
Mapping parallel applications on the
machine topology: Lessons learned

Abhinav Bhatele and Laxmikant V. Kale

Parallel Programming Laboratory
University of Illinois at Urbana-Champaign

Figu
re 10.

7:
Usin

g the
gra

phv
iz libr

ary
to

infe
r the

spa
tial

stru
ctu

re of an
irre

gul
ar

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Motivation

• Running a parallel application on a linear array of
processors:

2

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Motivation

• Running a parallel application on a linear array of
processors:

2

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Motivation

• Running a parallel application on a linear array of
processors:

2

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Motivation

• Running a parallel application on a linear array of
processors:

2

• Typical communication is between random pairs of
processors simultaneously

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Interconnect Topologies

3

Roadrunner Technical Seminar Series, March 13th 2008, Ken Koch, LANL

16. Mai 2008 9

BLUE GENE ARCHITECTURE

! is designed to support efficient execution of
massively parallel MPI programs

! Compute nodes organized as a 3D-torus

! MAIN FEATURE:
every node is connected to its
six neighbour nodes through
bidirectional links

! To maintain application performance,
correct mapping of MPI tasks onto
torus network is a critical factor

• Three dimensional meshes

• 3D Torus: Blue Gene/L, Blue Gene/P, Cray XT4/5

• Trees

• Fat-trees (Infiniband) and CLOS networks (Federation)

• Dense Graphs

• Kautz Graph (SiCortex), Hypercubes

• Future Topologies?

• Blue Waters, Blue Gene/Q

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Application Topologies

Patch

Compute

Proxy

4

http://wrf-model.org/plots/realtime_main.php

http://math.lanl.gov/Research/Projects/meshing.shtml

http://www.ks.uiuc.edu/Gallery/Science/

http://wrf-model.org/plots/realtime_main.php
http://wrf-model.org/plots/realtime_main.php
http://math.lanl.gov/Research/Projects/meshing.shtml
http://math.lanl.gov/Research/Projects/meshing.shtml
http://wrf-model.org/plots/realtime_main.php
http://wrf-model.org/plots/realtime_main.php

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Application Topologies

Patch

Compute

Proxy

4

We want to map communicating
objects closer to one another

http://wrf-model.org/plots/realtime_main.php

http://math.lanl.gov/Research/Projects/meshing.shtml

http://www.ks.uiuc.edu/Gallery/Science/

http://wrf-model.org/plots/realtime_main.php
http://wrf-model.org/plots/realtime_main.php
http://math.lanl.gov/Research/Projects/meshing.shtml
http://math.lanl.gov/Research/Projects/meshing.shtml
http://wrf-model.org/plots/realtime_main.php
http://wrf-model.org/plots/realtime_main.php

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

The Mapping Problem

• Applications have a communication topology and
processors have an interconnect topology

• Definition: Given a set of communicating parallel
“entities”, map them on to physical processors to
optimize communication

• Goals:

• Minimize communication traffic and hence contention

• Balance computational load (when n > p)

5

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

No Contention Runs

6

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

4 16 64 256 1K 4K 16K 64K 256K 1M
0

5

10

15

20

25

30

L
a
te

n
cy

 (
u
s)

%
 D

iff
e
re

n
ce

Message Size (Bytes)

No Contention Message Latencies (Torus - 8 x 8 x 16)

Message Latency
% difference

Blue Gene/P

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

 4

 8

 16

 32

 64

 128

 256

 512

 1024

4 16 64 256 1K 4K 16K 64K 256K 1M
0

5

10

15

20

25

L
a
te

n
cy

 (
u
s)

%
 D

iff
e
re

n
ce

Message Size (Bytes)

No Contention Message Latencies (Torus - 8 x 8 x 16)

Message Latency
% difference

No Contention Runs

6

XT3 (BigBen)

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Wormhole Routing

• Ni et al. 1993; Oh et al. 1997 - Equation for modeling
message latencies:

• Relatively small sized supercomputers

• It was safe to assume message latencies were independent
of distance

sharing network resources. For common networks with asymptotically inadequate

link bandwidth, chances of contention increase as messages travel farther and far-

ther. Network congestion on a link slows down all messages passing through that

link. Delays in message delivery can affect overall application performance. Thus, it

becomes necessary to consider the topology of the machine while mapping parallel

applications to job partitions.

This dissertation will demonstrate that it is not wise to assume that message la-

tencies are independent of the distance a message travels. This assumption has been

supported all these years by the advantages of virtual cut-through and wormhole

routing suggesting that the message latency is independent of the distance in ab-

sence of blocking [[5–12]]. When virtual cut-through or wormhole routing is deployed,

message latency is modeled by the equation,

Lf

B
∗ D +

L

B
(1.1)

where Lf is the length of each flit, B is the link bandwidth, D is the number of

links (hops) traversed and L is the length of the message. In absence of blocking, for

sufficiently large messages (where Lf << L), the first term is insignificant compared

to the second. But with large diameters of big supercomputers, this is no longer

true for small to medium-sized messages. Let us say that the length of the flit is

32 bytes and the total length of the message is 1024 bytes. Now, if the message

has to traverse 8 links, the first term is not negligible compared to the second

one (it is one-fourth of the second term). Message sizes in the range of 1 KB are

found in several applications which deal with strong scaling to tens of thousands of

processors [[13,14]]. Hence, for such fine-grained applications, we should not neglect

the dependence of message latencies on hops.

Even more important is the observation that Equation 1.1 models message la-

2

Lf = length of flit, B = bandwidth,
D = hops, L = message size

http://pages.cs.wisc.edu/~tvrdik/7/html/Section7.html

7

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Benchmark Creating Artificial Contention

• Pair each processor with a partner that is n hops away

8

1 hop

2 hops

3 hops

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

4 16 64 256 1K 4K 16K 64K 256K 1M

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

Effect of distance on latencies (Torus - 8 x 8 x 16)

8 hops
7 hops
6 hops
5 hops
4 hops
3 hops
2 hops
1 hop

Results: Contention

Bhatele A., Kale L. V., Quantifying Network Contention on Large Parallel Machines, Parallel Processing Letters (Special Issue on
Large-Scale Parallel Processing), 2009. Best Poster Award, ACM Student Research Competition, Supercomputing 2008, Austin, TX.

9

Blue Gene/P

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

 4

 16

 64

 256

 1024

 4096

 16384

4 16 64 256 1K 4K 16K 64K 256K 1M

L
a
te

n
cy

 (
u
s)

Message Size (Bytes)

Effect of distance on latencies (Torus - 8 x 8 x 16)

7 hops
6 hops
5 hops
4 hops
3 hops
2 hops
1 hop

Results: Contention

Bhatele A., Kale L. V., Quantifying Network Contention on Large Parallel Machines, Parallel Processing Letters (Special Issue on
Large-Scale Parallel Processing), 2009. Best Poster Award, ACM Student Research Competition, Supercomputing 2008, Austin, TX.

9

XT3 (BigBen)

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Results: Contention

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

4 16 64 256 1K 4K 16K 64K 256K 1M

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

Effect of distance on latencies (Torus - 8 x 8 x 16)

8 hops
7 hops
6 hops
5 hops
4 hops
3 hops
2 hops
1 hop

Bhatele A., Kale L. V., Quantifying Network Contention on Large Parallel Machines, Parallel Processing Letters (Special Issue on
Large-Scale Parallel Processing), 2009. Best Poster Award, ACM Student Research Competition, Supercomputing 2008, Austin, TX.

9

XT4

Obtaining Topology Information

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Topology Discovery

• Topology Manager API: for 3D interconnects (Blue
Gene, XT)

• Information required for mapping:

• Physical dimensions of the allocated job partition

• Mapping of ranks to physical coordinates and vice versa

• On Blue Gene machines such information is available
and the API is a wrapper

• On Cray XT machines, there is no easy way to obtain
topology information

11

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Cray XT machines

• Get nid (node ID) corresponding to an MPI rank:

• XT3: cnos_get_nidpid_map

• XT4/5: PMI_Portals_get_nid

• Get physical coordinates corresponding to nid:

• rca_get_meshcoord

• Translate the origin and provide this information
through the Topology Manager API

12

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Bigben @ PSC

• Bigben: The first Cray XT3 system in the world

• Officially unveiled on July 20, 2005 (ranked 44 in the top500 list) and
decommissioned on March 31, 2010

• Initially had 2.4 GHz single core Opterons (upgraded to 2.6 GHz dual-
core nodes in late 2006) - 4,180 cores 21.5 TF

• SeaStar interconnect (3D torus of size 11 X 12 X 16)

13

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Bigben @ PSC

• Bigben: The first Cray XT3 system in the world

• Officially unveiled on July 20, 2005 (ranked 44 in the top500 list) and
decommissioned on March 31, 2010

• Initially had 2.4 GHz single core Opterons (upgraded to 2.6 GHz dual-
core nodes in late 2006) - 4,180 cores 21.5 TF

• SeaStar interconnect (3D torus of size 11 X 12 X 16)

13

Thanks to Chad Vizino
and Shawn Brown

Application Case Studies

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Case Study I: OpenAtom

15

Performance on Blue Gene/L

0

0.075

0.15

0.225

0.3

512 1024 2048 4096 8192

T
im

e
pe

r
st

ep
 (

s)

Number of cores

Default Mapping

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Diagnosis

16

Timeline view (OpenAtom on 8,192 cores of BG/L) using the performance
visualization tool, Projections

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Mapping of OpenAtom Arrays

17

A. Bhatele, E. Bohm, and L. V. Kale. A Case Study of Communication Optimizations on 3D Mesh Interconnects. In
Euro-Par, LNCS 5704, pages 1015–1028, 2009. Distinguished Paper Award, Feng Chen Memorial Best Paper Award

!"#$%&
'$()*$+%,+$-.)

/&$+"#$%&

/0./

1&23(-4

5)-0.

6)$23#.3&

6)$23#.3&

/0./7$)-/0.!

/0.!7$)-

8

98

88

9

888 89

988

9888

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Mapping of OpenAtom Arrays

17

A. Bhatele, E. Bohm, and L. V. Kale. A Case Study of Communication Optimizations on 3D Mesh Interconnects. In
Euro-Par, LNCS 5704, pages 1015–1028, 2009. Distinguished Paper Award, Feng Chen Memorial Best Paper Award

!"#$%&
'$()*$+%,+$-.)

/&$+"#$%&

/0./

1&23(-4

5)-0.

6)$23#.3&

6)$23#.3&

/0./7$)-/0.!

/0.!7$)-

8

98

88

9

888 89

988

9888

Paircalculator and
GSpace have
plane-wise
communication

RealSpace and
GSpace have
state-wise
communication

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Mapping of OpenAtom Arrays

17

A. Bhatele, E. Bohm, and L. V. Kale. A Case Study of Communication Optimizations on 3D Mesh Interconnects. In
Euro-Par, LNCS 5704, pages 1015–1028, 2009. Distinguished Paper Award, Feng Chen Memorial Best Paper Award

!"#$%&
'$()*$+%,+$-.)

/&$+"#$%&

/0./

1&23(-4

5)-0.

6)$23#.3&

6)$23#.3&

/0./7$)-/0.!

/0.!7$)-

8

98

88

9

888 89

988

9888

!"#$%&'$()*$+%,+$-.)

/&$+"#$%&

"-$-&0

'+$1&0

"-$-&0

'+$1&0

'+$1&0

"-$-&0

"-$-&0

Paircalculator and
GSpace have
plane-wise
communication

RealSpace and
GSpace have
state-wise
communication

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Performance Benefits from Mapping

18

Performance on Blue Gene/L

0

0.075

0.15

0.225

0.3

512 1024 2048 4096 8192

T
im

e
pe

r
st

ep
 (

s)

Number of cores

Default Mapping
Topology Mapping

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Diagnosis of Improvement

19

Timeline view using the performance visualization tool, Projections

Timeline of 1 iteration of
OpenAtom running

WATER_256M_70Ry on
8192 cores of BG/L

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

OpenAtom Performance on Blue Gene/P

20

0

2.75

5.5

8.25

11

1024 2048 4096 8192

T
im

e
pe

r
st

ep
 (

s)

Number of cores

Default Mapping
Topology Mapping

Application Performance

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

OpenAtom Performance on Blue Gene/P

20

0

275

550

825

1100

1024 2048 4096 8192

Sy
st

em
 B

an
dw

id
th

 (
G

B/
st

ep
)

Number of cores

Default Mapping
Topology Mapping

0

2.75

5.5

8.25

11

1024 2048 4096 8192

T
im

e
pe

r
st

ep
 (

s)

Number of cores

Default Mapping
Topology Mapping

Application Performance Performance Counters

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

OpenAtom Performance on Blue Gene/P

20

0

275

550

825

1100

1024 2048 4096 8192

Sy
st

em
 B

an
dw

id
th

 (
G

B/
st

ep
)

Number of cores

Default Mapping
Topology Mapping

0

2.75

5.5

8.25

11

1024 2048 4096 8192

T
im

e
pe

r
st

ep
 (

s)

Number of cores

Default Mapping
Topology Mapping

Application Performance Performance Counters

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

OpenAtom Performance on Cray XT3

21

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

OpenAtom Performance on Cray XT3

• Cray XT3:

• Link bandwidth - 3.8 GB/s
(XT3), 0.425 (BG/P), 0.175
(BG/L)

• Bytes per flop - 8.77 (XT3),
0.375 (BG/P and BG/L)

21

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

OpenAtom Performance on Cray XT3

• Cray XT3:

• Link bandwidth - 3.8 GB/s
(XT3), 0.425 (BG/P), 0.175
(BG/L)

• Bytes per flop - 8.77 (XT3),
0.375 (BG/P and BG/L)

• Job schedulers on Cray
are not topology aware

21

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

OpenAtom Performance on Cray XT3

• Cray XT3:

• Link bandwidth - 3.8 GB/s
(XT3), 0.425 (BG/P), 0.175
(BG/L)

• Bytes per flop - 8.77 (XT3),
0.375 (BG/P and BG/L)

• Job schedulers on Cray
are not topology aware

• Performance Benefit at
2048 cores: 40% (XT3),
45% (BG/P), 41% (BG/L)

21

0

2

4

6

8

512 1024 2048

T
im

e
pe

r
st

ep
 (

s)

Number of cores

Default Mapping
Topology Mapping

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Case Study II: NAMD

22

are assigned statically to processors during program start-up. On the other hand,

computes, can be moved around to balance load across processors. If a patch com-

municates with more than one compute on a processor, a proxy is placed on this

processor for the patch. The proxy receives the message from the patch and then

forwards it to the computes internally (Figure 7.7). This avoids adding new com-

munication paths when new computes for the same patch are added on a processor.

Patch

Compute

Proxy

Figure 7.7: Placement of patches, computes and proxies on a 2D mesh of processors

The number of computes on a processor and their individual computational

loads determines its computational load and the number of proxies on a processor

indicates its communication load. Load balancing in NAMD is measurement-based.

This assumes that load patterns tend to persist over time and even if they change,

the change is gradual (referred to as the principle of persistence). The load balancing

framework records information about object (compute) loads for some time steps.

It also records the communication graph between the patches and proxies. This

information is collected on one processor and based on the instrumentation data,

a load balancing phase is executed. Decisions are then sent to all processors. The

current strategy is centralized and we shall later discuss future work to make it fully

60

a smaller brick within the 3D torus (shown in dark grey in the figure). The sum

of distances from any processor within this brick to the two patches is minimum.

Hence, if we find two processors with proxies for both patches, we give preference

to the processor which is within this inner brick defined by the patches.

Inner Brick

Outer Brick

Patch 1

Patch 2

Figure 7.9: Topological placement of a compute on a 3D torus/mesh of processors

Step II: Likewise, in this case too, we give preference to a processor with one proxy

or patch which is within the brick defined by the two patches that interact with the

compute.

Step III: If Step I and II fail, we are supposed to look for any underloaded processor

to place the compute on. Under the modified scheme of things, we first try to find

an underloaded processor within the brick and if there is no suitable processor, we

spiral around the brick to find the first underloaded one.

To implement these new topology aware schemes in the existing load balancers,

we build two preference tables (similar to Figure 7.8) instead of one. The first

preference table contains processors which are topologically close to the patches in

consideration (within the brick) and the second one contains the remaining proces-

66

A. Bhatele, L. V. Kale and S. Kumar, Dynamic Topology Aware Load Balancing Algorithms for Molecular
Dynamics Applications, In 23rd ACM International Conference on Supercomputing (ICS), 2009.

Communication between
patches and computes

Topology aware
placement of computes

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

• Evaluation Metric:
Hop-bytes

• Indicates amount of traffic
and hence contention on
the network

• Previously used metric:
maximum dilation

NAMD Performance on Blue Gene/P

23

0

375

750

1125

1500

512 1024 2048 4096

H
op

-b
yt

es
 (

M
B

pe
r

ite
ra

tio
n)

Number of cores

Topology Oblivious
TopoAware Patches
TopoAware Computes

Measured Hop-bytes

di = distance
bi = bytes
n = no. of messages

5 Hop-bytes as an Evaluation Metric

The volume of inter-processor communication can be characterized by the hop-bytes

metric which is the weighted sum of message sizes where the weights are the number

of hops (links) traveled by the respective messages. Hop-bytes can be calculated by

the equation,

HB =

n�

i=1

di × bi (5.1)

where di is the number of links traversed by message i and bi is the message size in

bytes for message i and the summation is over all messages sent.

Hop-bytes is an indication of the average communication load on each link on the

network. This assumes that the application generates nearly uniform traffic over all

links in the partition. The metric does not give an indication of hot-spots generated

on specific links on the network but is an easily derivable metric and correlates well

with actual application performance.

In VLSI circuit design and early parallel computing work, emphasis was placed

on another metric called maximum dilation which is defined as,

d(e) = max{di|ei ∈ E} (5.2)

where di is the dilation of the edge ei. This metric aims at minimizing the longest

length of the wire in a circuit. We claim that reducing the largest number of links

traveled by any message is not as critical as reducing the average hops across all

messages.

32

5 Hop-bytes as an Evaluation Metric

The volume of inter-processor communication can be characterized by the hop-bytes

metric which is the weighted sum of message sizes where the weights are the number

of hops (links) traveled by the respective messages. Hop-bytes can be calculated by

the equation,

HB =

n�

i=1

di × bi (5.1)

where di is the number of links traversed by message i and bi is the message size in

bytes for message i and the summation is over all messages sent.

Hop-bytes is an indication of the average communication load on each link on the

network. This assumes that the application generates nearly uniform traffic over all

links in the partition. The metric does not give an indication of hot-spots generated

on specific links on the network but is an easily derivable metric and correlates well

with actual application performance.

In VLSI circuit design and early parallel computing work, emphasis was placed

on another metric called maximum dilation which is defined as,

d(e) = max{di|ei ∈ E} (5.2)

where di is the dilation of the edge ei. This metric aims at minimizing the longest

length of the wire in a circuit. We claim that reducing the largest number of links

traveled by any message is not as critical as reducing the average hops across all

messages.

32

are assigned statically to processors during program start-up. On the other hand,

computes, can be moved around to balance load across processors. If a patch com-

municates with more than one compute on a processor, a proxy is placed on this

processor for the patch. The proxy receives the message from the patch and then

forwards it to the computes internally (Figure 7.7). This avoids adding new com-

munication paths when new computes for the same patch are added on a processor.

Patch

Compute

Proxy

Figure 7.7: Placement of patches, computes and proxies on a 2D mesh of processors

The number of computes on a processor and their individual computational

loads determines its computational load and the number of proxies on a processor

indicates its communication load. Load balancing in NAMD is measurement-based.

This assumes that load patterns tend to persist over time and even if they change,

the change is gradual (referred to as the principle of persistence). The load balancing

framework records information about object (compute) loads for some time steps.

It also records the communication graph between the patches and proxies. This

information is collected on one processor and based on the instrumentation data,

a load balancing phase is executed. Decisions are then sent to all processors. The

current strategy is centralized and we shall later discuss future work to make it fully

60

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

NAMD Performance on Blue Gene/P

23

0

375

750

1125

1500

512 1024 2048 4096

H
op

-b
yt

es
 (

M
B

pe
r

ite
ra

tio
n)

Number of cores

Topology Oblivious
TopoAware Patches
TopoAware Computes

Measured Hop-bytes
are assigned statically to processors during program start-up. On the other hand,

computes, can be moved around to balance load across processors. If a patch com-

municates with more than one compute on a processor, a proxy is placed on this

processor for the patch. The proxy receives the message from the patch and then

forwards it to the computes internally (Figure 7.7). This avoids adding new com-

munication paths when new computes for the same patch are added on a processor.

Patch

Compute

Proxy

Figure 7.7: Placement of patches, computes and proxies on a 2D mesh of processors

The number of computes on a processor and their individual computational

loads determines its computational load and the number of proxies on a processor

indicates its communication load. Load balancing in NAMD is measurement-based.

This assumes that load patterns tend to persist over time and even if they change,

the change is gradual (referred to as the principle of persistence). The load balancing

framework records information about object (compute) loads for some time steps.

It also records the communication graph between the patches and proxies. This

information is collected on one processor and based on the instrumentation data,

a load balancing phase is executed. Decisions are then sent to all processors. The

current strategy is centralized and we shall later discuss future work to make it fully

60

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

NAMD Performance on Blue Gene/P

23

0

375

750

1125

1500

512 1024 2048 4096

H
op

-b
yt

es
 (

M
B

pe
r

ite
ra

tio
n)

Number of cores

Topology Oblivious
TopoAware Patches
TopoAware Computes

0

3.75

7.5

11.25

15

512 1024 2048 4096 8192 16384

T
im

e
pe

r
st

ep
 (

m
s)

Number of cores

Topology Oblivious
TopoAware Patches
TopoAware Computes

Measured Hop-bytes Application Performance
are assigned statically to processors during program start-up. On the other hand,

computes, can be moved around to balance load across processors. If a patch com-

municates with more than one compute on a processor, a proxy is placed on this

processor for the patch. The proxy receives the message from the patch and then

forwards it to the computes internally (Figure 7.7). This avoids adding new com-

munication paths when new computes for the same patch are added on a processor.

Patch

Compute

Proxy

Figure 7.7: Placement of patches, computes and proxies on a 2D mesh of processors

The number of computes on a processor and their individual computational

loads determines its computational load and the number of proxies on a processor

indicates its communication load. Load balancing in NAMD is measurement-based.

This assumes that load patterns tend to persist over time and even if they change,

the change is gradual (referred to as the principle of persistence). The load balancing

framework records information about object (compute) loads for some time steps.

It also records the communication graph between the patches and proxies. This

information is collected on one processor and based on the instrumentation data,

a load balancing phase is executed. Decisions are then sent to all processors. The

current strategy is centralized and we shall later discuss future work to make it fully

60

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

NAMD Performance on Blue Gene/P

23

0

375

750

1125

1500

512 1024 2048 4096

H
op

-b
yt

es
 (

M
B

pe
r

ite
ra

tio
n)

Number of cores

Topology Oblivious
TopoAware Patches
TopoAware Computes

0

3.75

7.5

11.25

15

512 1024 2048 4096 8192 16384

T
im

e
pe

r
st

ep
 (

m
s)

Number of cores

Topology Oblivious
TopoAware Patches
TopoAware Computes

Measured Hop-bytes Application Performance

6% 13% 28%

are assigned statically to processors during program start-up. On the other hand,

computes, can be moved around to balance load across processors. If a patch com-

municates with more than one compute on a processor, a proxy is placed on this

processor for the patch. The proxy receives the message from the patch and then

forwards it to the computes internally (Figure 7.7). This avoids adding new com-

munication paths when new computes for the same patch are added on a processor.

Patch

Compute

Proxy

Figure 7.7: Placement of patches, computes and proxies on a 2D mesh of processors

The number of computes on a processor and their individual computational

loads determines its computational load and the number of proxies on a processor

indicates its communication load. Load balancing in NAMD is measurement-based.

This assumes that load patterns tend to persist over time and even if they change,

the change is gradual (referred to as the principle of persistence). The load balancing

framework records information about object (compute) loads for some time steps.

It also records the communication graph between the patches and proxies. This

information is collected on one processor and based on the instrumentation data,

a load balancing phase is executed. Decisions are then sent to all processors. The

current strategy is centralized and we shall later discuss future work to make it fully

60

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Automatic Mapping Framework

24

Pattern Matching
Framework

Regular Graphs Irregular Graphs

2D Object Graph 3D Object Graph

Choose best
heuristic depending

on hop-bytes

Output: Mapping file
used for the next run

W/o coordinate
information

W/ coordinate
information

MXOVLP, MXOV_AL,
EXC, COCE, AFFN

EXC, COCE, AFFN

Processor topology
information

Application
communication graph

BFT, MHT,
Infer structure

AFFN, COCE,
COCE+MHT

Figure 8.1: Schematic of the automatic mapping framework

identifying regular patterns in communication graphs.

8.1 Communication Graph: Identifying Patterns

Automatic topology aware mapping, as we shall see in the next few sections, uses

heuristics for fast scalable runtime solutions. Heuristics can yield more efficient so-

lutions if we can derive concrete information about the communication graph of the

application and exploit it. For this, we need to look for identifiable communication

patterns, if any, in the object graph. Many parallel applications have relatively

simple and easily identifiable 2D, 3D or 4D communication patterns. If we can

identify such patterns, then we can apply better suited heuristic techniques for such

73

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Automatic Mapping Framework

24

Pattern Matching
Framework

Regular Graphs Irregular Graphs

2D Object Graph 3D Object Graph

Choose best
heuristic depending

on hop-bytes

Output: Mapping file
used for the next run

W/o coordinate
information

W/ coordinate
information

MXOVLP, MXOV_AL,
EXC, COCE, AFFN

EXC, COCE, AFFN

Processor topology
information

Application
communication graph

BFT, MHT,
Infer structure

AFFN, COCE,
COCE+MHT

Figure 8.1: Schematic of the automatic mapping framework

identifying regular patterns in communication graphs.

8.1 Communication Graph: Identifying Patterns

Automatic topology aware mapping, as we shall see in the next few sections, uses

heuristics for fast scalable runtime solutions. Heuristics can yield more efficient so-

lutions if we can derive concrete information about the communication graph of the

application and exploit it. For this, we need to look for identifiable communication

patterns, if any, in the object graph. Many parallel applications have relatively

simple and easily identifiable 2D, 3D or 4D communication patterns. If we can

identify such patterns, then we can apply better suited heuristic techniques for such

73

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Automatic Mapping Framework

24

Pattern Matching
Framework

Regular Graphs Irregular Graphs

2D Object Graph 3D Object Graph

Choose best
heuristic depending

on hop-bytes

Output: Mapping file
used for the next run

W/o coordinate
information

W/ coordinate
information

MXOVLP, MXOV_AL,
EXC, COCE, AFFN

EXC, COCE, AFFN

Processor topology
information

Application
communication graph

BFT, MHT,
Infer structure

AFFN, COCE,
COCE+MHT

Figure 8.1: Schematic of the automatic mapping framework

identifying regular patterns in communication graphs.

8.1 Communication Graph: Identifying Patterns

Automatic topology aware mapping, as we shall see in the next few sections, uses

heuristics for fast scalable runtime solutions. Heuristics can yield more efficient so-

lutions if we can derive concrete information about the communication graph of the

application and exploit it. For this, we need to look for identifiable communication

patterns, if any, in the object graph. Many parallel applications have relatively

simple and easily identifiable 2D, 3D or 4D communication patterns. If we can

identify such patterns, then we can apply better suited heuristic techniques for such

73

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Automatic Mapping Framework

24

Pattern Matching
Framework

Regular Graphs Irregular Graphs

2D Object Graph 3D Object Graph

Choose best
heuristic depending

on hop-bytes

Output: Mapping file
used for the next run

W/o coordinate
information

W/ coordinate
information

MXOVLP, MXOV_AL,
EXC, COCE, AFFN

EXC, COCE, AFFN

Processor topology
information

Application
communication graph

BFT, MHT,
Infer structure

AFFN, COCE,
COCE+MHT

Figure 8.1: Schematic of the automatic mapping framework

identifying regular patterns in communication graphs.

8.1 Communication Graph: Identifying Patterns

Automatic topology aware mapping, as we shall see in the next few sections, uses

heuristics for fast scalable runtime solutions. Heuristics can yield more efficient so-

lutions if we can derive concrete information about the communication graph of the

application and exploit it. For this, we need to look for identifiable communication

patterns, if any, in the object graph. Many parallel applications have relatively

simple and easily identifiable 2D, 3D or 4D communication patterns. If we can

identify such patterns, then we can apply better suited heuristic techniques for such

73

Relieve the application
developer of the
mapping burden

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Automatic Mapping Framework

24

Pattern Matching
Framework

Regular Graphs Irregular Graphs

2D Object Graph 3D Object Graph

Choose best
heuristic depending

on hop-bytes

Output: Mapping file
used for the next run

W/o coordinate
information

W/ coordinate
information

MXOVLP, MXOV_AL,
EXC, COCE, AFFN

EXC, COCE, AFFN

Processor topology
information

Application
communication graph

BFT, MHT,
Infer structure

AFFN, COCE,
COCE+MHT

Figure 8.1: Schematic of the automatic mapping framework

identifying regular patterns in communication graphs.

8.1 Communication Graph: Identifying Patterns

Automatic topology aware mapping, as we shall see in the next few sections, uses

heuristics for fast scalable runtime solutions. Heuristics can yield more efficient so-

lutions if we can derive concrete information about the communication graph of the

application and exploit it. For this, we need to look for identifiable communication

patterns, if any, in the object graph. Many parallel applications have relatively

simple and easily identifiable 2D, 3D or 4D communication patterns. If we can

identify such patterns, then we can apply better suited heuristic techniques for such

73

Relieve the application
developer of the
mapping burden No change to the

application code

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Results: 2D Stencil on Blue Gene/P

25

0

5

10

15

20

512 1024 2048 4096 819216384

H
op

s
pe

r
by

te

Number of cores

Default Mapping
Topology Mapping

Hop-bytes

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Results: 2D Stencil on Blue Gene/P

25

400

417.5

435

452.5

470

512 1024 2048 4096 8192 16384

T
im

e
pe

r
st

ep
 (

m
s)

Number of cores

Default Mapping
Topology Mapping

0

5

10

15

20

512 1024 2048 4096 819216384

H
op

s
pe

r
by

te

Number of cores

Default Mapping
Topology Mapping

Hop-bytes Performance

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Increasing communication

• With faster processors
and constant link
bandwidths

• computation is becoming
cheap

• communication is a
bottleneck

• Trend for bytes per flop

• XT3: 8.77

• XT4: 1.357

• XT5: 0.23

26

0.1

1

10

100

512 B 2 KB 8 KB 32 KB 128 KB

T
im

e
pe

r
st

ep
 (

s)

Message size

Default Mapping
Topology Mapping

2D Stencil on BG/P

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Results: WRF on Blue Gene/P

0

1

2

3

4

256 512 1024 2048

A
ve

ra
ge

 h
op

s
pe

r
by

te

Number of nodes

Default
Topology

27

Lower Bound

Hops from IBM HPCT

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Results: WRF on Blue Gene/P

• Performance
improvement
negligible on 256 and
512 cores

0

1

2

3

4

256 512 1024 2048

A
ve

ra
ge

 h
op

s
pe

r
by

te

Number of nodes

Default
Topology

27

Lower Bound

Hops from IBM HPCT

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Results: WRF on Blue Gene/P

• Performance
improvement
negligible on 256 and
512 cores

• On 1024 nodes:

• Hops reduce by: 64%

• Time for communication
reduces by 11%

• Performance improves
by 17%

0

1

2

3

4

256 512 1024 2048

A
ve

ra
ge

 h
op

s
pe

r
by

te

Number of nodes

Default
Topology

27

Lower Bound

Hops from IBM HPCT

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Results: WRF on Blue Gene/P

• Performance
improvement
negligible on 256 and
512 cores

• On 1024 nodes:

• Hops reduce by: 64%

• Time for communication
reduces by 11%

• Performance improves
by 17%

0

1

2

3

4

256 512 1024 2048

A
ve

ra
ge

 h
op

s
pe

r
by

te

Number of nodes

Default
Topology

27

17%

Lower Bound

Hops from IBM HPCT

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Results: WRF on Blue Gene/P

• Performance
improvement
negligible on 256 and
512 cores

• On 1024 nodes:

• Hops reduce by: 64%

• Time for communication
reduces by 11%

• Performance improves
by 17%

0

1

2

3

4

256 512 1024 2048

A
ve

ra
ge

 h
op

s
pe

r
by

te

Number of nodes

Default
Topology

27

17% 8%

Lower Bound

Hops from IBM HPCT

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Results: POP on Blue Gene/P

28

0

0.375

0.75

1.125

1.5

128 nodes

A
ve

ra
ge

 h
op

s
pe

r
by

te

XYZT
TXYZ
TopoMap

0

0.425

0.85

1.275

1.7

512 nodes

XYZ
TopoMap

VN mode SMP mode

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Results: POP on Blue Gene/P

• In VN mode (using all
4 cores per node):

• Reduction in hops: 60%

• No improvement in
overall performance

28

0

0.375

0.75

1.125

1.5

128 nodes

A
ve

ra
ge

 h
op

s
pe

r
by

te

XYZT
TXYZ
TopoMap

0

0.425

0.85

1.275

1.7

512 nodes

XYZ
TopoMap

VN mode SMP mode

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Results: POP on Blue Gene/P

• In VN mode (using all
4 cores per node):

• Reduction in hops: 60%

• No improvement in
overall performance

• In spite of POP
spending 55% time in
communication

• MPI_Waitall and
MPI_Allreduce

28

0

0.375

0.75

1.125

1.5

128 nodes

A
ve

ra
ge

 h
op

s
pe

r
by

te

XYZT
TXYZ
TopoMap

0

0.425

0.85

1.275

1.7

512 nodes

XYZ
TopoMap

VN mode SMP mode

August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Summary

• Contention in modern day supercomputers can
impact performance: makes mapping important

• Even for high bandwidth interconnects such as Cray

• Certain classes of applications (latency sensitive,
communication bound) benefit most

• OpenAtom shows performance improvements of up to 50%

• NAMD - improvements for > 4k cores

• Developing an automatic mapping framework

• Relieve the application developer of the mapping burden

29

Questions?

Acknowledgements:

IBM Watson Research Center (Blue Gene/L): Fred Mintzer, Glenn Martyna
Pittsburgh Supercomputing Center (Cray XT3): Chad Vizino, Shawn Brown
Argonne National Laboratory (Blue Gene/P): Pete Beckman, Charles Bacon
Oak Ridge National Laboratory (Cray XT4/5): Donald Frederick, Patrick Worley

Funded in part by the Center for Simulation of Advanced Rockets (Univ. of Illinois)
through DOE Grant B341494

E-mail: bhatele@illinois.edu

mailto:bhatele@illinois.edu
mailto:bhatele@illinois.edu

