
Optimizing a Parallel
Runtime System for
Multicore Clusters:
A Case Study
Chao Mei, Gengbin Zheng, Fillipo Gioachin,
Laxmikant V. Kale
08/03/2010, TeraGrid’10

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 1

Motivation

 Almost all clusters consist of multicore nodes
 Node size continues to grow

 The whole software stack needs to be adapted to the
multicore architecture
 Application-level
 Parallel languages (including its runtime system)
 System-level

 Potential benefits
 Latency is much reduced for intra-node messages
 Shared-memory data structure

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

Initial porting of a runtime system doesn’t necessarily lead to benefits!

2

Outline

 Introduction to the runtime system
 Charm++

 Experiment Setup
 Benchmark
 5 multicore machines

 Issues and Optimization Techniques
 Synchronization overhead
 Affinity settings
 …

 Performance for real applications

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 3

The Runtime System Case: Charm++

 Objected oriented C++
based

 Message driven execution
 Asynchronous non-blocking

remote method invocation

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 4

Architectures of Runtime System

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

 non-SMP, process
 Network stack
 POSIX shared memory

 SMP, process + system
thread
 Shared memory address

space

5

Initial Experiments Result

Chao Mei (chaomei2@illinois.edu) Parallel
Programming Lab, UIUC

 Applications do not have any performance improvement
 NAMD: ~10% degradation
 ChaNGa: ~2% degradation

 Attack the problem in two steps
 Issues on a single node
 Issues on multiple nodes

6

Experiment Setup: Benchmark

 kNeighbor (k=3 in our study)

 Benchmark one iteration time
 Touch every byte of the message when received
 Emphasize the performance of message latency in the presence

of contention

Chao Mei (chaomei2@illinois.edu) Parallel
Programming Lab, UIUC 7

Experiment Setup: Multicore Machines

 Five multicore machines
 A: AIX 6.1/IBM Power 5, a 16-core (SMT=2) node

 B: Ubuntu 8.04/Intel Nehelem Xeon E5520, a 8-core (SMT=2)
node

 C: Ubuntu 8.04/Intel Harpertown Xeon E5405, a 8-core node

 D: Ubuntun 8.04/AMD Barcelona Opteron 2356, a 8-core node

 E: CentOS 5.4/Intel Dunnington Xeon E7450, a 24-core node

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 8

Initial Comparison for kNeighbor

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 9

Network Progress Engine Issue

 Network progress engine
 Process incoming messages and send outgoing message

immediately
 Expensive

 Initial Usage
 Invoked every time a message is sent

 contention on the engine

 Current Usage
 Not necessary for intra-node message
 Only invoke network progress engine if it is an inter-node

message

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 10

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

Avg. 35% gain

Not simply change processes to threads and make it thread safe,
but re-think the overall design of the architecture

11

Multi-threaded Performance Issues

 Efficient locking and synchronization among threads
 key factor for fast fine-grained intra-node communication

 Three issues
 Memory management
 Granularity of critical sections
 Message queues

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 12

Memory Management
 Charm++ uses its own memory allocator

 Based on a GNU memory allocator developed seven years ago
 Every malloc/free is protected with a lock

 Switched to OS
provided memory
module

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

Avg. 2.4X!

13

Performance of OS-provided Memory Module

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

 Synthetic benchmark: every thread simultaneously allocates
memory of the same size for 100,000 times, then free

14

Performance of OS-provided Memory Module

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

 Synthetic benchmark: every thread simultaneously allocates
memory of the same size for 100,000 times, then free

15

Granularity of Critical Sections
 Trade-off between productivity and performance

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

Avg. 35.1%

16

Message Queues

 Producer-Consumer Queues (PCQueue)
 Commonly used data structure for implementing scheduler queues

 Scenario in Charm++
 Single consumer, multiple producers

 Use memory fence instead of locks
 A general API across multiple platforms for read/write fence
 Two steps of optimizations

 Remove locks for consumer
 Remove locks for producers by having a queue pair between

the single consumer and each producer
 Polling overhead increased

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 17

Perf. of Optimizing Message Queues

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

v3 vs. v4: avg. 9.7% gain

v4 vs. v5: avg. 19.5% gain

18

Handling Processor Private Variables
 Similar to the thread private variables in OpenMP

 “Cpv” macros providing transparent usage in non-SMP/SMP
mode, e.g. CpvAccess(var)

 Initial implementation is array-based:
 CpvAccess(var) var[myrank]
 false sharing

 Solution: Thread Local Storage (TLS): explict or implicit
 pthread_setspecific/pthread_getspecific on Unix-like
 TlsSetValue/TlsGetValue on Windows
 “__thread” if supported by compiler and assembler

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 19

Perf. Improvement After Using TLS

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

Avg. 26.5% gain

20

CPU Affinity (1)

 OS adopts natural affinity
 Keep process/thread on the same CPU as long as possible

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 21

CPU Affinity (2)

 Just fixing the affinity shows performance improvement
 Fewer L1 cache misses
 Performance better and more stable

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 22

CPU Affinity (3)

 How to set the CPU affinity generally?
 A cross-platform function API in Charm++
 Some TeraGrid sites also provide such functionality when

lunching the job

 What’s the optimal affinity setting?
 Depends on the communication pattern of the program

 Example
 kNeighbor in the case of k=1 with 7 elements
 Message size: 256 bytes
 Immediate neighbor communication

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 23

 Elem(0,1,2,3,4,5,6) CPU(0,2,4,6,1,3,5): 11.66 us
 Elem(0,1,2,3,4,5,6) CPU(0,1,2,3,4,5,6): 13.37 us
 Why?

 Inter-chip: 8 vs. 24
 Inter-die: 8 vs. 4
 Intra-die: 12 vs. 0

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 24

Other Issues
 Reducing memory accesses in operations of message queues

 Very fine-grained performance tuning

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 25

Avg. 8.1% gain

Overall Improvement for kNeighbor

 14.4X over initial SMP

 4.87X over non-SMP

 1.21X over non-SMP in PXSHM

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 26

Application Performance: NAMD

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 27

75

80

85

90

95

100

105

110

115

non-SMP PXSHM SMP
original

SMP
optimized

T
ot

al
 T

im
e

pe
r

It
er

at
io
n

(n
or

m
al
iz
ed

)

Platform E (24-core)

75

80

85

90

95

100

105

110

115

non-SMP PXSHM SMP
original

SMP
optimized

T
ot

al
 T

im
e

pe
r

It
er

at
io
n

(n
or

m
al
iz
ed

)

Platform C (8-core)

Application Performance: ChaNGa

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 28

75

80

85

90

95

100

105

non-SMP PXSHM SMP
original

SMP
optimized

T
ot

al
 T

im
e

pe
r

It
er

at
io
n

(n
or

m
al
iz
ed

)

Platform C (cube300)

75

80

85

90

95

100

105

non-SMP PXSHM SMP
original

SMP
optimized

T
ot

al
 T

im
e

pe
r

It
er

at
io
n

(n
or

m
al
iz
ed

)

Platform C (dwf1)

Conclusion

 Studied the parallelization of a parallel language runtime
system for mutlicore platforms via Charm++
 Described various issues for the initial implementation
 Applied optimization techniques correspondingly

 Lock and synchronization overhead
 CPU affinity
 False sharing

 Should be general enough and useful to other runtime system

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC 29

Thank you !

Chao Mei (chaomei2@illinois.edu)
Parallel Programming Lab, UIUC

http://charm.cs.uiuc.edu

30

	Optimizing a Parallel Runtime System for Multicore Clusters: �A Case Study
	Motivation
	Outline
	The Runtime System Case: Charm++
	Architectures of Runtime System
	Initial Experiments Result
	Experiment Setup: Benchmark
	Experiment Setup: Multicore Machines
	Initial Comparison for kNeighbor
	Network Progress Engine Issue
	Slide Number 11
	Multi-threaded Performance Issues
	Memory Management
	Performance of OS-provided Memory Module
	Performance of OS-provided Memory Module
	Granularity of Critical Sections
	Message Queues
	Perf. of Optimizing Message Queues
	Handling Processor Private Variables
	Perf. Improvement After Using TLS
	CPU Affinity (1)
	CPU Affinity (2)
	CPU Affinity (3)
	Slide Number 24
	Other Issues
	Overall Improvement for kNeighbor
	Application Performance: NAMD
	Application Performance: ChaNGa
	Conclusion
	Slide Number 30

