Doctoral Defense

Debugging Large Scale Applications with Virtualization

Filippo Gioachin

September 27, 2010

Committee

Laxmikant Kalé	Computer Science
William Gropp	Computer Science
Ralph Johnson	Computer Science
Luiz De Rose	Cray Inc. (external)

Outline

- Introduction
 - Motivations
- Debugging on Large Machines
 - Unsupervised Execution
- Virtualized Debugging
 - Separation of Entities
- Processor Extraction
- Provisional Message Delivery
- Conclusions

Outline

Introduction

- Motivations
- Debugging on Large Machines
 - Unsupervised Execution
- Virtualized Debugging
 - Separation of Entities
- Processor Extraction
- Provisional Message Delivery
- Conclusions

Motivations

- Debugging is a fundamental part of software development
- Parallel programs have all the sequential bugs:
 - Memory corruption
 - Incorrect results

. . . .

Motivations (2)

• Parallel programs have new types of bugs:

- Data races / multicore (heavily studied in literature)
- Communication mistakes
- Synchronization mistakes / Message races
- To complicate things further:
 - Non-determinism
 - Problems may show up only at large scale

Problems at Large Scale

Problems may not appear at small scale

- Races between messages
 - Latencies in the underlying hardware
- Incorrect messaging
- Data decomposition

Important to handle large scale applications

Challenges to Large Scale Debugging

Infeasible

- Debugger needs to handle many processors
- Human can be overwhelmed by information
- Machine not available
- Long waiting time in queue
- Expensive
 - Large machine allocations consume Provisional delivery a lot of computational resources

Techniques used in this thesis

- Tight RTS integration
- Unsupervised execution
- Virtualized debug
 - **Processor** extraction

Thesis Goals

 New techniques to help debugging large scale parallel programs

- Tight integration with runtime system
- Processor virtualization

 Applying these techniques to message driven parallel programs

Outline

- Introduction
 - Motivations

Debugging on Large Machines

- Unsupervised Execution
- Virtualized Debugging
 - Separation of Entities
- Processor Extraction
- Provisional Message Delivery
- Conclusions

Traditional Debugging

- TotalView, Allinea, Eclipse
 - The user manages all the processors directly
- STAT (Stack Trace Analysis Tool) using MRNET
- ATP (Abnormal Termination Processing)
- Relative debugging (requires working program)

External processes that supervise the application

- Information access
- Scalability challenge

Tight Integration with Runtime System

 We use the same communication infrastructure that the application uses to scale

 Scale debugger with the application

Scalability (1)

Scalability (2)

Scalability (3)

Autoinspection

 The programmer should not manually handle all the processors

- Unsupervised execution
- Notification to the user from interesting processors
 - User-defined

- Breakpoints
- Assertion failure

System-defined

- Abort / signals
- Memory corruption
- Discussed in the prelim (Thesis Chapter 3)

Outline

- Introduction
 - Motivations
- Debugging on Large Machines
 - Unsupervised Execution
- Virtualized Debugging
 - Separation of Entities
- Processor Extraction
- Provisional Message Delivery
- Conclusions

Virtualized Emulation

 Use emulation techniques to provide virtual processors to display to the user

- Use BigSim emulation tool
 - Cannot assume correctness of program
- Debugger needs to communicate with application
- Single address space

* F. Gioachin, G. Zheng, L.V. Kalé: "Debugging Large Scale Applications in a Virtualized Environment" to appear in the Proceedings of the 23rd International Workshop on Languages and Compilers for Parallel Computing (LCPC2010)

Communication under Emulated Environment

Resource Consumption: Jacobi (on NCSA's BluePrint)

User thinks for one minute about what to do:

Number of Physical Processors

Demo

Usage: Starting

🕌 Program Parameters	×
Executable:	/ChaNGa Change
Working dir:	nome/gioachin/cosmology/CVS_latest/ChaNGa1/changa/testcosmo
Command Line Parameters:	cube300.param
Number of Processors:	32
☑ Virtualized debugging:	Number of Virtal Processors: 2048
Port Number:	
SSH port number:	0
Host name:	localhost
Username:	
	Use ssh tunneling OK CANCEL
🛓 Program Parameters	×
Program Parameters Executable:	/ChaNGa Change
Executable:	/ChaNGa Change
Executable: Working dir:	/ChaNGa Change
Executable: Working dir: Command Line Parameters:	/ChaNGa Change iome/gioachin/cosmology/CVS_latest/ChaNGa1/changa/testcosmo Change cube300.param
Executable: Working dir: Command Line Parameters: Number of Processors:	/ChaNGa Change home/gioachin/cosmology/CVS_latest/ChaNGa1/changa/testcosmo Change cube300.param 0
Executable: Working dir: Command Line Parameters: Number of Processors: Virtualized debugging:	/ChaNGa Change home/gioachin/cosmology/CVS_latest/ChaNGa1/changa/testcosmo Change cube300.param 0 Number of Virtal Processors: 0
Executable: Working dir: Command Line Parameters: Number of Processors: Virtualized debugging: Port Number:	/ChaNGa Change home/gioachin/cosmology/CVS_latest/ChaNGa1/changa/testcosmo Change cube300.param Change 0 Number of Virtal Processors: 1234
Executable: Working dir: Command Line Parameters: Number of Processors: Virtualized debugging: Port Number: SSH port number:	/ChaNGa Change iome/gioachin/cosmology/CVS_latest/ChaNGa1/changa/testcosmo Change cube300.param 0 Number of Virtal Processors: 1234 0

Usage: Debugging

27 September 2010

Separation of Virtual Entities

Single address space shared by different entities

- Virtual processors for emulation
- Multiple chares in Charm++
- Multiple user-level threads

One entity can overwrite memory of another entity

- Dangling pointers (memory reallocated)
- Pointers passed between entities
- Spurious writes (e.g. buffer overflow)

Memory Corruption Detection

- Protect memory such that spurious writes can be detected
- Exploit the scheduler in message driven systems

Protection Mechanisms

Checksum: Cyclic Redundancy Check (CRC)

Compute CRC-32 for all the memory in the system.
 Recompute upon entry method return

Memory copy

Copy all the memory in a system in a separate area.
 Compare upon entry method return

• mprotect

 Allocate memory with mmap and mark read-only with mprotect. Receive signal upon corruption

Performance Aspect

Related Work

Memory protection

- Studied for concurrent threads (Data Races)
 - Intel Thread Checker
 - RecPlay
 - Not applicable with only one execution thread
- TotalView
 - User can mimic the protection manually

Outline

- Introduction
 - Motivations
- Debugging on Large Machines
 - Unsupervised Execution
- Virtualized Debugging
 - Separation of Entities
- Processor Extraction
- Provisional Message Delivery
- Conclusions

Do we need all the processors?

- The problem manifests itself on a single processor
- The cause can span multiple processors (causally related)
 - The subset is generally much smaller than the whole system
- Select the interesting processors and ignore the others

Extracting Processors: Challenges

Record all data processed by each processor

- Huge volume of data stored
- High interference with application (probe effect)
 - The bug may not appear
- Existing: RecPlay, TotalView
- Work on reduction in space requirements
 - Online analysis of necessary data
 - Processors grouping
 - Record only some processors?

Fighting non-determinism

Record all data processed by each processor

- Huge volume of data stored
- High interference with application (probe effect)
 - The bug may not appear
- Record only message ordering
 - Must re-execute using the whole machine
 - Based on piecewise deterministic assumption

Three-step Procedure for Processor Extraction

What if the piecewise deterministic assumption is not met?

Make sure to detect it, and notify the user

If all messages during replay are identical to those during record, we can assume the application is deterministic

• Methods to detect failure:

- Message size and destination
- Checksum of the whole message (XOR, CRC32)

ChaNGa (dwf1.2048 on NCSA's BluePrint)

Filippo Gioachin

Debugging Case Study

Message race during particle exchange

- Was fixed with tedious print statements
 - Printf often made the bug disappear
- ../charmrun +p16 ../ChaNGa cube300.param +record
 +recplay-crc
- ../charmrun +p16 ../ChaNGa cube300.param +replay +recplay-crc +record-detail 7

gdb ../ChaNGa
>> run cube300.param +replay-detail 7/16

Demo

Record-replay with CharmDebug

	📓 Charm Parallel Debugger 📃 🗆 🗙									
	<u>F</u> ile <u>A</u> ction <u>M</u> emory									
	Set Break Points	Control Buttons								
	G System Entries	<u>S</u> tart	Ste <u>p</u>	Contin <u>u</u> e	Freeze	Quit	Start G			
 ← ☐ Main ← ☐ Sorter ← ☐ DataManager / ☐ DataManager 		Program Output /expand/home/gioachin/cosmology/git/changa/testcosmo//c harmrun +p16 /expand/home/gioachin/cosmology/git/changa /testcosmo//ChaNGa.g cube300.param ++batch 4 +cpd pugDisplay 128.174.236.49:0.0 ++server +DebugSuspe replay +replay-detail 7/16 +recplay-crcccs: 2 Server IP = 128.174.236.49, Server port = 34640 \$ erse -memory mode: charmdebug mrun> started all node programs in 1.123 seconds. size 56 ing> Randomization of stack pointer is turned on in ker hread migration may not work! Run 'echo 0 > /proc/sys/ //**********************************								
OK CANCE	L	📑 ci	<pre>cCacheManage</pre>	er =						
	LBDatabase (3) NullLB (4) ckcallback_group (5) CkCheckpointMgr (6) BlockMap (7) CkLocMgr (8) CkArray (9) CkArray (10) CkArray (11) CkCacheManager (12) CkCacheManager (13) CkCacheManager (14) ComlibManager (15) CpdPythonGroup (16)		int numChunl int finishedCh CkCacheArra CkCacheArra int syncdChai int numLocMo CkGroupID* (CkGroupID* (CkGroupID* (nunks = 0 yCounter localCl yCounter localCl res = 0 gr = 1 _ckGroupID*) loc 0 (_ckGroupID) = = 8	hares = haresWB = cMgr = 0xc6flfa = cMgrWB = 0x0	8				
27 September 2010	Freeze 28990									

Outline

- Introduction
 - Motivations
- Debugging on Large Machines
 - Unsupervised Execution
- Virtualized Debugging
 - Separation of Entities
- Processor Extraction
- Provisional Message Delivery
- Conclusions

Provisional Message Delivery

- Instead of replaying the same message ordering, replay a different one
 - Can force the bug to appear on a smaller scale
 - Automatic or manual
- Manual: programmers may have an idea where the problem lies
 - A specific message may confirm or refute the idea
 - Need a way to test without restarting the application

Important for bugs that appear after long time

Testing Execution Paths

Save state of the running application

- Deliver the message
- Rollback to try another path (live)

Demo

Provisional Delivery: Example

27 September 2010

Outline

- Introduction
 - Motivations
- Debugging on Large Machines
 - Unsupervised Execution
- Virtualized Debugging
 - Separation of Entities
- Processor Extraction
- Provisional Message Delivery
- Conclusions

Thesis Contributions

- Techniques to handle thousands of processors efficiently
 - Unsupervised execution with notification upon event
- Reducing the resources required for debugging of large scale applications
 - Virtualized debugging
 - Processor extraction
 - Provisional message delivery

Techniques to debug message driven parallel applications

Future Extensions

- Shared memory compliance
- Race detector
 - Automated testing of message delivery to discover message races
- Replay in isolation of single virtual entities
 - Conditions of validity

Peer Reviewed Papers

- F. Gioachin, G. Zheng, L.V. Kale: "Robust Non-Intrusive Record-Replay with Processor Extraction"; in Proceedings of the 8th Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD 2010)
- F. Gioachin, G. Zheng, L.V. Kale: "Debugging Large Scale Applications in a Virtualized Environment"; to appear in Proceedings of the 23rd International Workshop on Languages and Compilers for Parallel Computing (LCPC2010)
- F. Gioachin, C.W. Lee, L.V. Kale: "Scalable Interaction with Parallel Applications"; in Proceedings of TeraGrid'09
- F. Gioachin, L.V. Kale: "Dynamic High-Level Scripting in Parallel Applications"; in Proceedings of the 23rd IEEE International Parallel and Distributed Processing Symposium (IPDPS 2009)
- F. Gioachin, L.V. Kale: "Memory Tagging in Charm++"; in Proceedings of the 6th Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD '08)
- C. Mei, G. Zheng, F. Gioachin, L.V. Kale: "Optimizing a Parallel Runtime System for Multicore Clusters: A Case Study"; in Proceedings of Teragrid'10
- P. Jetley, L. Wesolowski, F. Gioachin, L.V. Kale, T.R. Quinn: "Scaling Hierarchical N-Body Simulations on GPU Clusters"; to appear in Proceedings of the ACM/IEEE Supercomputing Conference 2010 (SC10)
- P. Jetley, F. Gioachin, C. Mendes, L.V. Kale, T.R. Quinn: "Massively Parallel Cosmological Simulations with ChaNGa"; in Proceedings of IEEE International Parallel and Distributed Processing Symposium 2008
- F. Gioachin, A. Sharma, S. Chakravorty, C. Mendes, L.V. Kale, T.R. Quinn: "Scalable Cosmological Simulations on Parallel Machines"; in Proceedings of the 7th International Meeting on High Performance Computing for Computational Science (VECPAR 2006). LNCS 4395, pp 476-489, 2007
- F. Gioachin, R. Shankesi, M.J. May, C.A. Gunter, W. Shin: "Emergency Alerts as RSS Feeds with Interdomain Authorization"; in IARIA International Conference on Internet Monitoring and Protection (ICIMP '07), 2007