
Mapping parallel applications on the 
machine topology: Lessons learned

Abhinav Bhatele and Laxmikant V. Kale

Parallel Programming Laboratory
University of Illinois at Urbana-Champaign

Figu
re 10.

7:
Usin

g the
gra

phv
iz libr

ary
to

infe
r the

spa
tial

stru
ctu

re of an
irre

gul
ar



August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Motivation

• Running a parallel application on a linear array of 
processors:
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• Typical communication is between random pairs of 
processors simultaneously
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Interconnect Topologies

3

Roadrunner Technical Seminar Series, March 13th 2008, Ken Koch, LANL

16. Mai 2008 9

BLUE  GENE  ARCHITECTURE

! is designed to support efficient execution of
massively parallel MPI programs

! Compute nodes organized as a 3D-torus

! MAIN FEATURE:
every node is connected to its
six neighbour nodes through
bidirectional links

! To maintain application performance,
correct mapping of MPI tasks onto
torus network is a critical factor

• Three dimensional meshes

• 3D Torus: Blue Gene/L, Blue Gene/P, Cray XT4/5

• Trees

• Fat-trees (Infiniband) and CLOS networks (Federation)

• Dense Graphs

• Kautz Graph (SiCortex), Hypercubes

• Future Topologies?

• Blue Waters, Blue Gene/Q
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Application Topologies

Patch

Compute

Proxy
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http://wrf-model.org/plots/realtime_main.php

http://math.lanl.gov/Research/Projects/meshing.shtml

http://www.ks.uiuc.edu/Gallery/Science/
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Application Topologies
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We want to map communicating 
objects closer to one another

http://wrf-model.org/plots/realtime_main.php

http://math.lanl.gov/Research/Projects/meshing.shtml

http://www.ks.uiuc.edu/Gallery/Science/
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http://math.lanl.gov/Research/Projects/meshing.shtml
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The Mapping Problem

• Applications have a communication topology and 
processors have an interconnect topology

• Definition: Given a set of communicating parallel 
“entities”, map them on to physical processors to 
optimize communication

• Goals:

• Minimize communication traffic and hence contention

• Balance computational load (when n > p)

5
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Wormhole Routing

• Ni et al. 1993; Oh et al. 1997 - Equation for modeling 
message latencies:

• Relatively small sized supercomputers

• It was safe to assume message latencies were independent 
of distance

sharing network resources. For common networks with asymptotically inadequate

link bandwidth, chances of contention increase as messages travel farther and far-

ther. Network congestion on a link slows down all messages passing through that

link. Delays in message delivery can affect overall application performance. Thus, it

becomes necessary to consider the topology of the machine while mapping parallel

applications to job partitions.

This dissertation will demonstrate that it is not wise to assume that message la-

tencies are independent of the distance a message travels. This assumption has been

supported all these years by the advantages of virtual cut-through and wormhole

routing suggesting that the message latency is independent of the distance in ab-

sence of blocking [[5–12]]. When virtual cut-through or wormhole routing is deployed,

message latency is modeled by the equation,

Lf

B
∗ D +

L

B
(1.1)

where Lf is the length of each flit, B is the link bandwidth, D is the number of

links (hops) traversed and L is the length of the message. In absence of blocking, for

sufficiently large messages (where Lf << L), the first term is insignificant compared

to the second. But with large diameters of big supercomputers, this is no longer

true for small to medium-sized messages. Let us say that the length of the flit is

32 bytes and the total length of the message is 1024 bytes. Now, if the message

has to traverse 8 links, the first term is not negligible compared to the second

one (it is one-fourth of the second term). Message sizes in the range of 1 KB are

found in several applications which deal with strong scaling to tens of thousands of

processors [[13,14]]. Hence, for such fine-grained applications, we should not neglect

the dependence of message latencies on hops.

Even more important is the observation that Equation 1.1 models message la-

2

Lf = length of flit, B = bandwidth, 
D = hops, L = message size

http://pages.cs.wisc.edu/~tvrdik/7/html/Section7.html

7
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Benchmark Creating Artificial Contention

• Pair each processor with a partner that is n hops away

8

1 hop

2 hops

3 hops
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Blue Gene/P



August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

 4

 16

 64

 256

 1024

 4096

 16384

4 16 64 256 1K 4K 16K 64K 256K 1M

L
a
te

n
cy

 (
u
s)

Message Size (Bytes)

Effect of distance on latencies (Torus - 8 x 8 x 16)

7 hops
6 hops
5 hops
4 hops
3 hops
2 hops
1 hop

Results: Contention

Bhatele A., Kale L. V., Quantifying Network Contention on Large Parallel Machines, Parallel Processing Letters (Special Issue on 
Large-Scale Parallel Processing), 2009. Best Poster Award, ACM Student Research Competition, Supercomputing 2008, Austin, TX. 

9

XT3 (BigBen)



August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Results: Contention

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

4 16 64 256 1K 4K 16K 64K 256K 1M

L
a

te
n

cy
 (

u
s)

Message Size (Bytes)

Effect of distance on latencies (Torus - 8 x 8 x 16)

8 hops
7 hops
6 hops
5 hops
4 hops
3 hops
2 hops
1 hop

Bhatele A., Kale L. V., Quantifying Network Contention on Large Parallel Machines, Parallel Processing Letters (Special Issue on 
Large-Scale Parallel Processing), 2009. Best Poster Award, ACM Student Research Competition, Supercomputing 2008, Austin, TX. 

9

XT4



Obtaining Topology Information



August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Topology Discovery

• Topology Manager API: for 3D interconnects (Blue 
Gene, XT)

• Information required for mapping:

• Physical dimensions of the allocated job partition

• Mapping of ranks to physical coordinates and vice versa

• On Blue Gene machines such information is available 
and the API is a wrapper

• On Cray XT machines, there is no easy way to obtain 
topology information

11
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Cray XT machines

• Get nid (node ID) corresponding to an MPI rank:

• XT3: cnos_get_nidpid_map

• XT4/5: PMI_Portals_get_nid

• Get physical coordinates corresponding to nid:

• rca_get_meshcoord

• Translate the origin and provide this information 
through the Topology Manager API

12
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Bigben @ PSC

•  Bigben: The first Cray XT3 system in the world

• Officially unveiled on July 20, 2005 (ranked 44 in the top500 list) and 
decommissioned on March 31, 2010

• Initially had 2.4 GHz single core Opterons (upgraded to 2.6 GHz dual-
core nodes in late 2006) - 4,180 cores 21.5 TF

• SeaStar interconnect (3D torus of size 11 X 12 X 16)

13
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Thanks to Chad Vizino 
and Shawn Brown
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Case Study I: OpenAtom
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Performance on Blue Gene/L
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Diagnosis

16

Timeline view (OpenAtom on 8,192 cores of BG/L) using the performance 
visualization tool, Projections
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Mapping of OpenAtom Arrays

17

A. Bhatele, E. Bohm, and L. V. Kale. A Case Study of Communication Optimizations on 3D Mesh Interconnects. In 
Euro-Par, LNCS 5704, pages 1015–1028, 2009. Distinguished Paper Award, Feng Chen Memorial Best Paper Award
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Mapping of OpenAtom Arrays
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Mapping of OpenAtom Arrays

17

A. Bhatele, E. Bohm, and L. V. Kale. A Case Study of Communication Optimizations on 3D Mesh Interconnects. In 
Euro-Par, LNCS 5704, pages 1015–1028, 2009. Distinguished Paper Award, Feng Chen Memorial Best Paper Award

!"#$%&
'$()*$+%,+$-.)

/&$+"#$%&

/0./

1&23(-4

5)-0.

6)$23#.3&

6)$23#.3&

/0./7$)-/0.!

/0.!7$)-

8

98

88

9

888 89

988

9888

!"#$%&'$()*$+%,+$-.)

/&$+"#$%&

"-$-&0

'+$1&0

"-$-&0

'+$1&0

'+$1&0

"-$-&0

"-$-&0

Paircalculator and 
GSpace have 
plane-wise
communication

RealSpace and 
GSpace have 
state-wise
communication



August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

Performance Benefits from Mapping

18
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Diagnosis of Improvement

19

Timeline view using the performance visualization tool, Projections

Timeline of 1 iteration of 
OpenAtom running 

WATER_256M_70Ry on 
8192 cores of BG/L
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OpenAtom Performance on Blue Gene/P
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OpenAtom Performance on Blue Gene/P
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OpenAtom Performance on Cray XT3

21
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OpenAtom Performance on Cray XT3

• Cray XT3:

• Link bandwidth - 3.8 GB/s 
(XT3), 0.425 (BG/P), 0.175 
(BG/L)

• Bytes per flop - 8.77 (XT3), 
0.375 (BG/P and BG/L)

21



August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

OpenAtom Performance on Cray XT3

• Cray XT3:

• Link bandwidth - 3.8 GB/s 
(XT3), 0.425 (BG/P), 0.175 
(BG/L)

• Bytes per flop - 8.77 (XT3), 
0.375 (BG/P and BG/L)

• Job schedulers on Cray 
are not topology aware

21



August 3rd, 2010TeraGrid ’10 © Abhinav Bhatele

OpenAtom Performance on Cray XT3

• Cray XT3:

• Link bandwidth - 3.8 GB/s 
(XT3), 0.425 (BG/P), 0.175 
(BG/L)

• Bytes per flop - 8.77 (XT3), 
0.375 (BG/P and BG/L)

• Job schedulers on Cray 
are not topology aware

• Performance Benefit at 
2048 cores: 40% (XT3), 
45% (BG/P), 41% (BG/L)
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Case Study II: NAMD

22

are assigned statically to processors during program start-up. On the other hand,

computes, can be moved around to balance load across processors. If a patch com-

municates with more than one compute on a processor, a proxy is placed on this

processor for the patch. The proxy receives the message from the patch and then

forwards it to the computes internally (Figure 7.7). This avoids adding new com-

munication paths when new computes for the same patch are added on a processor.

Patch

Compute

Proxy

Figure 7.7: Placement of patches, computes and proxies on a 2D mesh of processors

The number of computes on a processor and their individual computational

loads determines its computational load and the number of proxies on a processor

indicates its communication load. Load balancing in NAMD is measurement-based.

This assumes that load patterns tend to persist over time and even if they change,

the change is gradual (referred to as the principle of persistence). The load balancing

framework records information about object (compute) loads for some time steps.

It also records the communication graph between the patches and proxies. This

information is collected on one processor and based on the instrumentation data,

a load balancing phase is executed. Decisions are then sent to all processors. The

current strategy is centralized and we shall later discuss future work to make it fully

60

a smaller brick within the 3D torus (shown in dark grey in the figure). The sum

of distances from any processor within this brick to the two patches is minimum.

Hence, if we find two processors with proxies for both patches, we give preference

to the processor which is within this inner brick defined by the patches.

Inner Brick

Outer Brick

Patch 1

Patch 2

Figure 7.9: Topological placement of a compute on a 3D torus/mesh of processors

Step II: Likewise, in this case too, we give preference to a processor with one proxy

or patch which is within the brick defined by the two patches that interact with the

compute.

Step III: If Step I and II fail, we are supposed to look for any underloaded processor

to place the compute on. Under the modified scheme of things, we first try to find

an underloaded processor within the brick and if there is no suitable processor, we

spiral around the brick to find the first underloaded one.

To implement these new topology aware schemes in the existing load balancers,

we build two preference tables (similar to Figure 7.8) instead of one. The first

preference table contains processors which are topologically close to the patches in

consideration (within the brick) and the second one contains the remaining proces-

66

A. Bhatele, L. V. Kale and S. Kumar, Dynamic Topology Aware Load Balancing Algorithms for Molecular 
Dynamics Applications, In 23rd ACM International Conference on Supercomputing (ICS), 2009.

Communication between 
patches and computes

Topology aware 
placement of computes
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• Evaluation Metric:     
Hop-bytes

• Indicates amount of traffic 
and hence contention on 
the network

• Previously used metric: 
maximum dilation

NAMD Performance on Blue Gene/P
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di = distance
bi = bytes
n = no. of messages

5 Hop-bytes as an Evaluation Metric

The volume of inter-processor communication can be characterized by the hop-bytes

metric which is the weighted sum of message sizes where the weights are the number

of hops (links) traveled by the respective messages. Hop-bytes can be calculated by

the equation,

HB =

n�

i=1

di × bi (5.1)

where di is the number of links traversed by message i and bi is the message size in

bytes for message i and the summation is over all messages sent.

Hop-bytes is an indication of the average communication load on each link on the

network. This assumes that the application generates nearly uniform traffic over all

links in the partition. The metric does not give an indication of hot-spots generated

on specific links on the network but is an easily derivable metric and correlates well

with actual application performance.

In VLSI circuit design and early parallel computing work, emphasis was placed

on another metric called maximum dilation which is defined as,

d(e) = max{di|ei ∈ E} (5.2)

where di is the dilation of the edge ei. This metric aims at minimizing the longest

length of the wire in a circuit. We claim that reducing the largest number of links

traveled by any message is not as critical as reducing the average hops across all

messages.
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are assigned statically to processors during program start-up. On the other hand,

computes, can be moved around to balance load across processors. If a patch com-

municates with more than one compute on a processor, a proxy is placed on this

processor for the patch. The proxy receives the message from the patch and then

forwards it to the computes internally (Figure 7.7). This avoids adding new com-

munication paths when new computes for the same patch are added on a processor.

Patch

Compute

Proxy

Figure 7.7: Placement of patches, computes and proxies on a 2D mesh of processors

The number of computes on a processor and their individual computational

loads determines its computational load and the number of proxies on a processor

indicates its communication load. Load balancing in NAMD is measurement-based.

This assumes that load patterns tend to persist over time and even if they change,

the change is gradual (referred to as the principle of persistence). The load balancing

framework records information about object (compute) loads for some time steps.

It also records the communication graph between the patches and proxies. This

information is collected on one processor and based on the instrumentation data,

a load balancing phase is executed. Decisions are then sent to all processors. The

current strategy is centralized and we shall later discuss future work to make it fully

60
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NAMD Performance on Blue Gene/P
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are assigned statically to processors during program start-up. On the other hand,

computes, can be moved around to balance load across processors. If a patch com-

municates with more than one compute on a processor, a proxy is placed on this

processor for the patch. The proxy receives the message from the patch and then

forwards it to the computes internally (Figure 7.7). This avoids adding new com-

munication paths when new computes for the same patch are added on a processor.
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The number of computes on a processor and their individual computational

loads determines its computational load and the number of proxies on a processor

indicates its communication load. Load balancing in NAMD is measurement-based.

This assumes that load patterns tend to persist over time and even if they change,

the change is gradual (referred to as the principle of persistence). The load balancing

framework records information about object (compute) loads for some time steps.

It also records the communication graph between the patches and proxies. This

information is collected on one processor and based on the instrumentation data,

a load balancing phase is executed. Decisions are then sent to all processors. The

current strategy is centralized and we shall later discuss future work to make it fully
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are assigned statically to processors during program start-up. On the other hand,

computes, can be moved around to balance load across processors. If a patch com-

municates with more than one compute on a processor, a proxy is placed on this

processor for the patch. The proxy receives the message from the patch and then

forwards it to the computes internally (Figure 7.7). This avoids adding new com-

munication paths when new computes for the same patch are added on a processor.
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The number of computes on a processor and their individual computational

loads determines its computational load and the number of proxies on a processor

indicates its communication load. Load balancing in NAMD is measurement-based.

This assumes that load patterns tend to persist over time and even if they change,

the change is gradual (referred to as the principle of persistence). The load balancing

framework records information about object (compute) loads for some time steps.

It also records the communication graph between the patches and proxies. This

information is collected on one processor and based on the instrumentation data,

a load balancing phase is executed. Decisions are then sent to all processors. The

current strategy is centralized and we shall later discuss future work to make it fully
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computes, can be moved around to balance load across processors. If a patch com-

municates with more than one compute on a processor, a proxy is placed on this

processor for the patch. The proxy receives the message from the patch and then

forwards it to the computes internally (Figure 7.7). This avoids adding new com-

munication paths when new computes for the same patch are added on a processor.
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Figure 7.7: Placement of patches, computes and proxies on a 2D mesh of processors

The number of computes on a processor and their individual computational

loads determines its computational load and the number of proxies on a processor

indicates its communication load. Load balancing in NAMD is measurement-based.

This assumes that load patterns tend to persist over time and even if they change,

the change is gradual (referred to as the principle of persistence). The load balancing

framework records information about object (compute) loads for some time steps.

It also records the communication graph between the patches and proxies. This

information is collected on one processor and based on the instrumentation data,

a load balancing phase is executed. Decisions are then sent to all processors. The

current strategy is centralized and we shall later discuss future work to make it fully
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8.1 Communication Graph: Identifying Patterns

Automatic topology aware mapping, as we shall see in the next few sections, uses

heuristics for fast scalable runtime solutions. Heuristics can yield more efficient so-

lutions if we can derive concrete information about the communication graph of the

application and exploit it. For this, we need to look for identifiable communication

patterns, if any, in the object graph. Many parallel applications have relatively

simple and easily identifiable 2D, 3D or 4D communication patterns. If we can

identify such patterns, then we can apply better suited heuristic techniques for such
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Increasing communication

• With faster processors 
and constant link 
bandwidths

• computation is becoming 
cheap

• communication is a 
bottleneck

• Trend for bytes per flop

• XT3: 8.77

• XT4: 1.357

• XT5: 0.23
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Results: WRF on Blue Gene/P
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Results: POP on Blue Gene/P
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Results: POP on Blue Gene/P

• In VN mode (using all 
4 cores per node):

• Reduction in hops: 60%

• No improvement in 
overall performance
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Results: POP on Blue Gene/P

• In VN mode (using all 
4 cores per node):

• Reduction in hops: 60%

• No improvement in 
overall performance

• In spite of POP 
spending 55% time in 
communication

• MPI_Waitall and 
MPI_Allreduce
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Summary

• Contention in modern day supercomputers can 
impact performance: makes mapping important

• Even for high bandwidth interconnects such as Cray

• Certain classes of applications (latency sensitive, 
communication bound) benefit most

• OpenAtom shows performance improvements of up to 50%

• NAMD - improvements for > 4k cores

• Developing an automatic mapping framework

• Relieve the application developer of the mapping burden
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