0.

6)$23#.3&

6)$23#.3&

/0./7$)-/0.!

/0.!7$)-

8

98

88

9

888 89

988

9888

Paircalculator and
GSpace have
plane-wise
communication

RealSpace and
GSpace have
state-wise
communication

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Mapping of OpenAtom Arrays

12

A. Bhatele, E. Bohm, and L. V. Kale. A Case Study of Communication Optimizations on 3D Mesh Interconnects. In
Euro-Par, LNCS 5704, pages 1015–1028, 2009. Distinguished Paper Award, Feng Chen Memorial Best Paper Award

!"#$%&
'$()*$+%,+$-.)

/&$+"#$%&

/0./

1&23(-4

5)-0.

6)$23#.3&

6)$23#.3&

/0./7$)-/0.!

/0.!7$)-

8

98

88

9

888 89

988

9888

!"#$%&'$()*$+%,+$-.)

/&$+"#$%&

"-$-&0

'+$1&0

"-$-&0

'+$1&0

'+$1&0

"-$-&0

"-$-&0

Paircalculator and
GSpace have
plane-wise
communication

RealSpace and
GSpace have
state-wise
communication

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Performance Benefits from Mapping

13

Performance on Blue Gene/L

0

0.075

0.15

0.225

0.3

512 1024 2048 4096 8192

T
im

e
pe

r
st

ep
 (

s)

Number of cores

Default Mapping
Topology Mapping

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Diagnosis of Improvement

14

Timeline view using the performance visualization tool, Projections

Timeline of 1 iteration of
OpenAtom running

WATER_256M_70Ry on
8192 cores of BG/L

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

OpenAtom Performance on Blue Gene/P

15

0

2.75

5.5

8.25

11

1024 2048 4096 8192

T
im

e
pe

r
st

ep
 (

s)

Number of cores

Default Mapping
Topology Mapping

Application Performance

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

OpenAtom Performance on Blue Gene/P

15

0

275

550

825

1100

1024 2048 4096 8192

Sy
st

em
 B

an
dw

id
th

 (
G

B/
st

ep
)

Number of cores

Default Mapping
Topology Mapping

0

2.75

5.5

8.25

11

1024 2048 4096 8192

T
im

e
pe

r
st

ep
 (

s)

Number of cores

Default Mapping
Topology Mapping

Application Performance Performance Counters

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

OpenAtom Performance on Blue Gene/P

15

0

275

550

825

1100

1024 2048 4096 8192

Sy
st

em
 B

an
dw

id
th

 (
G

B/
st

ep
)

Number of cores

Default Mapping
Topology Mapping

0

2.75

5.5

8.25

11

1024 2048 4096 8192

T
im

e
pe

r
st

ep
 (

s)

Number of cores

Default Mapping
Topology Mapping

Application Performance Performance Counters

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

OpenAtom Performance on Cray XT3

16

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

OpenAtom Performance on Cray XT3

• Cray XT3:

• Link bandwidth - 3.8 GB/s
(XT3), 0.425 (BG/P), 0.175
(BG/L)

• Bytes per flop - 8.77 (XT3),
0.375 (BG/P and BG/L)

16

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

OpenAtom Performance on Cray XT3

• Cray XT3:

• Link bandwidth - 3.8 GB/s
(XT3), 0.425 (BG/P), 0.175
(BG/L)

• Bytes per flop - 8.77 (XT3),
0.375 (BG/P and BG/L)

• Job schedulers on Cray
are not topology aware

16

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

OpenAtom Performance on Cray XT3

• Cray XT3:

• Link bandwidth - 3.8 GB/s
(XT3), 0.425 (BG/P), 0.175
(BG/L)

• Bytes per flop - 8.77 (XT3),
0.375 (BG/P and BG/L)

• Job schedulers on Cray
are not topology aware

• Performance Benefit at
2048 cores: 40% (XT3),
45% (BG/P), 41% (BG/L)

16

0

2

4

6

8

512 1024 2048

T
im

e
pe

r
st

ep
 (

s)

Number of cores

Default Mapping
Topology Mapping

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Case Study II: NAMD

17

are assigned statically to processors during program start-up. On the other hand,

computes, can be moved around to balance load across processors. If a patch com-

municates with more than one compute on a processor, a proxy is placed on this

processor for the patch. The proxy receives the message from the patch and then

forwards it to the computes internally (Figure 7.7). This avoids adding new com-

munication paths when new computes for the same patch are added on a processor.

Patch

Compute

Proxy

Figure 7.7: Placement of patches, computes and proxies on a 2D mesh of processors

The number of computes on a processor and their individual computational

loads determines its computational load and the number of proxies on a processor

indicates its communication load. Load balancing in NAMD is measurement-based.

This assumes that load patterns tend to persist over time and even if they change,

the change is gradual (referred to as the principle of persistence). The load balancing

framework records information about object (compute) loads for some time steps.

It also records the communication graph between the patches and proxies. This

information is collected on one processor and based on the instrumentation data,

a load balancing phase is executed. Decisions are then sent to all processors. The

current strategy is centralized and we shall later discuss future work to make it fully

60

a smaller brick within the 3D torus (shown in dark grey in the figure). The sum

of distances from any processor within this brick to the two patches is minimum.

Hence, if we find two processors with proxies for both patches, we give preference

to the processor which is within this inner brick defined by the patches.

Inner Brick

Outer Brick

Patch 1

Patch 2

Figure 7.9: Topological placement of a compute on a 3D torus/mesh of processors

Step II: Likewise, in this case too, we give preference to a processor with one proxy

or patch which is within the brick defined by the two patches that interact with the

compute.

Step III: If Step I and II fail, we are supposed to look for any underloaded processor

to place the compute on. Under the modified scheme of things, we first try to find

an underloaded processor within the brick and if there is no suitable processor, we

spiral around the brick to find the first underloaded one.

To implement these new topology aware schemes in the existing load balancers,

we build two preference tables (similar to Figure 7.8) instead of one. The first

preference table contains processors which are topologically close to the patches in

consideration (within the brick) and the second one contains the remaining proces-

66

A. Bhatele, L. V. Kale and S. Kumar, Dynamic Topology Aware Load Balancing Algorithms for Molecular
Dynamics Applications, In 23rd ACM International Conference on Supercomputing (ICS), 2009.

Communication between
patches and computes

Topology aware
placement of computes

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

• Evaluation Metric:
Hop-bytes

• Indicates amount of traffic
and hence contention on
the network

• Previously used metric:
maximum dilation

NAMD Performance on Blue Gene/P

18

0

375

750

1125

1500

512 1024 2048 4096

H
op

-b
yt

es
 (

M
B

pe
r

ite
ra

tio
n)

Number of cores

Topology Oblivious
TopoAware Patches
TopoAware Computes

Measured Hop-bytes

di = distance
bi = bytes
n = no. of messages

5 Hop-bytes as an Evaluation Metric

The volume of inter-processor communication can be characterized by the hop-bytes

metric which is the weighted sum of message sizes where the weights are the number

of hops (links) traveled by the respective messages. Hop-bytes can be calculated by

the equation,

HB =

n�

i=1

di × bi (5.1)

where di is the number of links traversed by message i and bi is the message size in

bytes for message i and the summation is over all messages sent.

Hop-bytes is an indication of the average communication load on each link on the

network. This assumes that the application generates nearly uniform traffic over all

links in the partition. The metric does not give an indication of hot-spots generated

on specific links on the network but is an easily derivable metric and correlates well

with actual application performance.

In VLSI circuit design and early parallel computing work, emphasis was placed

on another metric called maximum dilation which is defined as,

d(e) = max{di|ei ∈ E} (5.2)

where di is the dilation of the edge ei. This metric aims at minimizing the longest

length of the wire in a circuit. We claim that reducing the largest number of links

traveled by any message is not as critical as reducing the average hops across all

messages.

32

5 Hop-bytes as an Evaluation Metric

The volume of inter-processor communication can be characterized by the hop-bytes

metric which is the weighted sum of message sizes where the weights are the number

of hops (links) traveled by the respective messages. Hop-bytes can be calculated by

the equation,

HB =

n�

i=1

di × bi (5.1)

where di is the number of links traversed by message i and bi is the message size in

bytes for message i and the summation is over all messages sent.

Hop-bytes is an indication of the average communication load on each link on the

network. This assumes that the application generates nearly uniform traffic over all

links in the partition. The metric does not give an indication of hot-spots generated

on specific links on the network but is an easily derivable metric and correlates well

with actual application performance.

In VLSI circuit design and early parallel computing work, emphasis was placed

on another metric called maximum dilation which is defined as,

d(e) = max{di|ei ∈ E} (5.2)

where di is the dilation of the edge ei. This metric aims at minimizing the longest

length of the wire in a circuit. We claim that reducing the largest number of links

traveled by any message is not as critical as reducing the average hops across all

messages.

32

are assigned statically to processors during program start-up. On the other hand,

computes, can be moved around to balance load across processors. If a patch com-

municates with more than one compute on a processor, a proxy is placed on this

processor for the patch. The proxy receives the message from the patch and then

forwards it to the computes internally (Figure 7.7). This avoids adding new com-

munication paths when new computes for the same patch are added on a processor.

Patch

Compute

Proxy

Figure 7.7: Placement of patches, computes and proxies on a 2D mesh of processors

The number of computes on a processor and their individual computational

loads determines its computational load and the number of proxies on a processor

indicates its communication load. Load balancing in NAMD is measurement-based.

This assumes that load patterns tend to persist over time and even if they change,

the change is gradual (referred to as the principle of persistence). The load balancing

framework records information about object (compute) loads for some time steps.

It also records the communication graph between the patches and proxies. This

information is collected on one processor and based on the instrumentation data,

a load balancing phase is executed. Decisions are then sent to all processors. The

current strategy is centralized and we shall later discuss future work to make it fully

60

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

NAMD Performance on Blue Gene/P

18

0

375

750

1125

1500

512 1024 2048 4096

H
op

-b
yt

es
 (

M
B

pe
r

ite
ra

tio
n)

Number of cores

Topology Oblivious
TopoAware Patches
TopoAware Computes

Measured Hop-bytes
are assigned statically to processors during program start-up. On the other hand,

computes, can be moved around to balance load across processors. If a patch com-

municates with more than one compute on a processor, a proxy is placed on this

processor for the patch. The proxy receives the message from the patch and then

forwards it to the computes internally (Figure 7.7). This avoids adding new com-

munication paths when new computes for the same patch are added on a processor.

Patch

Compute

Proxy

Figure 7.7: Placement of patches, computes and proxies on a 2D mesh of processors

The number of computes on a processor and their individual computational

loads determines its computational load and the number of proxies on a processor

indicates its communication load. Load balancing in NAMD is measurement-based.

This assumes that load patterns tend to persist over time and even if they change,

the change is gradual (referred to as the principle of persistence). The load balancing

framework records information about object (compute) loads for some time steps.

It also records the communication graph between the patches and proxies. This

information is collected on one processor and based on the instrumentation data,

a load balancing phase is executed. Decisions are then sent to all processors. The

current strategy is centralized and we shall later discuss future work to make it fully

60

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

NAMD Performance on Blue Gene/P

18

0

375

750

1125

1500

512 1024 2048 4096

H
op

-b
yt

es
 (

M
B

pe
r

ite
ra

tio
n)

Number of cores

Topology Oblivious
TopoAware Patches
TopoAware Computes

0

3.75

7.5

11.25

15

512 1024 2048 4096 8192 16384

T
im

e
pe

r
st

ep
 (

m
s)

Number of cores

Topology Oblivious
TopoAware Patches
TopoAware Computes

Measured Hop-bytes Application Performance
are assigned statically to processors during program start-up. On the other hand,

computes, can be moved around to balance load across processors. If a patch com-

municates with more than one compute on a processor, a proxy is placed on this

processor for the patch. The proxy receives the message from the patch and then

forwards it to the computes internally (Figure 7.7). This avoids adding new com-

munication paths when new computes for the same patch are added on a processor.

Patch

Compute

Proxy

Figure 7.7: Placement of patches, computes and proxies on a 2D mesh of processors

The number of computes on a processor and their individual computational

loads determines its computational load and the number of proxies on a processor

indicates its communication load. Load balancing in NAMD is measurement-based.

This assumes that load patterns tend to persist over time and even if they change,

the change is gradual (referred to as the principle of persistence). The load balancing

framework records information about object (compute) loads for some time steps.

It also records the communication graph between the patches and proxies. This

information is collected on one processor and based on the instrumentation data,

a load balancing phase is executed. Decisions are then sent to all processors. The

current strategy is centralized and we shall later discuss future work to make it fully

60

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

NAMD Performance on Blue Gene/P

18

0

375

750

1125

1500

512 1024 2048 4096

H
op

-b
yt

es
 (

M
B

pe
r

ite
ra

tio
n)

Number of cores

Topology Oblivious
TopoAware Patches
TopoAware Computes

0

3.75

7.5

11.25

15

512 1024 2048 4096 8192 16384

T
im

e
pe

r
st

ep
 (

m
s)

Number of cores

Topology Oblivious
TopoAware Patches
TopoAware Computes

Measured Hop-bytes Application Performance

6% 13% 28%

are assigned statically to processors during program start-up. On the other hand,

computes, can be moved around to balance load across processors. If a patch com-

municates with more than one compute on a processor, a proxy is placed on this

processor for the patch. The proxy receives the message from the patch and then

forwards it to the computes internally (Figure 7.7). This avoids adding new com-

munication paths when new computes for the same patch are added on a processor.

Patch

Compute

Proxy

Figure 7.7: Placement of patches, computes and proxies on a 2D mesh of processors

The number of computes on a processor and their individual computational

loads determines its computational load and the number of proxies on a processor

indicates its communication load. Load balancing in NAMD is measurement-based.

This assumes that load patterns tend to persist over time and even if they change,

the change is gradual (referred to as the principle of persistence). The load balancing

framework records information about object (compute) loads for some time steps.

It also records the communication graph between the patches and proxies. This

information is collected on one processor and based on the instrumentation data,

a load balancing phase is executed. Decisions are then sent to all processors. The

current strategy is centralized and we shall later discuss future work to make it fully

60

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Outline

• Case studies:

• OpenAtom

• NAMD

• Automatic Mapping Framework

• Pattern matching

• Heuristics for Regular Graphs

• Heuristics for Irregular Graphs

19

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Automatic Mapping Framework

20

Pattern Matching
Framework

Regular Graphs Irregular Graphs

2D Object Graph 3D Object Graph

Choose best
heuristic depending

on hop-bytes

Output: Mapping file
used for the next run

W/o coordinate
information

W/ coordinate
information

MXOVLP, MXOV_AL,
EXC, COCE, AFFN

EXC, COCE, AFFN

Processor topology
information

Application
communication graph

BFT, MHT,
Infer structure

AFFN, COCE,
COCE+MHT

Figure 8.1: Schematic of the automatic mapping framework

identifying regular patterns in communication graphs.

8.1 Communication Graph: Identifying Patterns

Automatic topology aware mapping, as we shall see in the next few sections, uses

heuristics for fast scalable runtime solutions. Heuristics can yield more efficient so-

lutions if we can derive concrete information about the communication graph of the

application and exploit it. For this, we need to look for identifiable communication

patterns, if any, in the object graph. Many parallel applications have relatively

simple and easily identifiable 2D, 3D or 4D communication patterns. If we can

identify such patterns, then we can apply better suited heuristic techniques for such

73

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Automatic Mapping Framework

20

Pattern Matching
Framework

Regular Graphs Irregular Graphs

2D Object Graph 3D Object Graph

Choose best
heuristic depending

on hop-bytes

Output: Mapping file
used for the next run

W/o coordinate
information

W/ coordinate
information

MXOVLP, MXOV_AL,
EXC, COCE, AFFN

EXC, COCE, AFFN

Processor topology
information

Application
communication graph

BFT, MHT,
Infer structure

AFFN, COCE,
COCE+MHT

Figure 8.1: Schematic of the automatic mapping framework

identifying regular patterns in communication graphs.

8.1 Communication Graph: Identifying Patterns

Automatic topology aware mapping, as we shall see in the next few sections, uses

heuristics for fast scalable runtime solutions. Heuristics can yield more efficient so-

lutions if we can derive concrete information about the communication graph of the

application and exploit it. For this, we need to look for identifiable communication

patterns, if any, in the object graph. Many parallel applications have relatively

simple and easily identifiable 2D, 3D or 4D communication patterns. If we can

identify such patterns, then we can apply better suited heuristic techniques for such

73

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Automatic Mapping Framework

20

Pattern Matching
Framework

Regular Graphs Irregular Graphs

2D Object Graph 3D Object Graph

Choose best
heuristic depending

on hop-bytes

Output: Mapping file
used for the next run

W/o coordinate
information

W/ coordinate
information

MXOVLP, MXOV_AL,
EXC, COCE, AFFN

EXC, COCE, AFFN

Processor topology
information

Application
communication graph

BFT, MHT,
Infer structure

AFFN, COCE,
COCE+MHT

Figure 8.1: Schematic of the automatic mapping framework

identifying regular patterns in communication graphs.

8.1 Communication Graph: Identifying Patterns

Automatic topology aware mapping, as we shall see in the next few sections, uses

heuristics for fast scalable runtime solutions. Heuristics can yield more efficient so-

lutions if we can derive concrete information about the communication graph of the

application and exploit it. For this, we need to look for identifiable communication

patterns, if any, in the object graph. Many parallel applications have relatively

simple and easily identifiable 2D, 3D or 4D communication patterns. If we can

identify such patterns, then we can apply better suited heuristic techniques for such

73

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Automatic Mapping Framework

20

Pattern Matching
Framework

Regular Graphs Irregular Graphs

2D Object Graph 3D Object Graph

Choose best
heuristic depending

on hop-bytes

Output: Mapping file
used for the next run

W/o coordinate
information

W/ coordinate
information

MXOVLP, MXOV_AL,
EXC, COCE, AFFN

EXC, COCE, AFFN

Processor topology
information

Application
communication graph

BFT, MHT,
Infer structure

AFFN, COCE,
COCE+MHT

Figure 8.1: Schematic of the automatic mapping framework

identifying regular patterns in communication graphs.

8.1 Communication Graph: Identifying Patterns

Automatic topology aware mapping, as we shall see in the next few sections, uses

heuristics for fast scalable runtime solutions. Heuristics can yield more efficient so-

lutions if we can derive concrete information about the communication graph of the

application and exploit it. For this, we need to look for identifiable communication

patterns, if any, in the object graph. Many parallel applications have relatively

simple and easily identifiable 2D, 3D or 4D communication patterns. If we can

identify such patterns, then we can apply better suited heuristic techniques for such

73

Relieve the application
developer of the
mapping burden

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Automatic Mapping Framework

20

Pattern Matching
Framework

Regular Graphs Irregular Graphs

2D Object Graph 3D Object Graph

Choose best
heuristic depending

on hop-bytes

Output: Mapping file
used for the next run

W/o coordinate
information

W/ coordinate
information

MXOVLP, MXOV_AL,
EXC, COCE, AFFN

EXC, COCE, AFFN

Processor topology
information

Application
communication graph

BFT, MHT,
Infer structure

AFFN, COCE,
COCE+MHT

Figure 8.1: Schematic of the automatic mapping framework

identifying regular patterns in communication graphs.

8.1 Communication Graph: Identifying Patterns

Automatic topology aware mapping, as we shall see in the next few sections, uses

heuristics for fast scalable runtime solutions. Heuristics can yield more efficient so-

lutions if we can derive concrete information about the communication graph of the

application and exploit it. For this, we need to look for identifiable communication

patterns, if any, in the object graph. Many parallel applications have relatively

simple and easily identifiable 2D, 3D or 4D communication patterns. If we can

identify such patterns, then we can apply better suited heuristic techniques for such

73

Relieve the application
developer of the
mapping burden No change to the

application code

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Topology Discovery

• Topology Manager API: for 3D interconnects (Blue
Gene, XT)

• Information required for mapping:

• Physical dimensions of the allocated job partition

• Mapping of ranks to physical coordinates and vice versa

• On Blue Gene machines such information is available
and the API is a wrapper

• On Cray XT machines, jump several hoops to get this
information and make it available through the same API

21

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Application communication graph

• Several ways to obtain the graph

• MPI applications:

• Profiling tools (IBM’s HPCT tools)

• Collect information using the PMPI interface

• Manually provided by the application end user

• Charm++ applications:

• Instrumentation at runtime

• Profiling tools (HPCT): when n = p

22

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Pattern Matching

• We want to identify regular 2D/3D communication patterns

23

Algorithm 8.1 Pseudo-code for identifying regular communication graphs

Input: CMn,n (communication matrix)
Output: isRegular (boolean, true if communication is regular)

dims[] (dimensions of the regular communication graph)
for i = 1 to n do

find the maximum number of neighbors for any rank in CMi,n

end for

if max neighbors ≤ 5 then

// this might be a case of regular 2D communication
select an arbitrary rank startpe find its distance from its neighbors
dist = difference between ranks of startpe and its top or bottom neighbor
for i := 1 to n do

if distance of all ranks from their neighbors == 1 or dist then

isRegular = true
dim[0] = dist
dim[1] = n/dist

end if

end for

end if

computation, but the algorithm can be enhanced so that it can identify other reg-

ular patterns such as communication with all 8 neighbors around a rank in 2D.

The algorithms for identifying 3D and 4D near-neighbor patterns are similar. Once

the information about communicating neighbors has been extracted and identified,

mapping algorithms can use it to map communicating neighbors on nearby physical

processors.

The pattern matching algorithms were tested with three different applications

which are known to have regular communication: MILC, POP and WRF. The

communication patterns and the size of each dimension were correctly identified as

shown in Table 8.1.

Application No. of cores Dimensionality Size of dimensions

MILC 256 4-dimensional 4× 4× 4× 4

POP 256 2-dimensional 8× 32

POP 512 2-dimensional 32× 16

WRF 256 2-dimensional 16× 16

WRF 512 2-dimensional 32× 32

Table 8.1: Pattern identification of communication in MILC, POP and WRF

75

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Pattern Matching

• We want to identify regular 2D/3D communication patterns

23

Algorithm 8.1 Pseudo-code for identifying regular communication graphs

Input: CMn,n (communication matrix)
Output: isRegular (boolean, true if communication is regular)

dims[] (dimensions of the regular communication graph)
for i = 1 to n do

find the maximum number of neighbors for any rank in CMi,n

end for

if max neighbors ≤ 5 then

// this might be a case of regular 2D communication
select an arbitrary rank startpe find its distance from its neighbors
dist = difference between ranks of startpe and its top or bottom neighbor
for i := 1 to n do

if distance of all ranks from their neighbors == 1 or dist then

isRegular = true
dim[0] = dist
dim[1] = n/dist

end if

end for

end if

computation, but the algorithm can be enhanced so that it can identify other reg-

ular patterns such as communication with all 8 neighbors around a rank in 2D.

The algorithms for identifying 3D and 4D near-neighbor patterns are similar. Once

the information about communicating neighbors has been extracted and identified,

mapping algorithms can use it to map communicating neighbors on nearby physical

processors.

The pattern matching algorithms were tested with three different applications

which are known to have regular communication: MILC, POP and WRF. The

communication patterns and the size of each dimension were correctly identified as

shown in Table 8.1.

Application No. of cores Dimensionality Size of dimensions

MILC 256 4-dimensional 4× 4× 4× 4

POP 256 2-dimensional 8× 32

POP 512 2-dimensional 32× 16

WRF 256 2-dimensional 16× 16

WRF 512 2-dimensional 32× 32

Table 8.1: Pattern identification of communication in MILC, POP and WRF

75

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Pattern Matching

• We want to identify regular 2D/3D communication patterns

23

Algorithm 8.1 Pseudo-code for identifying regular communication graphs

Input: CMn,n (communication matrix)
Output: isRegular (boolean, true if communication is regular)

dims[] (dimensions of the regular communication graph)
for i = 1 to n do

find the maximum number of neighbors for any rank in CMi,n

end for

if max neighbors ≤ 5 then

// this might be a case of regular 2D communication
select an arbitrary rank startpe find its distance from its neighbors
dist = difference between ranks of startpe and its top or bottom neighbor
for i := 1 to n do

if distance of all ranks from their neighbors == 1 or dist then

isRegular = true
dim[0] = dist
dim[1] = n/dist

end if

end for

end if

computation, but the algorithm can be enhanced so that it can identify other reg-

ular patterns such as communication with all 8 neighbors around a rank in 2D.

The algorithms for identifying 3D and 4D near-neighbor patterns are similar. Once

the information about communicating neighbors has been extracted and identified,

mapping algorithms can use it to map communicating neighbors on nearby physical

processors.

The pattern matching algorithms were tested with three different applications

which are known to have regular communication: MILC, POP and WRF. The

communication patterns and the size of each dimension were correctly identified as

shown in Table 8.1.

Application No. of cores Dimensionality Size of dimensions

MILC 256 4-dimensional 4× 4× 4× 4

POP 256 2-dimensional 8× 32

POP 512 2-dimensional 32× 16

WRF 256 2-dimensional 16× 16

WRF 512 2-dimensional 32× 32

Table 8.1: Pattern identification of communication in MILC, POP and WRF

75

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Example

• WRF running on 32 cores of Blue Gene/P

Pr
oc

es
so

rs

0

31

24

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Example

• WRF running on 32 cores of Blue Gene/P

Pattern matching to identify
regular communication
patterns such as 2D/3D
near-neighbor graphs

Pr
oc

es
so

rs

0

31

24

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Example

• WRF running on 32 cores of Blue Gene/P

Pattern matching to identify
regular communication
patterns such as 2D/3D
near-neighbor graphs

Pr
oc

es
so

rs

0

31

24

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Communication Graphs

• Regular communication:

• POP (Parallel Ocean Program): 2D Stencil like computation

• WRF (Weather Research and Forecasting model): 2D Stencil

• MILC (MIMD Lattice Computation): 4D near-neighbor

• Irregular communication:

• Unstructured mesh computations: FLASH, CPSD code

• Many other classes of applications

25

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Outline

• Case studies:

• OpenAtom

• NAMD

• Automatic Mapping Framework

• Pattern matching

• Heuristics for Regular Graphs

• Heuristics for Irregular Graphs

26

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

• Maximum Overlap (MXOVLP)

Mapping Regular Graphs (2D)

Object Graph: 9 x 8
Processor Graph: 12 x 6

27

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

• Maximum Overlap (MXOVLP)

Mapping Regular Graphs (2D)

Object Graph: 9 x 8
Processor Graph: 12 x 6

27

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

• Maximum Overlap (MXOVLP)

Mapping Regular Graphs (2D)

Object Graph: 9 x 8
Processor Graph: 12 x 6

27

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

• Maximum Overlap (MXOVLP)

Mapping Regular Graphs (2D)

Object Graph: 9 x 8
Processor Graph: 12 x 6

27

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

• Maximum Overlap (MXOVLP)

Mapping Regular Graphs (2D)

Object Graph: 9 x 8
Processor Graph: 12 x 6

27

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

• Maximum Overlap (MXOVLP)

Mapping Regular Graphs (2D)

Object Graph: 9 x 8
Processor Graph: 12 x 6

27

• Maximum Overlap with Alignment (MXOV+AL)

• Alignment at each recursive call

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

• Maximum Overlap (MXOVLP)

Mapping Regular Graphs (2D)

Object Graph: 9 x 8
Processor Graph: 12 x 6

27

• Maximum Overlap with Alignment (MXOV+AL)

• Alignment at each recursive call

• Expand from Corner (EXCO)

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

• Maximum Overlap (MXOVLP)

Mapping Regular Graphs (2D)

Object Graph: 9 x 8
Processor Graph: 12 x 6

27

• Maximum Overlap with Alignment (MXOV+AL)

• Alignment at each recursive call

• Expand from Corner (EXCO)

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

• Maximum Overlap (MXOVLP)

Mapping Regular Graphs (2D)

Object Graph: 9 x 8
Processor Graph: 12 x 6

27

• Maximum Overlap with Alignment (MXOV+AL)

• Alignment at each recursive call

• Expand from Corner (EXCO)

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

• Maximum Overlap (MXOVLP)

Mapping Regular Graphs (2D)

Object Graph: 9 x 8
Processor Graph: 12 x 6

27

• Maximum Overlap with Alignment (MXOV+AL)

• Alignment at each recursive call

• Expand from Corner (EXCO)

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

More heuristics ...

• Corners to Center (COCE)

• Start simultaneously from all
corners

28

Abhinav Bhatele, Gagan Gupta, Laxmikant V. Kale and I-Hsin Chung, "Automated Mapping of Regular Communication
Graphs on Mesh Interconnects", Proceedings of International Conference on High Performance Computing (HiPC), 2010.

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

More heuristics ...

• Corners to Center (COCE)

• Start simultaneously from all
corners

28

Abhinav Bhatele, Gagan Gupta, Laxmikant V. Kale and I-Hsin Chung, "Automated Mapping of Regular Communication
Graphs on Mesh Interconnects", Proceedings of International Conference on High Performance Computing (HiPC), 2010.

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

More heuristics ...

• Corners to Center (COCE)

• Start simultaneously from all
corners

28

Abhinav Bhatele, Gagan Gupta, Laxmikant V. Kale and I-Hsin Chung, "Automated Mapping of Regular Communication
Graphs on Mesh Interconnects", Proceedings of International Conference on High Performance Computing (HiPC), 2010.

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

More heuristics ...

• Corners to Center (COCE)

• Start simultaneously from all
corners

28

Abhinav Bhatele, Gagan Gupta, Laxmikant V. Kale and I-Hsin Chung, "Automated Mapping of Regular Communication
Graphs on Mesh Interconnects", Proceedings of International Conference on High Performance Computing (HiPC), 2010.

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

More heuristics ...

• Corners to Center (COCE)

• Start simultaneously from all
corners

28

• Affine Mapping (AFFN)

Abhinav Bhatele, Gagan Gupta, Laxmikant V. Kale and I-Hsin Chung, "Automated Mapping of Regular Communication
Graphs on Mesh Interconnects", Proceedings of International Conference on High Performance Computing (HiPC), 2010.

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

More heuristics ...

• Corners to Center (COCE)

• Start simultaneously from all
corners

28

• Affine Mapping (AFFN)

Abhinav Bhatele, Gagan Gupta, Laxmikant V. Kale and I-Hsin Chung, "Automated Mapping of Regular Communication
Graphs on Mesh Interconnects", Proceedings of International Conference on High Performance Computing (HiPC), 2010.

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

More heuristics ...

• Corners to Center (COCE)

• Start simultaneously from all
corners

28

• Affine Mapping (AFFN)

the basic technique in a simpler context.

2. The second scenario is where we have a two-dimensional array of objects where

each object communicates with two immediate neighbors in its row and col-

umn. We wish to map this group of objects on to a 2D mesh of processors.

12.1 Mapping of a 1D Ring

Problem: Load balancing a 1D array of v objects which communicate in a ring

pattern to a 1D linear array of p processors.

Solution: We want to map these objects on to processors while considering the

load of each object and the communication patterns among the objects. In order to

optimize communication, we want to place objects next to each other on the same

processor as much as possible and cross processor boundaries only for ensuring load

balance. We assume that the IDs of objects denote the nearness in terms of who

communicates with whom. Hence the problem reduces to finding contiguous groups

of objects in the 1D array such that the load on all processors is nearly the same.

We arrange the objects virtually by their IDs and perform a prefix sum in parallel

between them based on the object loads. At the conclusion of a prefix sum, every

object knows the sum of loads of all objects that appear before it (Figure 12.1).

Then the last object broadcasts the sum of loads of all objects so that every object

knows the global load of the system. Each object i, can calculate its destination

processor (di), based on the total load of all objects (Lv), prefix sum of loads up to

it (Li), its load (li) and the total number of processors (p), by this equation,

di = �p ∗ Li − li/2

Lv
� (12.1)

(x, y) → (�Px ∗
x

Ox
�, �Py ∗

y

Oy
�) (12.2)

118
Abhinav Bhatele, Gagan Gupta, Laxmikant V. Kale and I-Hsin Chung, "Automated Mapping of Regular Communication
Graphs on Mesh Interconnects", Proceedings of International Conference on High Performance Computing (HiPC), 2010.

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

More heuristics ...

• Corners to Center (COCE)

• Start simultaneously from all
corners

28

• Affine Mapping (AFFN)

the basic technique in a simpler context.

2. The second scenario is where we have a two-dimensional array of objects where

each object communicates with two immediate neighbors in its row and col-

umn. We wish to map this group of objects on to a 2D mesh of processors.

12.1 Mapping of a 1D Ring

Problem: Load balancing a 1D array of v objects which communicate in a ring

pattern to a 1D linear array of p processors.

Solution: We want to map these objects on to processors while considering the

load of each object and the communication patterns among the objects. In order to

optimize communication, we want to place objects next to each other on the same

processor as much as possible and cross processor boundaries only for ensuring load

balance. We assume that the IDs of objects denote the nearness in terms of who

communicates with whom. Hence the problem reduces to finding contiguous groups

of objects in the 1D array such that the load on all processors is nearly the same.

We arrange the objects virtually by their IDs and perform a prefix sum in parallel

between them based on the object loads. At the conclusion of a prefix sum, every

object knows the sum of loads of all objects that appear before it (Figure 12.1).

Then the last object broadcasts the sum of loads of all objects so that every object

knows the global load of the system. Each object i, can calculate its destination

processor (di), based on the total load of all objects (Lv), prefix sum of loads up to

it (Li), its load (li) and the total number of processors (p), by this equation,

di = �p ∗ Li − li/2

Lv
� (12.1)

(x, y) → (�Px ∗
x

Ox
�, �Py ∗

y

Oy
�) (12.2)

118
Abhinav Bhatele, Gagan Gupta, Laxmikant V. Kale and I-Hsin Chung, "Automated Mapping of Regular Communication
Graphs on Mesh Interconnects", Proceedings of International Conference on High Performance Computing (HiPC), 2010.

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

More heuristics ...

• Corners to Center (COCE)

• Start simultaneously from all
corners

28

• Affine Mapping (AFFN)

the basic technique in a simpler context.

2. The second scenario is where we have a two-dimensional array of objects where

each object communicates with two immediate neighbors in its row and col-

umn. We wish to map this group of objects on to a 2D mesh of processors.

12.1 Mapping of a 1D Ring

Problem: Load balancing a 1D array of v objects which communicate in a ring

pattern to a 1D linear array of p processors.

Solution: We want to map these objects on to processors while considering the

load of each object and the communication patterns among the objects. In order to

optimize communication, we want to place objects next to each other on the same

processor as much as possible and cross processor boundaries only for ensuring load

balance. We assume that the IDs of objects denote the nearness in terms of who

communicates with whom. Hence the problem reduces to finding contiguous groups

of objects in the 1D array such that the load on all processors is nearly the same.

We arrange the objects virtually by their IDs and perform a prefix sum in parallel

between them based on the object loads. At the conclusion of a prefix sum, every

object knows the sum of loads of all objects that appear before it (Figure 12.1).

Then the last object broadcasts the sum of loads of all objects so that every object

knows the global load of the system. Each object i, can calculate its destination

processor (di), based on the total load of all objects (Lv), prefix sum of loads up to

it (Li), its load (li) and the total number of processors (p), by this equation,

di = �p ∗ Li − li/2

Lv
� (12.1)

(x, y) → (�Px ∗
x

Ox
�, �Py ∗

y

Oy
�) (12.2)

118
Abhinav Bhatele, Gagan Gupta, Laxmikant V. Kale and I-Hsin Chung, "Automated Mapping of Regular Communication
Graphs on Mesh Interconnects", Proceedings of International Conference on High Performance Computing (HiPC), 2010.

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Running Time

• Pairwise Exchanges (PAIRS)
- Bokhari, Lee et al.

29

1.34

1.36

1.39

1.41

1.43

3.40161 72.9302 139.801 206.445 273.304 340.145

H
op

s
pe

r
by

te

Time (s)

Hops for 4k nodes

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Running Time

• Pairwise Exchanges (PAIRS)
- Bokhari, Lee et al.

29

0.01

0.1

1

10

100

1k 4k 16k 64k

T
im

e
(m

s)

Number of nodes

AFFN
COCE
MXOVLP
MXOV+AL
EXCO

1.34

1.36

1.39

1.41

1.43

3.40161 72.9302 139.801 206.445 273.304 340.145

H
op

s
pe

r
by

te

Time (s)

Hops for 4k nodes

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Example Mapping

Object Graph: 9 x 8
Processor Graph: 12 x 6

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

30

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Example Mapping

Object Graph: 9 x 8
Processor Graph: 12 x 6

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

30

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Example Mapping

Object Graph: 9 x 8
Processor Graph: 12 x 6

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

30

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Example Mapping

Object Graph: 9 x 8
Processor Graph: 12 x 6

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

30

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Example Mapping

Object Graph: 9 x 8
Processor Graph: 12 x 6

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

30

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Example Mapping

Object Graph: 9 x 8
Processor Graph: 12 x 6

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

30

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Example Mapping

Object Graph: 9 x 8
Processor Graph: 12 x 6

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

30

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Example Mapping

Object Graph: 9 x 8
Processor Graph: 12 x 6

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

30

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Mapping of 9x8 graph to 12x6 mesh

31

MXOVLP: 1.66 MXOV+AL: 1.65 EXCO: 2.31 COCE: 1.91

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele 32

MXOVLP: 1.66 MXOV+AL: 1.65 EXCO: 2.31 COCE: 1.91

Mapping of 9x8 graph to 12x6 mesh

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele 33

Mapping of 9x8 graph to 12x6 mesh

STEP: 1.39 AFFN1: 1.77 AFFN2: 1.53 AFFN3: 1.91

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele 34

Mapping of 9x8 graph to 12x6 mesh

STEP: 1.39 AFFN1: 1.77 AFFN2: 1.53 AFFN3: 1.91

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Evaluation

35

1

10

100

27x44 to 36x33 100x40 to 125x32 128x128 to 512x32 320x200 to 125x512

H
op

s
pe

r
by

te

MXOVLP
MXOV+AL
EXCO
COCE
AFFN
PAIRS

~1k nodes ~4k nodes ~16k nodes ~64k nodes

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Mapping 2D Graphs to 3D

• Map a two-dimensional
object graph to a three-
dimensional processor graph

• Divide object graph into
subgraphs once each for the
number of planes

• Stacking

• Folding

• Best 2D to 2D heuristic
chosen based on hop-bytes

36

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Results: 2D Stencil on Blue Gene/P

37

0

5

10

15

20

512 1024 2048 4096 819216384

H
op

s
pe

r
by

te

Number of cores

Default Mapping
Topology Mapping

Hop-bytes

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Results: 2D Stencil on Blue Gene/P

37

400

417.5

435

452.5

470

512 1024 2048 4096 8192 16384

T
im

e
pe

r
st

ep
 (

m
s)

Number of cores

Default Mapping
Topology Mapping

0

5

10

15

20

512 1024 2048 4096 819216384

H
op

s
pe

r
by

te

Number of cores

Default Mapping
Topology Mapping

Hop-bytes Performance

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Increasing communication

• With faster processors
and constant link
bandwidths

• computation is becoming
cheap

• communication is a
bottleneck

• Trend for bytes per flop

• XT3: 8.77

• XT4: 1.357

• XT5: 0.23

38

0.1

1

10

100

512 B 2 KB 8 KB 32 KB 128 KB

T
im

e
pe

r
st

ep
 (

s)

Message size

Default Mapping
Topology Mapping

2D Stencil on BG/P

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Results: WRF on Blue Gene/P

0

1

2

3

4

256 512 1024 2048 4096

A
ve

ra
ge

 h
op

s
pe

r
by

te

Number of nodes

Default
Topology

39

Lower Bound

Hops from IBM HPCT

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Results: WRF on Blue Gene/P

• Performance
improvement
negligible on 256 and
512 cores

0

1

2

3

4

256 512 1024 2048 4096

A
ve

ra
ge

 h
op

s
pe

r
by

te

Number of nodes

Default
Topology

39

Lower Bound

Hops from IBM HPCT

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Results: WRF on Blue Gene/P

• Performance
improvement
negligible on 256 and
512 cores

• On 1024 nodes:

• Hops reduce by: 63%

• Time for communication
reduces by 11%

• Performance improves
by 17%

0

1

2

3

4

256 512 1024 2048 4096

A
ve

ra
ge

 h
op

s
pe

r
by

te

Number of nodes

Default
Topology

39

Lower Bound

Hops from IBM HPCT

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Results: WRF on Blue Gene/P

• Performance
improvement
negligible on 256 and
512 cores

• On 1024 nodes:

• Hops reduce by: 63%

• Time for communication
reduces by 11%

• Performance improves
by 17%

0

1

2

3

4

256 512 1024 2048 4096

A
ve

ra
ge

 h
op

s
pe

r
by

te

Number of nodes

Default
Topology

39

17%

Lower Bound

Hops from IBM HPCT

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Results: WRF on Blue Gene/P

• Performance
improvement
negligible on 256 and
512 cores

• On 1024 nodes:

• Hops reduce by: 63%

• Time for communication
reduces by 11%

• Performance improves
by 17%

0

1

2

3

4

256 512 1024 2048 4096

A
ve

ra
ge

 h
op

s
pe

r
by

te

Number of nodes

Default
Topology

39

17% 5%

Lower Bound

Hops from IBM HPCT

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Outline

• Case studies:

• OpenAtom

• NAMD

• Automatic Mapping Framework

• Pattern matching

• Heuristics for Regular Graphs

• Heuristics for Irregular Graphs

40

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Mapping Irregular Graphs

Object graph: 90 nodes Processor Mesh: 10 x 9

41

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Two different scenarios

• There is no spatial information associated with the node

• Option 1: Work without it

• Option 2: If we know that the simulation has a geometric
configuration, try to infer the structure of the graph

• We have geometric coordinate information for each
node

• Use coordinate information to avoid crossing of edges and for other
optimizations

42

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

No coordinate information

43

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

No coordinate information

• Breadth first traversal (BFT)

• Start with a random node and one end of the processor mesh

• Map nodes as you encounter them close to their parent

43

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

No coordinate information

• Breadth first traversal (BFT)

• Start with a random node and one end of the processor mesh

• Map nodes as you encounter them close to their parent

• Max heap traversal (MHT)

• Start with a random node and one end/center of the mesh

• Put neighbors of a mapped node into the heap (node at the top is the
one with maximum number of mapped neighbors)

• Map elements in the heap one by one around the centroid of their
mapped neighbors

43

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Mapping visualization

BFT: 2.89 MHT: 2.69

44

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Inferring the spatial placement

45

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Inferring the spatial placement

• Graph layout algorithms

• Force-based layout to reduce the
total energy in the system

• Use the graphviz library to
obtain coordinates of the
nodes

45

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Inferring the spatial placement

• Graph layout algorithms

• Force-based layout to reduce the
total energy in the system

• Use the graphviz library to
obtain coordinates of the
nodes

45

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

With coordinate information

• Affine Mapping (AFFN)

• Stretch/shrink the object graph (based on coordinates of nodes) to
map it on to the processor grid

• In case of conflicts for the same processor, spiral around that
processor

• Corners to Center (COCE)

• Use four corners of the object graph based on coordinates

• Start mapping simultaneously from all sides

• Place nodes encountered during a BFT close to their parents

46

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Mapping visualization

AFFN: 3.17 COCE: 2.88

47

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

• COCE+MHT Hybrid:

• We fix four nodes at geometric
corners of the mesh to four
processors in 2D

• Put neighbors of these nodes
into a max heap

• Map from all sides inwards

• Starting from centroid of
mapped neighbors

48

COCE: 2.78

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Time Complexity

49

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Time Complexity

• All algorithms discussed above choose a desired
processor and spiral around it to find the nearest
available processor

• Heuristics generally applicable to any topology

49

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Time Complexity

• All algorithms discussed above choose a desired
processor and spiral around it to find the nearest
available processor

• Heuristics generally applicable to any topology

• Depending on the running time of findNext:

49

BFT COCE AFFN MHT COCE+MHT

O(n) O(n) O(n) O(n logn) O(n logn)

O(n (logn)2) O(n (logn)2) O(n (logn)2) O(n (logn)2) O(n (logn)2)

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Running Time

50

0.1

1

10

100

1000

10000

256 1024 4096 16384

T
im

e
(m

s)

Number of nodes

COCE+MHT
COCE
BFT
AFFN
MHT

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Results: simple2D

51

0

3.75

7.5

11.25

15

256 1024 4096 16384

H
op

s
pe

r
by

te

Number of nodes in communication graph

Default
BFT
MHT
COCE
COCE+MHT
AFFN
PAIRS

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Summary

• Contention in modern day supercomputers can impact
performance: makes mapping important

• Certain classes of applications (latency sensitive,
communication bound) benefit most

• OpenAtom shows performance improvements of up to 50%

• NAMD - improvements for > 4k cores

• Developing an automatic mapping framework

• Relieve the application developer of the mapping burden

52

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Summary

• Topology discovery: Topology Manager API

• Object Communication Graph: Profiling, Instrumentation

• Pattern matching

• Regular graphs

• Irregular graphs

• Suite of heuristics for mapping

• Distributed strategies with global view

53

December 16th, 2010 CNIC @ CAS © Abhinav Bhatele

Future Work

• More sophisticated algorithms for pattern matching and
mapping

• Multicast and many-to-many patterns

• Handling multiple communication graphs

• Simultaneous or occurring in different phases

• Extension of the work on distributed load balancing

54

Thanks

Charm++ Tutorial
Computer Network Information Center,
Chinese Academy of Sciences

Abhinav Bhatele. Automating Topology Aware Mapping for Supercomputers, PhD Thesis,
Department of Computer Science, University of Illinois. http://hdl.handle.net/2142/16578

http://hdl.handle.net/2142/16578
http://hdl.handle.net/2142/16578

