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Scalable Molecular Dynamics

® NAMD: Parallel molecular dynamics software

® NIH funded and developed by the joint collaboration
of Theoretical and Computational Biophysics Group
and the Parallel Computing Laboratory at lllinois

® Publicly available and installed at most
supercomputing centers in US and elsewhere
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Some history

® First publication on NAMD in 1996, NAMD 2.1 in 1999

® Awarded the Gordon Bell Prize in 2002

® NAMD 2.6 was released in August 2006

® [n 2007, NAMD accounted for 20% and 15% of the compute cycles
used at PSC and NCSA

¢ NAMD 2.7b3 was released in July 2010
e CUDA version of NAMD for running on GPGPUs

® |t has been downloaded by over 36,000 registered users

® |//6 citations as of March 2010
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NAMD’s Hybrid Method

e Hybrid of spatial and force decomposition*

® Similar methods (neutral territory, midpoint) later
used in Blue Matter and Desmond
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K. Schulten. NAMD2: Greater scalability for parallel molecular dynamics. Journal of Computational Physics, 1998.
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Charm++ Programming Model

® Object-based message-driven asynchronous model

® Overdecomposition: number of objects >> number of
processors

® Benefits from adaptive overlap of computation and
communication and load balancing

Global Obj CPUC
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Parallelization using Charm++

Patch Integration
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Bhatele,A., Kumar, S., Mei, C., Phillips, J. C., Zheng, G. & Kale, L.V., Overcoming Scaling Challenges in Biomolecular
Simulations across Multiple Platforms. In Proceedings of IEEE International Parallel and Distributed Processing

Symposium, Miami, FL, USA, April 2008.
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Comparison with other MD codes

1000 O Blue Matter
O NAMD on BG/L
Desmond
O NAMD on XT3
100 O NAMD on Lonestar

o

Time per step (ms)

8 |6 32 64 128 256 512 1024 2048 4096 8192 16384
Number of cores

August 4th, 2010 Abhinav Bhatele © TeraGrid ’10



NAMD Running on Cray

IAPP (5k) XT3 (BigBen) at PSC
JAC (DHFR, 23k)
Lysozyme (39k)
ApoAl (92k)
Fl-Atpase (327k)
STMV (1M)
Ribosome (2.8M)

1000

100

OOD0000QO

o

Simulation Time (ns/day)

v
001 = = = = = : : : : : : :
| 2 4 8 16 32 64 128 256 512 1024 2048 4096

Number of cores

August 4th, 2010 Abhinav Bhatele © TeraGrid ’10



Two simulation studies

® Titin: the protein responsible for muscle elasticity

s . R
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TeraGrid machines

® NCSA:Abe

® |200 8-core nodes

e .33 GHz Clovertowns

e TACC:Ranger

® 3,936 |6-core nodes
o 2.3 GHz Opterons

® |nfiniband fat-tree network

http://services.tacc.utexas.edu/index.php/ranger-user-guide
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The Molecular Origin of Muscle Elasticity

muscle sarcomere [|] M-line
N TN e g 5 ; . m =
= genak

i
e

i .Ii.-.

>
LN

I;:I:' .;_"',E > '! -. :.‘ _“-'1 .'.‘!.."-' [
Z-disc

Titin: the elastic component of sarcomere

[I] Roger Craig, Univ. Mass. Z-disc = Sarcomere
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Titin: the molecular rubber band in muscle
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® Globular Ig domains are
linked into a flexible
chain

August 4th, 2010 Abhinav Bhatele © TeraGrid ’10 12



Two modes of force response in
titin lg chain

® At low stretching forces (few tens of pN),
the Ig chain simply strengthens out -
tertiary structure elasticity

® At physiologically extreme forces (> 100
pN), individual Ig domain can lose its
secondary structure (unraveling) and
prove further extension - secondary
structure elasticity

tertiary
elasticity
domains straighten out
secondary
elasticity

domains rupture and unfold
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Stretching Titin lg chain softly with
Molecular Dynamics

® Crystal structure of a titin Ig chain with six connected Ig domain was published in 2008

[1]

® Steered molecular dynamics, implemented in NAMD, was employed to stretch apart the
crescent shaped Ig chain (without disrupting the structure of individual Ig domains) [2]

® From simulation, the relationship between force applied on the chain, and extension of
the chain, is obtained (force-extension profile)

e ~277,000 atoms, |10 ns

® Explicit water

® 5|2 cores, ~4 ns/day (on
TACC'’s Ranger)

[I] Castelmur et al., PNAS, 2008.
[2] Lee, Hsin, von Castelmur, Mayans,
Schulten. Biophysical Journal,2010.

Extension of the protein (A)

Force applied (pN)
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Extension of the protein (A)
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Understanding the tertiary elasticity
of the lg chain

® Characteristics of the force-extension profile can be understood completely
by considering the domain-domain motion in the Ig chain

® Energetics of such domain-domain motion can be measured using adaptive
biasing force method implemented in NAMD [3]

® Combining with statistical mechanical theory, the force-extension profile is

described accurately [2] [3] Henin and Chipot, ] Chem Phys, 2004
O’<i‘:_ ..... 22 3 Energy profile of the bending motion between an Ig domain pair
L P2 A ——r——
Negse.. [ simulation ]
3 3001 theory with bending motion 1
: theory with stretching motion
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Secondary structure of Titin Ig
chain

® Continued stretching on a linear Ig chain leads to unraveling of individual Ig
domains

® This is the regime of secondary structure elasticity

® The Ig domains ruptures one-by-one, not concurrently, leading to force-extension
profile with distinct peaks (known as the “sawtooth pattern”) [2]

® ~635,000 atoms, 66 ns

® Explicit water

® [200 cores,~2 ns/day
(on TACC’s Ranger)

Extension of the protein (A)

Force applied (pN)
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Secondary structure of Titin Ig
chain

® Continued stretching on a linear Ig chain leads to unraveling of individual Ig
domains

® This is the regime of secondary structure elasticity

® The Ig domains ruptures one-by-one, not concurrently, leading to force-extension
profile with distinct peaks (known as the “sawtooth pattern”) [2]
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Secondary structure elasticity:
Simulation vs. Experiment

® The “sawtooth” pattern in the force-extension profile of a multi-lg construct is
also seen in comparable experiment (e.g., using atomic force microscopy, AFM)

® But the force peaks seen in experiment is lower than in simulation

AFM tip
v v
,[{* i
{., f I ; 0 ! T T T T
" ‘ : 0 20 40 60 80 100
Extension (nm)
, oy
5y I Typical force-extension profile seen in stretching experiment
Y { :
_. The difference in force peak is due to the faster pulling velocity
o { used in simulation, the faster velocity employed so that unraveling
= N of the Ig domains can be completed within an reasonable amount
| $ ' of computer resources
—/— |
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Merging Simulation and Experiment
Time scales

® A series of stretching simulations was performed for a single titin Ig domain to systematically
test the relationship between pulling velocity and rupture peak force [4]

® The longest simulation being | Js long

® Results from the simulation and experiment can be described by the same theoretical model

2000
1800 @® simulation | |
® experiment (Carrion-Vazquez et al. 1999)
1600 o experiment (Rief et al., 1997) @
1400

1200 ®
1000 o
800 &? °
600 ®
400

&®
2005 gane o®

0
-7 6 -5 -4 -3 -2 -] 0 1 2 3

Log(velocity(A/ns))

rupture force (pN)

° ~52,000 atoms, 37 simulations totaling 2.4 s

® Explicit water [4] Lee, Hsin, Sotomayor, porhwsial ooy Published by Cell Press
Comellas. Schulten for the Biophysical Society
, .

° 546 cores, ~20 ns/day (on NCSA’s Abe) Structure, 2009
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The ribosome

® |arge (~300,000 atoms) and dynamic e 2 .o
molecular machine ¢ , o=

® translates genetic code into proteins
® consists of a large and a small subunit

® interacts with many factors during its & 2
function R EETG

® can be controlled by the nascent chain

® can feed nascent chain into
translocating pores

® many states are impossible to
crystallize, but can be imaged by cryo-
electron microscopy

http://en.wikipedia.org/wiki/Ribosome
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The ribosome

® Jarge (~300,000 atoms) and dynamic _ Eo 2 -
molecular machine ¢ , o=

® translates genetic code into proteins
® consists of a large and a small subunit

® interacts with many factors during its 3 ey
function RNA-EFTo

® can be controlled by the nascent chain

® can feed nascent chain into
translocating pores

® many states are impossible to
crystallize, but can be imaged by cryo-
electron microscopy

http://en.wikipedia.org/wiki/Ribosome
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Molecular dynamics flexible fitting (MDFF)

, A B | O
® |dea: add forces derived from \ | /'\i}’“j/:’

the experimental cryo-EM map
to the forces from the MD
potential

® Cryo-EM map drives the
structure into a specific
conformation

[1] Trabuco et al. Structure (2008) 16:673-683.

[2] Villa et al. PNAS (2009) 106:1063-1068.

[3] Sener et al. Chem Phys (2009) 357:188-197.
[4] Trabuco et al. Methods (2009) 49:174-180.

[5] Hsin et al. Biophys ] (2009) 97:321-329.

[6] Gumbart et al. Structure (2009) 17:1453-1464.
[7] Seidelt et al. Science (2009) 326:1412-1415.
[8] Becker et al. Science (2009) 326:1369-1373.
[9] Trabuco et al. Structure (2010) 18:627-637.
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Molecular dynamics flexible fitting (MDFF)
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the experimental cryo-EM map
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conformation 4 . B T 4 A

[1] Trabuco et al. Structure (2008) 16:673-683.

[2] Villa et al. PNAS (2009) 106:1063-1068.

[3] Sener et al. Chem Phys (2009) 357:188-197.
[4] Trabuco et al. Methods (2009) 49:174-180.

[5] Hsin et al. Biophys ] (2009) 97:321-329.

[6] Gumbart et al. Structure (2009) 17:1453-1464.
[7] Seidelt et al. Science (2009) 326:1412-1415.
[8] Becker et al. Science (2009) 326:1369-1373.
[9] Trabuco et al. Structure (2010) 18:627-637.
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Regulatory chain TnaC

® regulatory nascent chain

® stops ribosome, but prevents
termination

® system size: 300,000 atoms

i‘w ® in vacuo, MDFF, 1024 cores, 48 h,

L4 20 ns

-2 ® path of the backbone of TnaC
through the ribosome identified

® active site residues A2602 and
U2585 adopt conformations which
prevent termination

® specific interactions were
identified which promote stalling

Seidelt et al. Science (2009) 326:1412-1415.
Trabuco et al. Structure (2010) 18:627-637.
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Interactions between the ribosome and
the protein conducting channel

Gumbart et al. Structure (2009) 17:1453-1464.

August 4th, 2010

® protein conducting
channel in complex with
ribosome

® system size: 2,700,000
atoms

® |In water, MDFF
® |024 cores, 2,000 h, 20 ns

Abhinav Bhatele © TeraGrid ’10
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Interactions between the ribosome and
the protein conducting channel

® protein conducting
channel in complex with
ribosome

® system size: 2,700,000
atoms

® |n water, MDFF
® |024 cores, 2,000 h, 20 ns

Gumbart et al. Structure (2009) 17:1453-1464.
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Regulation of the protein-conducting channel
by a bound ribosome

polypeptide translocation

August 4th, 2010
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Interactions between the ribosome and
the protein conducting channel
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Bacterial ribosome-SecYEP complex Mammalian ribosome-Sec6| complex
® Binding spots between channel and ® Connections are similar to bacterial

ribosome can be classified into four complex; channel is still 2 monomer

9

groups, all conserved
® |oops 6/7 and 8/9 insert into the

exit tunnel and interact primarily

with rRNA

Gumbart et al. Structure (2009) 17:1453-1464. Becker et al. Science (2009) 326:1369-1373
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Benchmarking Titin

O Intrepid (BG/P)
O Jaguar (XT5)

Ranger
1000 8
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~4.2 ns/day on
2,048 cores of
Ranger

Time per step (ms)
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Benchmarking Ribosome
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Benchmarking Ribosome
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Questions!
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