Clustering Parallel Applications to Enhance Message Logging Protocols

Esteban Meneses

Monday, November 22, 2010

Jaguar is the top 2 supercomputer in the world with 224,162 cores... During 537 days (Aug-22-2008 to Feb-10-2010) 2.33 failures per day

Sequoia will have 1.6 million cores and an exascale machine around 100 million cores...

We will see failures all the time

Agenda

- + Clusters and Message Logging.
- * Static Clustering (MPI).
- Dynamic Clustering (Charm++).
- + Future Work.

Message Logging

Every message sent
may be logged.

 Advantage: only the failed rank is rolled back.

 Drawback: memory overhead.

Message Logging

Every message sent
may be logged.

 Advantage: only the failed rank is rolled back.

 Drawback: memory overhead.

Message Logging

Every message sent
may be logged.

 Advantage: only the failed rank is rolled back.

 Drawback: memory overhead.

- Goal: reduce memory overhead of message log.
- Only messages crossing team boundaries are logged.

- Goal: reduce memory overhead of message log.
- Only messages crossing team boundaries are logged.

- Goal: reduce memory overhead of message log.
- Only messages crossing team boundaries are logged.

- Goal: reduce memory overhead of message log.
- Only messages crossing team boundaries are logged.

- Goal: reduce memory overhead of message log.
- Only messages crossing team boundaries are logged.

- Goal: reduce memory overhead of message log.
- Only messages crossing team boundaries are logged.

- Goal: reduce memory overhead of message log.
- Only messages crossing team boundaries are logged.

- Goal: reduce memory overhead of message log.
- Only messages crossing team boundaries are logged.

- Goal: reduce memory overhead of message log.
- Only messages crossing team boundaries are logged.

Reduce Memory Overhead

Jacobi (Abe, p=256, n=1536, b=64)

Monday, November 22, 2010

Reduce Memory Overhead

Jacobi (Abe, p=256, n=1536, b=64)

Monday, November 22, 2010

How to split the ranks to minimize the communication volume?

Static Clustering

Amina Guermouche Thomas Ropars Prof. Franck Cappello (INRIA)

Monday, November 22, 2010

Communication Pattern

Communication Pattern (NPB CG.D.256)

4th Workshop INRIA-Illinois Joint Laboratory on Petascale Computing

Team Size

- Constraint: maximum team size (t).
- Graph partitioning techniques with k clusters: k=[N/t].
- + Example: t=20.

Metis

Team Size

- Constraint: maximum team size (t).
- Graph partitioning techniques with k clusters: k=[N/t].
- + Example: t=20.

Team Size

- Constraint: maximum team size (t).
- Graph partitioning techniques with k clusters: k=[N/t].
- + Example: t=20.

Team Size

Benchmarks

Communication Pattern (NPB BT.D.256) Communication Pattern (NPB MG.D.256) Number of Messages **Receiver Rank** Sender Rank Sender Rank

NPB-BT

NPB-MG

4th Workshop INRIA-Illinois Joint Laboratory on Petascale Computing

Monday, November 22, 2010

Receiver Rank

Graph Properties

Program	Average Path Length	Clustering Coefficient	Communication Volume (ratio)		
			Metis	Scotch	Random
NPB-CG (t=16)	4.49	0	0.07	0.07	0.93
NPB-MG (t=32)	3.82	0.09	0.27	-	0.87
NPB-BT (t=16)	6.24	0.40	0.35	0.33	0.93

Dynamic Clustering

Monday, November 22, 2010

Load Balancing in Charm++

- Migratable objects, asynchronous method invocation.
- Measurement-based load balancing: collects computation load and communication structure.

Load Balancing in Charm++

- Migratable objects, asynchronous method invocation.
- Measurement-based load balancing: collects computation load and communication structure.

Load Balancing in Charm++

- Migratable objects, asynchronous method invocation.
- Measurement-based load balancing: collects computation load and communication structure.

Team Load Balancer

- Divides (evenly) the objects into teams while minimizing communication volume.
- Team LB (*t*), *t* is the team size (number of PEs).
- Two stage process:
 - Divide objects into teams.
 - Load balance each team.

Reducing Execution Time

Reducing Message Log Size

Conclusions

- Graph partitioning techniques are a promising alternative to cluster parallel applications.
- Message logging protocols benefit from team partitioning:
 - * Reduce message log size.
 - Avoid cascading rollback.

Future Work

- Scalable tool to collect communication information in MPI (collectives, notion of time).
- Evaluate more applications to inspect their clustering properties.
- Integration of clustering algorithms into parallel frameworks.

Thank you!

LB Test

4th Workshop INRIA-Illinois Joint Laboratory on Petascale Computing

Load Balance (Metis LB)

Load Balance (Team LB)

