
Doctoral Defense

Filippo Gioachin

September 27, 2010

Debugging Large Scale Applications
with Virtualization

27 September 2010 Filippo Gioachin 2

Committee

Laxmikant Kalé Computer Science

William Gropp Computer Science

Ralph Johnson Computer Science

Luiz De Rose Cray Inc. (external)

27 September 2010 Filippo Gioachin 3

Outline

● Introduction
– Motivations

● Debugging on Large Machines
– Unsupervised Execution

● Virtualized Debugging
– Separation of Entities

● Processor Extraction
● Provisional Message Delivery
● Conclusions

27 September 2010 Filippo Gioachin 4

Outline

● Introduction
– Motivations

● Debugging on Large Machines
– Unsupervised Execution

● Virtualized Debugging
– Separation of Entities

● Processor Extraction
● Provisional Message Delivery
● Conclusions

27 September 2010 Filippo Gioachin 5

Motivations

●Debugging is a fundamental part of software
development

●Parallel programs have all the sequential bugs:
– Memory corruption

– Incorrect results

–

27 September 2010 Filippo Gioachin 6

Motivations (2)

●Parallel programs have new types of bugs:
– Data races / multicore (heavily studied in literature)

– Communication mistakes

– Synchronization mistakes / Message races

●To complicate things further:
– Non-determinism

– Problems may show up only at large scale

27 September 2010 Filippo Gioachin 7

Problems at Large Scale

●Problems may not appear at small scale
– Races between messages

● Latencies in the underlying hardware

– Incorrect messaging

– Data decomposition

●Important to handle large scale applications

27 September 2010 Filippo Gioachin 8

Challenges
to Large Scale Debugging

● Infeasible

– Debugger needs to handle many
processors

– Human can be overwhelmed by
information

– Machine not available

– Long waiting time in queue

● Expensive

– Large machine allocations consume
a lot of computational resources

Techniques used
in this thesis

● Tight RTS integration

● Unsupervised
execution

● Virtualized debug

● Processor extraction

● Provisional delivery

27 September 2010 Filippo Gioachin 9

Thesis Goals

●New techniques to help debugging large scale
parallel programs
– Tight integration with runtime system

– Processor virtualization

●Applying these techniques to message driven
parallel programs

27 September 2010 Filippo Gioachin 12

Outline

● Introduction
– Motivations

● Debugging on Large Machines
– Unsupervised Execution

● Virtualized Debugging
– Separation of Entities

● Processor Extraction
● Provisional Message Delivery
● Conclusions

27 September 2010 Filippo Gioachin 13

Traditional Debugging

● TotalView, Allinea, Eclipse

– The user manages all the
processors directly

● STAT (Stack Trace Analysis
Tool) using MRNET

● ATP (Abnormal Termination
Processing)

● Relative debugging (requires
working program)

External processes that
supervise the application

– Information access

– Scalability challenge

27 September 2010 Filippo Gioachin 14

Tight Integration
with Runtime System

●We use the same communication infrastructure
that the application uses to scale
– Scale debugger with

the application

27 September 2010 Filippo Gioachin 15

Scalability (1)

Kraken Cray XT5

27 September 2010 Filippo Gioachin 16

Scalability (2)

Kraken Cray XT5

27 September 2010 Filippo Gioachin 17

Scalability (3)

Kraken Cray XT5

27 September 2010 Filippo Gioachin 18

Autoinspection

●The programmer should not manually handle all
the processors
– Unsupervised execution

– Notification to the user from interesting processors
● User-defined

● System-defined

– Discussed in the prelim (Thesis Chapter 3)

● Breakpoints
● Assertion failure
● Abort / signals
● Memory corruption

27 September 2010 Filippo Gioachin 24

Outline

● Introduction
– Motivations

● Debugging on Large Machines
– Unsupervised Execution

● Virtualized Debugging
– Separation of Entities

● Processor Extraction
● Provisional Message Delivery
● Conclusions

27 September 2010 Filippo Gioachin 26

Virtualized Emulation

●Use emulation techniques to provide virtual
processors to display to the user
– Use BigSim emulation tool

● Cannot assume correctness of program

– Debugger needs to communicate with application

– Single address space

* F. Gioachin, G. Zheng, L.V. Kalé: "Debugging Large Scale Applications in a Debugging Large Scale Applications in a
Virtualized EnvironmentVirtualized Environment" to appear in the Proceedings of the 23rd International
Workshop on Languages and Compilers for Parallel Computing (LCPC2010)

27 September 2010 Filippo Gioachin 27

Communication under
Emulated Environment

Virtual Processor

Worker Thread

Communication
Thread

Message Queue Converse Main Thread

Virtual Processor

Worker Thread

Communication
Thread

Comm.
Gateway

Real PE 12

VP 513VP 87

27 September 2010 Filippo Gioachin 28

Resource Consumption:
Jacobi (on NCSA's BluePrint)

●User thinks for one minute about what to do:
– 8 processors

● 86 sec.
● ~0.2 SU

– 1024 procs
● 60.5 sec.
● ~17 SU

27 September 2010 Filippo Gioachin 29

Demo

27 September 2010 Filippo Gioachin 30

Usage: Starting

27 September 2010 Filippo Gioachin 31

Usage: Debugging

27 September 2010 Filippo Gioachin 33

Separation of Virtual Entities

●Single address space shared by different entities
– Virtual processors for emulation

– Multiple chares in Charm++

– Multiple user-level threads

●One entity can overwrite memory of another entity
– Dangling pointers (memory reallocated)

– Pointers passed between entities

– Spurious writes (e.g. buffer overflow)

27 September 2010 Filippo Gioachin 36

Memory Corruption Detection

●Protect memory such that spurious writes can be
detected

●Exploit the scheduler in message driven systems

Has
corruption
occured?

Reset memory
protection

Check memory
corruption

No

Yes

Pick message
User code:

process
message

* F. Gioachin, L.V.
Kalé: "Memory Memory
Tagging in Charm++Tagging in Charm++"
in Proceedings of the
6th Workshop on
Parallel and
Distributed Systems:
Testing, Analysis,
and Debugging
(PADTAD '08)

27 September 2010 Filippo Gioachin 39

Protection Mechanisms

●Checksum: Cyclic Redundancy Check (CRC)
– Compute CRC-32 for all the memory in the system.

Recompute upon entry method return

●Memory copy
– Copy all the memory in a system in a separate area.

Compare upon entry method return

●mprotect
– Allocate memory with mmap and mark read-only

with mprotect. Receive signal upon corruption

27 September 2010 Filippo Gioachin 40

Performance Aspect

4,000 allocated blocks 32 MB of allocated memory

27 September 2010 Filippo Gioachin 41

Related Work

●Memory protection
– Studied for concurrent threads (Data Races)

● Intel Thread Checker
● RecPlay

– Not applicable with only one execution thread

– TotalView
● User can mimic the protection manually

27 September 2010 Filippo Gioachin 42

Outline

● Introduction
– Motivations

● Debugging on Large Machines
– Unsupervised Execution

● Virtualized Debugging
– Separation of Entities

● Processor Extraction
● Provisional Message Delivery
● Conclusions

27 September 2010 Filippo Gioachin 43

Do we need all the processors?

●The problem manifests itself on a
single processor

●The cause can span multiple
processors (causally related)
– The subset is generally much smaller

than the whole system

●Select the interesting processors
and ignore the others

27 September 2010 Filippo Gioachin 44

Extracting Processors:
Challenges

●Record all data processed by each processor
– Huge volume of data stored

– High interference with application (probe effect)
● The bug may not appear

– Existing: RecPlay, TotalView

– Work on reduction in space requirements
● Online analysis of necessary data
● Processors grouping
● Record only some processors?

27 September 2010 Filippo Gioachin 45

Fighting non-determinism

●Record all data processed by each processor
– Huge volume of data stored

– High interference with application (probe effect)
● The bug may not appear

●Record only message ordering
– Must re-execute using the whole machine

– Based on piecewise deterministic assumption

27 September 2010 Filippo Gioachin 48

Three-step Procedure
for Processor Extraction

Execute program
recording message

ordering

Replay application
with detailed

recording enabled

Replay selected
processors as
stand-alone

Is problem
solved?

Done

Select
processors
to record

Yes

S
tep 1

S
tep 2

S
tep 3

Has bug
appeared?

 Yes

No

Minimize
perturbation
(few bytes
per message)

● Iterate for
incremental
extraction

● Use
message
ordering to
guarantee
determinism

● Can execute
in the
virtualized
environment

* F. Gioachin, G. Zheng,
L.V. Kalé: "Robust Record-Robust Record-
Replay with Processor Replay with Processor
ExtractionExtraction" in Proceedings of
the Workshop on Parallel and
Distributed Systems: Testing,
Analysis, and Debugging
(PADTAD – VIII), 2010

U
se

r

No

27 September 2010 Filippo Gioachin 49

What if the piecewise deterministic
assumption is not met?

●Make sure to detect it, and notify the user

If all messages during replay are If all messages during replay are
identical to those during record, we can identical to those during record, we can
assume the application is deterministicassume the application is deterministic

●Methods to detect failure:
– Message size and destination

– Checksum of the whole message (XOR, CRC32)

27 September 2010 Filippo Gioachin 52

ChaNGa
(dwf1.2048 on NCSA's BluePrint)

27 September 2010 Filippo Gioachin 54

Debugging Case Study

●Message race during particle exchange
– Was fixed with tedious print statements

● Printf often made the bug disappear

../charmrun +p16 ../ChaNGa cube300.param +record
+recplay-crc

../charmrun +p16 ../ChaNGa cube300.param +replay
+recplay-crc +record-detail 7

gdb ../ChaNGa
>> run cube300.param +replay-detail 7/16

27 September 2010 Filippo Gioachin 55

Demo

27 September 2010 Filippo Gioachin 56

Record-replay with CharmDebug

27 September 2010 Filippo Gioachin 57

Outline

● Introduction
– Motivations

● Debugging on Large Machines
– Unsupervised Execution

● Virtualized Debugging
– Separation of Entities

● Processor Extraction
● Provisional Message Delivery
● Conclusions

27 September 2010 Filippo Gioachin 58

Provisional Message Delivery

●Instead of replaying the same message
ordering, replay a different one
– Can force the bug to appear on a smaller scale

– Automatic or manual

●Manual: programmers may have an idea where
the problem lies
– A specific message may confirm or refute the idea

– Need a way to test without restarting the application
● Important for bugs that appear after long time

27 September 2010 Filippo Gioachin 60

Testing Execution Paths

●Save state of the running application
– Deliver the message

– Rollback to try another path (live)

Process msg B

Save state

Process msg A

MA
MC
MD

Message received
from the network

O
ut

go
in

g
m

es
sa

ge

proc.

MA
MB
MC

MA
MB
MC
MD

FORK

CHILD

PARENT

27 September 2010 Filippo Gioachin 62

Demo

27 September 2010 Filippo Gioachin 63

Provisional Delivery: Example

27 September 2010 Filippo Gioachin 64

Outline

● Introduction
– Motivations

● Debugging on Large Machines
– Unsupervised Execution

● Virtualized Debugging
– Separation of Entities

● Processor Extraction
● Provisional Message Delivery
● Conclusions

27 September 2010 Filippo Gioachin 65

Thesis Contributions

●Techniques to handle thousands of processors
efficiently
– Unsupervised execution with notification upon event

●Reducing the resources required for debugging
of large scale applications
– Virtualized debugging
– Processor extraction
– Provisional message delivery

●Techniques to debug message driven parallel
applications

27 September 2010 Filippo Gioachin 66

Future Extensions

●Shared memory compliance

●Race detector
– Automated testing of message delivery to discover

message races

●Replay in isolation of single virtual entities
– Conditions of validity

27 September 2010 Filippo Gioachin 67

Peer Reviewed Papers

● F. Gioachin, G. Zheng, L.V. Kale: ”Robust Non-Intrusive Record-Replay with Processor Extraction”; in Proceedings
of the 8th Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD 2010)

● F. Gioachin, G. Zheng, L.V. Kale: ”Debugging Large Scale Applications in a Virtualized Environment”; to appear in
Proceedings of the 23rd International Workshop on Languages and Compilers for Parallel Computing (LCPC2010)

● F. Gioachin, C.W. Lee, L.V. Kale: ”Scalable Interaction with Parallel Applications”; in Proceedings of TeraGrid'09

● F. Gioachin, L.V. Kale: ”Dynamic High-Level Scripting in Parallel Applications”; in Proceedings of the 23rd IEEE
International Parallel and Distributed Processing Symposium (IPDPS 2009)

● F. Gioachin, L.V. Kale: ”Memory Tagging in Charm++”; in Proceedings of the 6 th Workshop on Parallel and
Distributed Systems: Testing, Analysis, and Debugging (PADTAD '08)

● C. Mei, G. Zheng, F. Gioachin, L.V. Kale: ”Optimizing a Parallel Runtime System for Multicore Clusters: A Case
Study”; in Proceedings of Teragrid'10

● P. Jetley, L. Wesolowski, F. Gioachin, L.V. Kale, T.R. Quinn: ”Scaling Hierarchical N-Body Simulations on GPU
Clusters”; to appear in Proceedings of the ACM/IEEE Supercomputing Conference 2010 (SC10)

● P. Jetley, F. Gioachin, C. Mendes, L.V. Kale, T.R. Quinn: ”Massively Parallel Cosmological Simulations with
ChaNGa”; in Proceedings of IEEE International Parallel and Distributed Processing Symposium 2008

● F. Gioachin, A. Sharma, S. Chakravorty, C. Mendes, L.V. Kale, T.R. Quinn: ”Scalable Cosmological Simulations on
Parallel Machines”; in Proceedings of the 7th International Meeting on High Performance Computing for
Computational Science (VECPAR 2006). LNCS 4395, pp 476-489, 2007

● F. Gioachin, R. Shankesi, M.J. May, C.A. Gunter, W. Shin: ”Emergency Alerts as RSS Feeds with Interdomain
Authorization”; in IARIA International Conference on Internet Monitoring and Protection (ICIMP '07), 2007

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 33
	Slide 36
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 48
	Slide 49
	Slide 52
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 60
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

